Métodos Numéricos para Equações com Derivadas Parciais (2009/2010)

Data de recepção: 22/03/2010
Ficha 2
Data de entrega: 26/04/2010
Let us consider a porous media domain $\Omega \subset \mathbb{R}^{2}$ with boundary $\partial \Omega$. If we denote by k the conductivity tensor (permeability divided by fluid viscosity), the equation that models the pressure p (in stationary regime) may be written in the form

$$
\left\{\begin{array}{cc}
-\operatorname{div}(k \nabla p)=f, & \text { in } \Omega, \\
p=g, & \text { in } \partial \Omega,
\end{array}\right.
$$

where f is a given source term. In some situations it is the flux (or Darcy velocity) $-k \nabla p$ that is of primary interest. However, in the standard finite element method the derivatives, and hence the flux, are approximated lower order than the solution p. A way to overcome this disadvantage is to consider is to consider a so called mixed formulation of this problem. Here the flux u is introduced as a separate dependent variable whose approximation is sought in a different finite element space that the solution itself. This may be done in a such way that the flux is approximated to the same order of accuracy as p.

In the mixed form, the problem is to find (u, p) such that

$$
\left\{\begin{array}{cc}
\operatorname{div}(u)=f, & \text { in } \Omega, \\
u=-k \nabla p, & \text { in } \Omega, \\
p=g, & \text { in } \partial \Omega,
\end{array}\right.
$$

where k is a symmetric, positive definite second-order tensor with components in $L^{\infty}(\Omega)$.

1. Prove that the week formulation of this problem is: find u in V and p in W such that

$$
\left\{\begin{array}{cc}
\left(k^{-1} u, v\right)=(p, \operatorname{div}(v))-\left(g, v^{T} n\right)_{\partial \Omega}, & v \in V \\
(\operatorname{div}(u), w)=(f, w), & w \in W
\end{array}\right.
$$

where n is the outward unit normal in $\partial \Omega,(\cdot, \cdot)$ is the L^{2} inner product

$$
V=H(\operatorname{div} ; \Omega)=\left\{v \in\left(L^{2}(\Omega)\right)^{2}, \operatorname{div}(v) \in L^{2}(\Omega)\right\}
$$

with norm $\|v\|_{V}^{2}=\|v\|^{2}+\|\operatorname{div}(v)\|^{2}$, and

$$
W=L^{2}(\Omega) .
$$

2. Solve the problem in the unit square considering

$$
k=\left[\begin{array}{cc}
10 & 0 \\
0 & 1
\end{array}\right]
$$

and the true solution

$$
p=x^{3} y+y^{4}+\sin x \cos y .
$$

The values of f and g are obtained according to the equation.

