Matemática Computacional

Diferenciação e integração numéricas

1. É dada a seguinte tabela de valores de uma certa função \boldsymbol{v}

t_i	0	60	120	180	240	300
$\overline{v(t_i)}$	0.0000	0.0824	0.2747	0.6502	1.3851	3.229

- (a) Determine uma aproximação para v'(180) usando: i. Diferenças progressivas; ii. Diferenças regressivas; iii. Diferenças centradas.
- (b) Como poderia proceder para determinar uma aproximação para v'(300)? Justifique.
- 2. (Exercício 4.3, p120) Calcular a ordem de precisão em h (distância entre os pontos) da seguinte fórmula para a aproximação numérica $f'(x_i) \approx \frac{f(x_{i-2}) 6f(x_{i-1}) + 3f(x_i) + 2f(x_{i+1})}{6h}$.
- 3. É dada a seguinte tabela de valores de uma certa função \boldsymbol{f}

- (a) Determine aproximações para f'(3.3) usando interpolação linear e interpolação quadrática.
- (b) Determine aproximações para f'(3.1) e f'(3.5) usando interpolação linear.
- (c) Determine o polinómio interpolador de Hermite de f no suporte $\{3.1, 3.5\}$.
- 4. A taxa de arrefecimento de um corpo pode ser expressa por $\frac{dT}{dt} = -k(T T_a)$ onde T e T_a são as temperaturas do corpo e do meio circundante (em graus Celsius), respectivamente, e k é uma constante de proporcionalidade (por minuto). Se uma esfera de metal aquecida a 90°C é mergulhada em água mantida à temperatura constante de $T_a = 20$ °C, a temperatura da esfera toma os seguintes valores

Use diferenciação numérica para aproximar $\frac{dT}{dt}$ em cada momento.

- 5. (Exercício 4.5, p120) Determinar o número mínimo M de subintervalos para aproximar, usando a fórmula composta do ponto médio com erro inferior a 10^{-4} , os integrais das seguintes funções: $f_1(x) = \frac{1}{1+(x-\pi)^5}$ em [0,5], $f_2(x) = e^x \cos(x)$, em $[0,\pi]$ e $f_3(x) = \sqrt{x(1-x)}$, em [0,1].
- 6. Determine valores aproximados para $\int_0^1 e^{-x} dx$, usando a fórmula do trapézio. Indique um limite superior para o erro cometido em cada um dos casos.
- 7. Seja $I = \int_{-2}^{-1} xe^{2x} dx$.
 - (a) Qual o menor número de pontos que deve considerar na fórmula do trapézio por forma a que o erro cometido no cálculo aproximado do integral não exceda 0.5×10^{-3} ?
 - (b) Calcule o valor aproximado de I de acordo com a alínea anterior.
 - (c) Repita as alíneas anteriores usando, agora, a fórmula de Simpson.

8. (Exercício 4.10, p121) Seja I_1 e I_2 os valores obtidos pela fórmula composta do trapézio, aplicada com dois passos de comprimentos diferentes H_1 e H_2 , ao cálculo aproximado de I(f) $\int_a^b f(x)dx$. Verificar que, se f'' variar pouco em]a,b[, o valor

$$I_R = I_1 + \frac{I_1 - I_2}{(H_2/H_1)^2 - 1}$$

dá uma melhor aproximação de I(f) do que I_1 e I_2 . Esta técnica designa-se por método de extrapolação de Richardson.

9. Considere a seguinte tabela da função f(x):

	0.0						
$f(x_i)$	1.00	0.83	0.71	0.62	0.36	0.30	Ì .

- (a) Será possível calcular um valor aproximado para o integral $I=\int_0^1 f(x)\,dx$, usando a fórmula de Simpson ou a regra dos trapézios, através da tabela, com um erro que não exceda 10^{-3} ? Justifique a sua resposta.
- (b) Calcule um valor aproximado de I e indique uma estimativa para o erro cometido.
- 10. Pretende calcular-se um valor aproximado para o integral $I = \int_{1}^{2} \ln \frac{1}{x} dx$.
 - (a) Use a fórmula de Simpson para obter I com 3 casas decimais correctas.
 - (b) Sem calcular o valor exacto de I, diga, justificando, se a aproximação calculada é por defeito ou por excesso.
- 11. Considere a seguinte equação diferencial y'(t) + a(t)y(t) = 0. A solução desta equação é da forma $y(t)=y(0)e^{-\int_0^t a(s)ds}$. Sabendo que $a(0)=1,\,a(1)=2,\,a(2)=1$ e que $y(0)=1,\,$ determine uma aproximação para y(2).
- 12. Determine o comprimento aproximado do arco do gráfico da função $f(x) = x^3 x$, entre os pontos (-1,0) e (2,6), usando a fórmula do trapézio composta, com quatro sub-intervalos.
- 13. Considere a função $f(x) = e^x + 2x$.
 - (a) Calcule uma aproximação para a raiz de f(x) aplicando o método de Newton duas vezes.
 - (b) Utilizando a fórmula de Simpson, aproxime, com um erro não superior a 10^{-6} , a área da região limitada por $y \leq e^x$, $y \geq -2x$ e $x \leq 0$.
- 14. A quantidade de massa que entra ou é libertada por um reactor num dado período de tempo é dada por $M = \int_{t_1}^{t_2} Qc dt$ onde t_1 e t_2 são os momentos inicial e terminal, respectivamente.

Usando integração numérica determine M para $Q=5\mathrm{m}^3/\mathrm{min}$ e os dados da tabela: t (min.) | 0 10 20 30 40 50

15. Construa uma regra de integração da forma

$$I(f) = \int_{-1}^{1} f(x)dx \approx A_0 f(-\frac{1}{2}) + A_1 f(0) + A_2 f(\frac{1}{2})$$

de modo a ser exacta para polinómios de grau inferior ou igual a 2.