DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

MATEMÁTICA COMPUTACIONAL (ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES)

Folha 4: Sistemas lineares

Ano lectivo 2009/2010

- 1. Considere o sistema Ax = b onde $A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - (a) Mostre que A admite uma decomposição A = LU.
 - (b) Determine a solução dos sistema tendo em atenção a alínea (a).
- 2. Seja A uma matriz invertível. Prove que o seu número de condição é maior ou igual à unidade.
- 3. Considere o sistema Ax = b, com $A = \begin{bmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{bmatrix}$ e $b = \begin{bmatrix} 32 \\ 23 \\ 33 \\ 31 \end{bmatrix}$, e seja $c = \begin{bmatrix} 1 & -1 & 1 & 1 \end{bmatrix}^T$,

 $\overline{b} = b + 0.1c$ e $\overline{\overline{b}} = b + 0.01c$. Alguma das soluções \overline{x} e $\overline{\overline{x}}$, onde $A\overline{x} = \overline{b}$ e $A\overline{\overline{x}} = \overline{\overline{b}}$, pode ser considerada uma "boa aproximação" para x?

- 4. Seja A a matriz definida por $A = \begin{bmatrix} 1 & a \\ 0 & 2 \end{bmatrix}$, com inversa $A^{-1} = \begin{bmatrix} 1 & -a/2 \\ 0 & 1/2 \end{bmatrix}$.
 - (a) Calcule o número de condição da matriz A associado à norma $\|\cdot\|_1$.
 - (b) Suponha que, ao resolver o sistema Ax = b por eliminação de Gauss, com a = 10, encontra uma solução \hat{x} que satisfaz $||A\hat{x} b||_1/||b||_1 < 10^{-3}$. Determine um majorante para o erro relativo de \hat{x} .
- 5. Mostrar que, $K_2(A^2) = (K_2(A))^2$ para toda a matriz simétrica e definida positiva A.
- 6. Considere $A = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ -a & 0 & 1 \end{bmatrix}$, com $a \in \mathbb{R}$, e verifique que $A^{-1} = \begin{bmatrix} 1/(1+a^2) & 0 & -a/(1+a^2) \\ 0 & 1 & 0 \\ a/(1+a^2) & 0 & 1/(1+a^2) \end{bmatrix}$.
 - (a) Calcule as normas $\|\cdot\|_{\infty}$ e $\|\cdot\|_{1}$ da matriz A.
 - (b) Calcule $K_{\infty}(A)$ e $K_1(A)$. Para que valores de a há mau condicionamento da matriz?
- 7. (Matlab) Determine a factorização LU das seguintes matrizes:

(a)
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 2 \\ 3 & 6 & 4 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 2 \\ 3 & 6 & 4 \end{bmatrix}$.

- 8. (Matlab) Verifique que a matriz $A = \begin{bmatrix} 4 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$ é simétrica e positiva definida e determine a factorização LL^T de A.
- 9. (Matlab) Recorra à factorização LU para resolver o sistema

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 2\\ 2x_1 + 3x_2 + 4x_3 + x_4 = 6\\ x_1 + 2x_2 + 2x_3 + x_4 = 2\\ 3x_1 + 7x_2 - x_3 - x_4 = -8 \end{cases}$$

10. (Matlab) Determine a factorização PA = LU das seguintes matrizes, recorrendo à escolha parcial de pivot:

(a)
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 2 \\ 3 & 6 & 4 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$.

11. (Matlab) Considere o sistema linear Ax = b, com $A = \begin{bmatrix} 2 & -2 & 0 \\ \varepsilon - 2 & 2 & 0 \\ 0 & -1 & 3 \end{bmatrix}$ e b tal que a solução correspondente é $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, sendo ε um número real positivo. Calcular a factorização A = LU e

concluir que $l_{32} \to \infty$ quando $\varepsilon \to 0$.

12. (Matlab)

- (a) Mostre que o sistema de equações lineares $\begin{cases} x_1 + 2x_2 = 3 \\ 1,0001x_1 + 2x_2 = 3,0001 \end{cases}$ tem a solução $[1\ 1]^T$.

 (b) Considere agora o seguinte sistema $\begin{cases} x_1 + 2x_2 = 3 \\ 0,9999x_1 + 2x_2 = 3,0001 \end{cases}$. Calcule a solução do sistema. Será a matriz da alínea anterior mal condicionad
- 13. (Matlab) Determine a solução do sistema $\begin{cases} x_1 + x_2 x_3 = 1 \\ 5x_1 + 2x_2 + 2x_3 = -4 \\ 3x_1 + x_2 + x_3 = 1 \end{cases}$:
 - (a) usando a factorização LU, sem escolha parcial de pivot;
 - (b) usando a factorização LU, com escolha parcial de pivot.
- 14. (Matlab) Um engenheiro electrotécnico supervisiona a produção de três tipos de componentes electrónicas. Três tipos de material - metal, plástico e borracha - são necessários para a produção. As quantidades exigidas para produzir cada componente são indicadas na tabela.

componente	metal(g/componente)	plástico(g/componente)	borracha(g/componente)
1	15	0,30	1,0
2	17	0,40	$1,\!2$
3	19	$0,\!55$	1,5

Se diariamente estiverem disponíveis 3,89, 0,095 e 0, 282 quilogramas de metal, plástico e borracha, respectivamente, quantas componentes podem ser produzidas por dia?

15. (Matlab) O seguinte sistema de equações foi obtido aplicando a lei da corrente em rede a um determinado circuito.

$$\begin{cases} 55I_1 - 25I_4 = -200 \\ -37I_3 - 4I_4 = -250 \\ -25I_1 - 4I_3 + 29I_4 = 100 \end{cases}$$

Resolva o sistema.

16. (Matlab) O sistema Ax = b tem solução única. Use a factorização LU para a determinar, sabendo que

$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 1 & 2 & 2 & 2 \\ 3 & 7 & -1 & -1 \end{bmatrix} \quad \text{e} \quad b = \begin{bmatrix} 2 \\ 6 \\ 2 \\ -8 \end{bmatrix}.$$

17. (Matlab) Considere os dados da tabela

Teste	Tensão	Deformação
1	0,00	0,00
2	0,06	0,08
3	$0,\!14$	0,14
4	$0,\!25$	0,20
5	0,31	0,23
6	$0,\!47$	$0,\!25$
7	0,60	0,28
8	0,70	0,29

correspondentes aos valores da deformação para diferentes valores da tensão aplicada numa amostra de tecido biológico (um disco invertebral). Determine a equação da recta de regressão, usando processos diferentes: (a) a instrução **polyfit**. (b) o comando \.

18. Aplicando o método de Jacobi, determine uma aproximação da solução do seguinte sistema

$$\begin{bmatrix} 3 & -1 & 1 \\ 3 & 6 & 2 \\ 3 & 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} ,$$

começando com uma aproximação inicial $x^{(0)} = [0 \ 0 \ 0]^{\mathrm{T}}$.

19. Obtenha duas aproximações para a solução do seguinte sistema linear

$$\begin{cases}
-8x + y + z = 1, \\
x - 5y + z = 16, \\
x + y - 4z = 7,
\end{cases}$$

partindo do vector inicial $x^{(0)} = [0\ 0\ 0]^{\mathrm{T}}$, usando: (a) o método de Jacobi; (b) o método de Gauss-Seidel. Compare as aproximações obtidas com a solução do sistema.

20. Para aproximar a solução (x_1, x_2, x_3) de um sistema linear Ax = b, recorreu-se ao seguinte método iterativo

$$\begin{cases} x_1^{(k+1)} &= -0.6x_2^{(k)} - 0.6x_3^{(k)} + 1, \\ x_2^{(k+1)} &= -0.6x_1^{(k)} - 0.6x_3^{(k)} + 1, \\ x_3^{(k+1)} &= -0.6x_1^{(k)} - 0.6x_2^{(k)} + 1, \qquad k = 0, 1, \dots \end{cases}$$

- (a) Escreva a respectiva matriz de iteração. O método será convergente para todo o ponto inicial?
- (b) O método apresentado pode ser identificado com o método de Jacobi ou com o método de Gauss-Seidel? Justifique a sua resposta.
- (c) Sabendo que $b = [1 \ 1 \ 1]^{\mathrm{T}}$, obtenha a matriz A.

21. Considere o sistema linear
$$\begin{cases} 4x - y - z = 2, \\ x + ky + 3z = 4, \\ x + 2y + 0.5z = 4. \end{cases}$$

- (a) Determine os valores do parâmetro k para os quais o sistema tem uma só solução.
- (b) Para k=0 poderá aplicar o método de Gauss-Seidel sem alterar o sistema? Justifique.
- (c) Determine valores de k para os quais seja garantida a convergência do método de Jacobi.
- (d) Faça k=0 e calcule duas aproximações para a solução do sistema, utilizando o método de Jacobi.

22. Considere o sistema linear
$$\begin{cases} x - y - z = -1, \\ 2y + az = 0, \text{ com } a \in \mathbb{R}^+. \\ -x + 2z = 3, \end{cases}$$

- (a) Determine todos os valores do parâmetro a que garantem a convergência do método de Gauss-Seidel quando aplicado a este sistema.
- (b) Para a=-1 efectue duas iterações do referido método, indicando uma estimativa para o erro cometido.

23. Considere o sistema linear
$$\begin{cases} x - 2y = -2, \\ 2x + y = 2. \end{cases}$$

- (a) Verifique que o método de Gauss-Seidel aplicado ao sistema diverge.
- (b) Reordene as equações de modo a obter um sistema equivalente que lhe permita garantir que este método converge.

24. Considere o sistema
$$\begin{bmatrix} 5 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 5 \end{bmatrix} x = \begin{bmatrix} 6 \\ 7 \\ 0 \end{bmatrix}.$$

- (a) Prove que o polinómio característico associado à matriz de iteração do método de Gauss-Seidel, quando aplicado ao sistema anterior, é $P(\lambda) = -\lambda^3 + \frac{46}{75}\lambda^2 \frac{2}{25}\lambda$.
- (b) Localize e separe as raízes de $P(\lambda) = 0$.
- (c) O método de Gauss-Seidel, aplicado ao sistema anterior, é convergente? Justifique.
- (d) Determine a segunda aproximação gerada pelo método de Gauss-Seidel, quando aplicado ao sistema anterior.

25. Considere a matriz
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & -3 & -1 \end{bmatrix}$$
.

- (a) Mostre que o polinómio característico associado a A é $P(\lambda) = -\lambda^3 7\lambda + 1$.
- (b) Localize e separe todos os valores próprios de A.
- (c) Seja A a matriz de iteração de um método iterativo que aproxima a solução de um sistema de equações lineares Cx = d. Será que, recorrendo ao resultado da alínea anterior, pode tirar alguma conclusão acerca da convergência desse método iterativo? Justifique.
- 26. (Matlab) O sistema $\begin{cases} 5x y = 3 \\ -x + 10y = 19 \end{cases}$ tem a solução [1 2]^T. Aproxime-a usando os métodos iterativos de Jacobi e Gauss-Seidel com $x^{(0)} = [0 \ 0]^{T}$, e compare os resultados.
- 27. (Matlab) Aplique os métodos de Jacobi e Gauss-Seidel para aproximar a solução do sistema

$$\left[\begin{array}{ccc} \alpha & 0 & 1 \\ 0 & \alpha & 0 \\ 1 & 0 & \alpha \end{array}\right] x = \left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right]$$

para $\alpha = 2$ e $\alpha = -2$. Comente os resultados obtidos.

28. (Matlab) Verifique se os métodos de Jacobi e Gauss-Seidel convergem quando aplicados aos seguintes sistemas:

(a)
$$\begin{cases} 9x + 3y + z = 13 \\ -6x + 8z = 2 \\ 2x + 5y - z = 6 \end{cases}$$
 (b)
$$\begin{cases} x + y + 6z = 8 \\ x + 5y - z = 5 \\ 4x + 2y - 2z = 4 \end{cases}$$
 (c)
$$\begin{cases} -3x + 4y + 5z = 6 \\ -2x + 2y - 3z = -3 \\ 2y - z = 1 \end{cases}$$

29. (Matlab) Uma fábrica de equipamento electrónico produz transistores, resistências e chips de computadores. Para a respectiva construção, os materiais exigidos são cobre, zinco e vidro. O número de unidades necessárias para cada componente são indicadas na tabela.

componente	cobre	zinco	vidro
transistores	4	1	2
resistências	3	3	1
chips de computadores	2	1	3

Numa determinada semana as quantidades de materiais disponíveis são 960 unidades de cobre, 510 de zinco e 610 de vidro.

- (a) Obtenha o sistema que permite determinar o número de componentes de cada tipo que podem ser produzidas naquela semana.
- (b) Aproxime a solução do sistema recorrendo aos métodos de Jacobi e de Gauss-Seidel.
- (c) Compare os resultados obtidos em (b) com a solução exacta.