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IntrodutionPartial di�erential equations arise in the mathematial modelling of many physial, hemialand biologial phenomena (e.g. dispersion of pollutants in lakes and rivers, spreading ofdiseases, weather predition, et.). Very frequently the equations are so ompliated thattheir solution by analytial means (e.g. by Laplae and Fourier transforms or in a form ofa series) is either impossible or impratiable, and one has to resort to numerial tehniquesinstead.These notes are devoted to the analysis of numerial methods for ellipti, paraboli andhyperboli partial di�erential equations, by onsidering simple model problems. We onen-trate on tehniques that are most widespread in pratie: �nite di�erene and �nite elementmethods, although the analysis of �nite volume shemes is also touhed on. Preferene isgiven to theoretial results onerning the stability and the auray of numerial methods{ properties that are of key importane in pratial omputations.The material overed in the notes had formed the basis of a 16-leture introdutory ourseon the analysis of numerial algorithms for partial di�erential equations at the Universityof Oxford given over the period 1992{1996. The bakground material from linear funtionalanalysis and the theory of funtion spaes disussed herein is intentionally skethy in orderto enable the understanding of some of the key onepts, suh as stability and onvergeneof �nite di�erene and �nite element methods, with the bare minimum of analytial prereq-uisites. Due to the time-onstraints imposed by the length of the original leture ourse,a signi�ant portion of the theory of numerial algorithms for partial di�erential equationsis not being touhed upon; nevertheless, I hope that the notes will serve a helpful purposeas a brief ompendium of basi theoretial information about this exiting and pratiallyrelevant �eld of researh. For further details, the reader is referred to the numerous exellentbooks on the subjet, some of whih appear on the Reading List.1 Elements of funtion spaesThe auray of numerial methods for the approximate solution of partial di�erential equa-tions depends on their apabilities to represent the important qualitative features of the(analytial) solution. One suh feature that has to be taken into aount in the onstrutionand the analysis of numerial methods is the smoothness of the solution, and this dependson the smoothness of the data.Preise assumptions about the smoothness of the data and of the orresponding solution anbe onveniently formulated by onsidering lasses of funtions with partiular di�erentia-bility and integrability properties, alled funtion spaes. In this setion we present a briefoverview of de�nitions and basi results form the theory of funtion spaes whih will be usedthroughout these notes, fousing, in partiular, on spaes of ontinuous funtions, spaes of3



integrable funtions, and Sobolev spaes.1.1 Spaes of ontinuous funtionsIn this setion, we desribe some simple funtion spaes that onsist of ontinuous andontinuously di�erentiable funtions. For the sake of notational onveniene, we introduethe onept of a multi-index.Let N denote the set of non-negative integers. An n-tuple � = (�1; : : : ; �n) 2 Nn is alleda multi{index. The non-negative integer j�j := �1 + : : : + �n is alled the length of themulti{index � = (�1; : : : ; �n). We denote (0; : : : ; 0) by 0; learly j0j = 0.Let D� = � ��x1��1 : : :� ��xn��n = �j�j�x�11 : : : �x�nn :EXAMPLE. Suppose that n = 3, and � = (�1; �2; �3), �j 2 N , j = 1; 2; 3. Then for u, afuntion of three variables x1; x2; x3,Xj�j=3D�u = �3u�x31 + �3u�x21�x2 + �3u�x21�x3+ �3u�x1�x22 + �3u�x1�x32 + �3u�x32+ �3u�x1�x2�x3 + �3u�x22�x3 + �3u�x2�x23 + �3u�x33 : �Let 
 be an open set in Rn , and let k 2 N . We denote by Ck(
) the set of all ontinuousreal-valued funtions de�ned on 
 suh that D�u is ontinuous on 
 for all � = (�1; : : : ; �n)with j�j � k. Assuming that 
 is a bounded open set, Ck(�
) will denote the set of all u inCk(
) suh that D�u an be extended from 
 to a ontinuous funtion on �
, the losure ofthe set 
, for all � = (�1; : : : ; �n); j�j � k. Ck(�
) an be equipped with the normkukCk(�
) := Xj�j�k supx2
 jD�u(x)j :In partiular, when k = 0, we shall write C(�
) instead of C0(�
);kukC(�
) = supx2
 ju(x)j = maxx2�
 ju(x)j :Similarly, if k = 1, kukC1(�
) = Xj�j�1 supx2
 jD�u(x)j4



= supx2
 ju(x)j+ nXj=1 supx2
 ���� �u�xj (x)���� :EXAMPLE. Let n = 1, and onsider the open interval 
 = (0; 1) � R1 . The funtionu(x) = 1=x belongs to Ck(
) for eah k � 0. Sine �
 = [0; 1℄, it is lear that u is notontinuous on �
; the same is true of its derivatives. Therefore u 62 Ck(�
) for any k � 0: �The support, supp u, of a ontinuous funtion u on 
 is de�ned as the losure in 
 of theset fx 2 
 : u(x) 6= 0g; in other words, supp u is the smallest losed subset of 
 suh thatu = 0 in 
nsupp u.EXAMPLE. Let w be the funtion de�ned on Rn byw(x) = ( e� 11�jxj2 ; jxj < 1;0; otherwise;here jxj = (x21 + : : :+ x2n)1=2. Clearly supp w is the losed unit ball fx 2 Rn : jxj � 1g: �We denote by Ck0 (
) the set of all u 2 Ck(
) suh that supp u � 
 and supp u is bounded.Let C10 (
) = \k�0Ck0 (
):EXAMPLE. The funtion w de�ned in the previous example belongs to C10 (Rn): �1.2 Spaes of integrable funtionsNext we de�ne a lass of spaes that onsist of (Lebesgue) integrable funtions. Let p bea real number, p � 1; we denote by Lp(
) the set of all real-valued funtions de�ned on 
suh that Z
 ju(x)jp dx <1:Funtions whih are equal almost everywhere (i.e. equal, exept on a set of measure zero)on 
 are identi�ed with eah other. Lp(
) is equipped with the normkukLp(
) := �Z
 ju(x)jp dx�1=p :A partiularly important ase is p = 2; then,kukL2(
) = �Z
 ju(x)j2 dx�1=2 :5



The spae L2(
) an be equipped with the inner produt(u; v) := Z
 u(x)v(x) dx:Clearly kukL2(
) = (u; u)1=2.Lemma 1.1 (The Cauhy{Shwarz inequality). Let u; v 2 L2(
); then,j(u; v)j � kukL2(
) kvkL2(
) :Proof Let � 2 R; then,0 � ku+ �vk2L2(
) = (u+ �v; u+ �v)= (u; u) + (u; �v) + (�v; u) + (�v; �v)= kuk2L2(
) + 2�(u; v) + �2 kvk2L2(
) ; � 2 R:The right-hand side is a quadrati polynomial in � with real oeÆients whih is non-negative forall � 2 R. Therefore its disriminant is non-positive, i.e.j2(u; v)j2 � 4 kuk2L2(
) kvk2L2(
) � 0;and hene the desired inequality. 2Corollary (The triangle inequality) Let u, v belong to L2(
); then, u+ v 2 L2(
), andku+ vkL2(
) � kukL2(
) + kvkL2(
) :Remark The spae L2(
) equipped with the inner produt (�; �) (and the assoiated normkukL2(
) = (u; u)1=2) is an example of a Hilbert spae. In general, a vetor spae X, equippedwith an inner produt (�; �)X (and the assoiated norm kukX = (u; u)1=2X ) is alled a Hilbertspae if, whenever fumg1m=1 is a sequene of elements of X suh thatlimn;m!1 kun � umkX = 0;then, there exists u 2 X suh that limm!1 ku� umkX = 0 (i.e. the sequene fumg1m=1onverges to u in X).
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1.3 Sobolev spaesIn this setion we introdue a lass of funtion spaes that play an important role in moderndi�erential equation theory. These spaes, alled Sobolev spaes (after the Russian mathe-matiian S.L. Sobolev), onsist of funtions u 2 L2(
) whose weak derivatives D�u are alsoelements of L2(
). To give a preise de�nition of a Sobolev spae, we shall �rst explain themeaning of weak derivative.Suppose u is a smooth funtion, say u 2 Ck(
), and let v 2 C10 (
); then, we have thefollowing integration-by-parts formula:Z
D�u(x) � v(x) dx = (�1)j�j Z
 u(x) �D�v(x) dx; j�j � k;8v 2 C10 (
):However, in the theory of partial di�erential equations one often has to onsider funtions uthat do not possess the smoothness hypothesised above, yet they have to be di�erentiated(in some sense). It is for this purpose that we introdue the idea of a weak derivative.Suppose that u is loally integrable on 
 (i.e. u 2 L1(!) for eah bounded open set !; with�! � 
:) Suppose also that there exists a funtion w�, loally integrable on 
, and suh thatZ
 w�(x) � v(x) dx = (�1)j�j Z
 u(x) �D�v(x) 8v 2 C10 (
):We then say that w� is the weak derivative of u (of order j�j = �1 + : : : + �n) and writew� = D�u. Clearly, if u is a smooth funtion then its weak derivatives oinide with those inthe lassial (pointwise) sense. To simplify the notation, we shall use the letter D to denoteboth a lassial and a weak derivative.EXAMPLE Let 
 = R1 , and suppose that we wish to determine the weak �rst derivativeof the funtion u(x) = (1� jxj)+ de�ned on 
. Clearly u is not di�erentiable at the points0 and �1. However, beause u is loally integrable on 
, it may have a weak derivative.Indeed, for any v 2 C10 (
),Z +1�1 u(x)v0(x) dx = Z +1�1 (1� jxj)+v0(x) dx = Z 1�1(1� jxj)v0(x) dx= Z 0�1(1 + x)v0(x) dx + Z 10 (1� x)v0(x) dx= � Z 0�1 v(x) dx + (1 + x)v(x)j0�1 + Z 10 v(x) dx+ (1� x)v(x)j1x=0= Z 0�1(�1)v(x) dx+ Z 10 1 � v(x) dx= � Z +1�1 w(x)v(x) dx;7



where w(x) = 8>><>>: 0; x < �1;1; x 2 (�1; 0);�1; x 2 (0; 1);0; x > 1:Thus, the pieewise onstant funtion w is the �rst (weak) derivative of the ontinuouspieewise linear funtion u, i.e. w = u0 = Du: �Now we are ready to give a preise de�nition of a Sobolev spae. Let k be a non-negativeinteger. We de�ne (with D� denoting a weak derivative of order j�j )Hk(
) = fu 2 L2(
) : D�u 2 L2(
); j�j � kg:Hk(
) is alled a Sobolev spae of order k; it is equipped with the (Sobolev) normkukHk(
) := 0�Xj�j�k kD�uk2L2(
)1A1=2and the inner produt (u; v)Hk(
) := Xj�j�k(D�u;D�v):With this inner produt, Hk(
) is a Hilbert spae (for the de�nition of Hilbert spae, seethe remark in Setion 1:2). LettingjujHk(
) := 0�Xj�j=k kD�uk2L2(
)1A1=2 ;we an write kukHk(
) =  kXj=0 juj2Hj(
)!1=2 :j�jHk(
) is alled the Sobolev semi-norm (it is only a semi-norm rather than a norm beauseif jujHk(
) = 0 for u 2 Hk(
) it does not neessarily follow that u � 0 on 
:)Throughout these notes we shall frequently use H1(
) and H2(
).H1(
) = �u 2 L2(
) : �u�xj 2 L2(
); j = 1; : : : ; n� ;kukH1(
) = (kuk2L2(
) + nXj=1  �u�xj 2L2(
))1=2 ;jujH1(
) = ( nXj=1  �u�xj 2L2(
))1=2 :8



Similarly, H2(
) = �u 2 L2(
) : �u�xj 2 L2(
); j = 1; : : : ; n;�2u�xi�xj 2 L2(
); i; j = 1; : : : ; n� ;kukH2(
) = nkuk2L2(
) + nXj=1  �u�xj 2L2(
)+ nXi;j=1 �2u�xi�xj 2L2(
))1=2 ;
jujH2(
) = ( nXi;j=1 �2u�xi�xj 2L2(
))1=2 :Finally, we de�ne a speial Sobolev spae,H10 (
) = fu 2 H1(
) : u = 0 on �
g;i.e. H10 (
) is the set of all funtions u in H1(
) suh that u = 0 on �
; the boundary of theset 
:We shall use this spae when onsidering a partial di�erential equation that is oupledwith a homogeneous (Dirihlet) boundary ondition: u = 0 on �
: We note here that H10 (
)is also a Hilbert spae, with the same norm and inner produt as H1(
):We onlude the setion with the following important result.Lemma 1.2 (Poinar�e{Friedrihs inequality). Suppose that 
 is a bounded open set in Rn(with a suÆiently smooth boundary �
) and let u 2 H10 (
); then, there exists a onstant?(
), independent of u, suh thatZ
 u2(x) dx � ? nXi=1 Z
 ���� �u�xi (x)����2 dx: (1.1)Proof We shall prove this inequality for the speial ase of a retangular domain 
 = (a; b)�(; d):in R2 : The proof for general 
 is analogous.Evidently u(x; y) = u(a; y) + Z xa �u�x (�; y) d� = Z xa �u�x (�; y) d�; < y < d:9



Thene, by the Cauhy{Shwarz inequality,Z
 ju(x; y)j2 dxdy = Z ba Z d ����Z xa �u�x(�; y) d�����2 dxdy� Z ba Z d (x� a) Z xa �����u�x(�; y)����2 d�! dxdy� Z ba (x� a) dx Z d Z ba �����u�x(�; y)����2 d� dy!= 12(b� a)2 Z
 �����u�x(x; y)����2 dxdy:Analogously, Z
 ju(x; y)j2 dxdy � 12(d� )2 Z
 �����u�y (x; y)����2 dxdy:By adding the two inequalities, we obtainZ
 ju(x; y)j2 dxdy � ? Z
 �����u�x ����2 + �����u�y ����2! dxdy;where ? = � 2(b� a)2 + 2(d� )2��1 : 2
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2 Ellipti boundary value problems: existene and unique-ness of weak solutionsIn the �rst part of this leture ourse we fous on boundary value problems for ellipti partialdi�erential equations. Ellipti equations are typi�ed by the Laplae equation�u = 0;and its non-homogeneous ounterpart, Poisson's equation��u = f:More generally, let 
 be a bounded open set in Rn , and onsider the (linear) seond-orderpartial di�erential equation� nXi;j=1 ��xj �aij(x) �u�xi� + nXi=1 bi(x) �u�xi + (x)u = f(x); x 2 
; (2.1)where the oeÆients aij; bi;  and f satisfy the following onditions:aij 2 C1(�
); i; j = 1; : : : ; n;bi 2 C(�
); i = 1; : : : ; n; 2 C(�
); f 2 C(�
); andnXi;j=1 aij(x)�i�j � ~ nXi=1 �2i ; 8� = (�1; : : : ; �n) 2 Rn ; x 2 �
; (2.2)here ~ is a positive onstant independent of x and �: The ondition (2.2) is usually referredto as uniform elliptiity and (2.1) is alled an ellipti equation.Equation (2.1) is supplemented with one of the following boundary onditions:(a) u = g on �
 (Dirihlet boundary ondition);(b) �u�� = g on �
, where � denotes the unit outward normal vetor to �
 (Neumannboundary ondition);() �u�� + �u = g on �
 , where �(x) � 0 on �
 (Robin boundary ondition);(d) A more general version of the boundary onditions (b) and () isnXi;j=1aij �u�xi os�j + �(x)u = g on �
;where �j is the angle between the unit outward normal vetor n to �
 and the Oxjaxis (Oblique derivative boundary ondition).11



In many physial problems more than one type of boundary ondition is imposed on �
 (e.g.�
 is the union of two disjoint subsets �
1 and �
2, with a Dirihlet boundary onditionis imposed on �
1 and a Neumann boundary ondition on �
2). The study of suh mixedboundary value problems is beyond the sope of these notes.We begin by onsidering the homogeneous Dirihlet boundary value problem� nXi;j=1 ��xj �aij �u�xi�+ nXi=1 bi(x) �u�xi + (x)u = f(x); x 2 
; (2.3)u = 0 on �
; (2.4)where aij; bi,  and f are as in (2.2).A funtion u 2 C2(
) \ C(�
) satisfying (2.3) and (2.4) is alled a lassial solution ofthis problem. The theory of partial di�erential equations tells us that (2.3), (2.4) has aunique lassial solution, provided aij; bi, , f and �
 are suÆiently smooth. However,in many appliations one has to onsider boundary value problems where these smoothnessrequirements are violated, and for suh problems the lassial theory is inappropriate. Take,for example, Poisson's equation with zero Dirihlet boundary ondition on the ube 
 =(�1; 1)n in Rn : ��u = sgn�12 � jxj� ; x 2 
;u = 0; x 2 �
: 9=; (�)This problem does not have a lassial solution, u 2 C2(
) \ C(�
); for otherwise �u wouldbe a ontinuous funtion on 
; whih is not possible beause sgn(1=2� jxj) is disontinuous.In order to overome the limitations of the lassial theory and to be able to deal withpartial di�erential equations with \non-smooth" data, we generalise the notion of solutionby weakening the di�erentiability requirements on u:To begin, let us suppose that u is a lassial solution of (2.3), (2.4). Then, for any v 2 C10(
);� nXi;j=1Z
 ��xj �aij �u�xi� � v dx + nXi=1 Z
 bi(x) �u�xi � v dx+ Z
 (x)uv dx = Z
 f(x)v(x) dx:Upon integration by parts in the �rst integral and noting that v = 0 on �
; we obtain:nXi;j=1Z
 aij(x) �u�xi �v�xj dx + nXi=1 Z
 bi(x) �u�xi v dx+ Z
 (x)uv dx = Z
 f(x)v(x) dx 8v 2 C10(
):12



In order for this equality to make sense we no longer need to assume that u 2 C2(
): it issuÆient that u 2 L2(
) and �u=�xi 2 L2(
), i = 1; : : : ; n: Thus, remembering that u hasto satisfy a zero Dirihlet boundary ondition, it is natural to seek u in the spae H10 (
)instead, where, as in Setion 1.3,H10 (
) = fu 2 L2(
) : �u�xi 2 L2(
); i = 1; : : : ; n; u = 0 on �
g:Therefore, we onsider the following problem: �nd u in H10 (
); suh thatnXi;j=1Z
 aij(x) �u�xi � �v�xj dx + nXi=1 Z
 bi(x) �u�xi v dx+ Z
 (x)uv dx = Z
 f(x)v(x) dx 8v 2 C10(
): (2.5)We note that C10(
) � H10 (
); and it is easily seen that when u 2 H10(
) and v 2 H10 (
);(instead of v 2 C10(
)), the expressions on the left- and right-hand side of (2.5) are stillmeaningful (in fat, we shall prove this below). This motivates the following de�nition.De�nition 2.1 Let aij 2 C(�
), i; j = 1; : : : ; n, bi 2 C(�
), i = 1; : : : ; n,  2 C(�
), and letf 2 L2(
). A funtion u 2 H10 (
) satisfyingnXi;j=1Z
 aij(x) �u�xi �v�xj dx + nXi=1 Z
 bi(x) �u�xi v dx+ Z
 (x)uv dx = Z
 f(x)v(x) dx 8v 2 H10 (
) (2.6)is alled a weak solution of (2.3), (2.4). All partial derivatives in (2.6) should be understoodas weak derivatives.Clearly if u is a lassial solution of (2.3), (2.4), then it is also a weak solution of (2.3),(2.4). However, the onverse is not true. If (2.3), (2.4) has a weak solution, this may not besmooth enough to be a lassial solution. Indeed, we shall prove below that the boundaryvalue problem (�) has a unique weak solution u 2 H10 (
), despite the fat that it has nolassial solution. Before onsidering this partiular boundary value problem, we look at thewider issue of existene of a unique weak solution to the general problem (2.3), (2.4).For the sake of simpliity, let us introdue the following notation:a(u; v) = nXi;j=1Z
 aij(x) �u�xi �v�xj dx + nXi=1 Z
 bi(x) �u�xi v dx + Z
 (x)uv dx (2.7)and l(v) = Z
 f(x)v(x) dx: (2.8)13



With this new notation, problem (2.6) an be written as follows:�nd u 2 H10 (
) suh that a(u; v) = l(v) 8v 2 H10 (
): (2.9)We shall prove the existene of a unique solution to this problem using the following abstratresult from Funtional Analysis.Theorem 2.2 (Lax{Milgram theorem) Suppose that V is a real Hilbert spae equipped withnorm k�kV . Let a(�; �) be a bilinear form on V � V suh that:(a) 90 > 0 8v 2 V a(v; v) � 0 kvk2V ,(b) 91 > 0 8v; w 2 V ja(v; w)j � 1 kvkV kwkV ,and let l(�) be a linear form on V suh that() 92 > 0 8v 2 V jl(v)j � 2 kvkV :Then, there exists a unique u 2 V suh thata(u; v) = l(v) 8v 2 V:For a proof of this result the interested reader is referred to the book of P. Ciarlet: TheFinite Element Method for Ellipti Problems, North-Holland, 1978.We apply the Lax{Milgram theorem with V = H10 (
) and k�kV = k�kH1(
) to show theexistene of a unique weak solution to (2.3), (2.4) (or, equivalently, to (2.9)). Let us reallfrom Setion 1.3 that H10 (
) is a Hilbert spae with the inner produt(u; v)H1(
) = Z
 uv dx + nXi=1 Z
 �u�xi � �v�xi dxand the assoiated norm kukH1(
) = (u; u)1=2H1(
): Next we show that a(�; �) and l(�), de�nedby (2.7) and (2.8), satisfy the hypotheses (a), (b), () of the Lax{Milgram theorem.We begin with (). The mapping v 7! l(v) is linear: indeed, for any �; � 2 R;l(�v1 + �v2) = Z
 f(x)(�v1(x) + �v2(x)) dx= � Z
 f(x)v1(x) dx+ � Z
 f(x)v2(x) dx= �l(v1) + �l(v2); v1; v2 2 H10 (
);so that l(�) is a linear form on H10 (
). Also, by the Cauhy{Shwarz inequality,jl(v)j = ����Z
 f(x)v(x) dx���� � �Z
 jf(x)j2 dx�1=2�Z
 jv(x)j2 dx�1=2= kfkL2(
) kvkL2(
) � kfkL2(
) kvkH1(
) ;14



for all v 2 H10 (
); where we have used the obvious inequality kvkL2(
) � kvkH1(
) : Letting2 = kfkL2(
) ; we obtain the required bound.Next we verify (b). For any �xed w 2 H10 (
); the mapping v 7! a(v; w) is linear. Similarly,for any �xed v 2 H10 (
); the mapping w 7! a(v; w) is linear. Hene a(�; �) is a bilinear formon H10 (
)�H10(
): Employing the Cauhy{Shwarz inequality, we dedue thatja(u; v)j � nXi;j=1maxx2�
 jaij(x)j ����Z
 �u�xi �v�xj dx����+ nXi=1 maxx2�
 jbi(x)j ����Z
 �u�xi v dx����+maxx2�
 j(x)j ����Z
 u(x)v(x) dx����� 8<: nXi;j=1 Z
 ���� �u�xi ����2 dx!1=2 Z
 ���� �v�xj ����2 dx!1=2
+ nXi=1  Z
 ���� �u�xi ����2 dx!1=2 �Z
 jvj2 dx�1=2+ �Z
 juj2 dx�1=2�Z
 jvj2 dx�1=2)� 8<:�Z
 juj2 dx�1=2 + nXi=1  Z
 ���� �u�xi ����2 dx!1=29=;�8<:�Z
 jvj2 dx�1=2 + nXj=1  Z
 ���� �v�xj ����2 dx!1=29=; ; (2.10)where  = max� max1�i;j�nmaxx2�
 jaij(x)j ; max1�i�nmaxx2�
 jbi(x)j ;maxx2�
 j(x)j� :By further majorisation of the right-hand side in (2.10),ja(u; v)j � 2n(Z
 juj2 dx + nXi=1 Z
 ���� �u�xi ����2 dx)1=2

�(Z
 jvj2 dx + nXj=1 Z
 ���� �v�xj ����2 dx)1=2 ;so that, by letting 1 = 2n, we obtain inequality (b).15



It remains to establish (a). Using (2.2), we dedue thata(u; u) � ~ nXi=1 Z
 ���� �u�xi ����2 dx + nXi=1 Z
 bi(x)12 ��xi (u2) dx+ Z
 (x) juj2 dx;where we wrote �u�xi � u as 12 ��xi (u2): Integrating by parts in the seond term on the right, weobtain a(u; u) � ~ nXi=1 Z
 ���� �u�xi ����2 dx + Z
 (x)� 12 nXi=1 �bi�xi! juj2 dx:Suppose that bi, i = 1; : : : ; n, and  satisfy the inequality(x)� 12 nXi=1 �bi�xi � 0; x 2 �
: (2.11)Then, a(u; u) � ~ nXi=1 Z
 ���� �u�xi ����2 dx: (2.12)By virtue of the Poinar�e{Friedrihs inequality stated in Lemma 1.2, the right-hand side anbe further bounded from below to obtaina(u; u) � ~? Z
 juj2 dx: (2.13)Summing (2.12) and (2.13) multiplied by ?,a(u; u) � 0 Z
 juj2 dx + nXi=1 Z
 ���� �u�xi ����2 dx! ; (2.14)where 0 = ~=(1 + ?), and hene (a). Having heked all hypotheses of the Lax{Milgramtheorem, we dedue the existene of a unique u 2 H10 (
) satisfying (2.9); thene problem(2.3), (2.4) has a unique weak solution.We enapsulate this result in the following theorem.Theorem 2.3 Suppose that aij 2 C(�
), i; j = 1; : : : ; n, bi 2 C1(�
), i = 1; : : : ; n,  2 C(�
),f 2 L2(
), and assume that (2.2) and (2.11) hold; then, the boundary value problem (2.3),(2.4) possesses a unique weak solution u 2 H10 (
): In addition,kukH1(
) � 10 kfkL2(
) : (2.15)16



Proof We only have to prove (2.15). By (2.14), (2.9), the Cauhy{Shwarz inequality and reallingthe de�nition of k�kH1(
), 0 kuk2H1(
) � a(u; u) = l(u) = (f; u)� j(f; u)j � kfkL2(
) kukL2(
)� kfkL2(
) kukH1(
) :Hene the desired inequality. 2Now we return to our earlier example (�) whih has been shown to have no lassial solution.However, applying the above theorem with aij(x) � 1, i = j, aij(x) � 0, i 6= j, 1 � i; j � n,bi(x) � 0, (x) � 0, f(x) = sgn(12 � jxj), and 
 = (�1; 1)n, we see that (2.2) holds with~ = 1 and (2.11) is trivially ful�lled. Thus (�) has a unique weak solution u 2 H10 (
):Remark. The existene and uniqueness of a weak solution to a Neumann, a Robin, or anoblique derivative boundary value problem an be established in a similar fashion, using theLax{Milgram theorem. �Remark. Theorem 2.3 implies that the weak formulation of the ellipti boundary valueproblem (2.3), (2.4) is well-posed in the sense of Hadamard; namely, for eah f 2 L2(
)there exists a unique (weak) solution u 2 H10 (
), and \small" hanges in f give rise to\small" hanges in the orresponding solution u. The latter property follows by noting thatif u1 and u2 are weak solutions in H10 (
) of (2.3), (2.4) orresponding to right-hand sidesf1 and f2 in L2(
), respetively, then u1 � u2 is the weak solution in H10 (
) of (2.3), (2.4)orresponding to the right-hand side f1 � f2 2 L2(
). Thus, by virtue of (2.15),ku1 � u2kH1(
) � 10 kf1 � f2kL2(
) ; (2.16)and hene the required ontinuous dependene of the solution of the boundary value problemon the right-hand side: �

17



3 Introdution to the theory of �nite di�erene shemesLet 
 be a bounded open set in Rn , and suppose we wish to solve the boundary value problemLu = f in 
; (3.1a)lu = g on � = �
; (3.1b)where L is a linear partial di�erential operator, and l is a linear operator whih spei�es theboundary ondition. For example,Lu � � nXi;j=1 ��xj �aij �u�xi�+ nXi=1 bi �u�xi + u;and lu � u (Dirihlet boundary ondition),or lu � �u�� (Neumann boundary ondition),or lu � nXi;j=1 aij �u�xi os�j + �(x)u (oblique derivative boundary ondition),or some other appropriate boundary ondition.In general, it is impossible to determine the solution of the boundary value problem (3.1)in losed form. Thus the aim of this hapter is to desribe a simple and general numerialtehnique for the approximate solution of (3.1), alled the �nite di�erene method. Theonstrution of a �nite di�erene sheme onsists of two basi steps: �rst, the approximationof the omputational domain by a �nite set of points, and seond, the approximation of thederivatives appearing in the di�erential equation and in the boundary ondition by divideddi�erenes.To desribe the �rst of these two steps more preisely, suppose that we have approximated�
 = 
 [ � by a �nite set of points �
h = 
h [ �h;where 
h � 
 and �h � �; �
h is alled a mesh, 
h is the set of interior mesh-points and �hthe set boundary mesh-points. The parameter h = (h1; : : : ; hn) measures the �neness of themesh (here hi denotes the mesh-size in the oordinate diretion Oxi): the smaller jhj is, thedenser the mesh. 18



Having onstruted the mesh, we proeed by replaing the derivatives in L by divided dif-ferenes, and approximate the boundary ondition in a similar fashion. This yields the �nitedi�erene sheme LhU(x) = fh(x); x 2 
h; (3.2a)lhU(x) = gh(x); x 2 �h; (3.2b)where fh and gh are suitable approximations of f and g, respetively. Now (3.2) is a system oflinear equations involving the values of U at the mesh-points, and an be solved by Gaussianelimination or an iterative method, provided, of ourse, that it has a unique solution. Thesequene fU(x) : x 2 �
hg parametrised by mesh parameter h is an approximation to thesequene fu(x) : x 2 �
hg, | the values of the exat solution at the mesh-points.There are two lasses of problems assoiated with �nite di�erene shemes:(1) the �rst, and most fundamental, is the problem of approximation, that is, whether (3.2)approximates the boundary value problem (3.1) in some sense, and whether its solutionfU(x) : x 2 �
hg approximates fu(x) : x 2 �
hg, the values of the exat solution at themesh-points.(2) the seond problem onerns the eÆient solution of the disrete problem (3.2) usingtehniques from Numerial Linear Algebra.In these notes we shall be onerned with the �rst of these two problems - the question ofapproximation.In order to give a simple illustration of the general framework of �nite di�erene approxi-mation, let us onsider the following two-point boundary value problem for a seond-orderlinear (ordinary) di�erential equation:�u00 + (x)u = f(x); x 2 (0; 1); (3.3a)u(0) = 0; u(1) = 0: (3.3b)The �rst step in the onstrution of a �nite di�erene sheme for this boundary value problemis to de�ne the mesh. Let N be an integer, N � 2, and let h = 1=N be the mesh-size; themesh-points are xi = ih, i = 0; : : : ; N: Formally, 
h = fxi : i = 1; : : : ; N�1g, �h = fx0; xNg,and �
h = 
h [�h: Suppose that u is suÆiently smooth (e.g. u 2 C4[0; 1℄). Then, by Taylorseries expansion,u(xi�1) = u(xi � h)= u(xi)� hu0(xi) + h22 u00(xi)� h36 u000(xi) +O(h4);so that D+x u(xi) � u(xi+1)� u(xi)h = u0(xi) +O(h);19



D�x u(xi) � u(xi)� u(xi�1)h = u0(xi) +O(h);and D+xD�x u(xi) = D�xD+x u(xi)= u(xi+1)� 2u(xi) + u(xi�1)h2= u00(xi) +O(h2):Thus we replae the seond derivative u00 by a seond divided di�erene:�D+xD�x u(xi) + (xi)u(xi) � f(xi); i = 1; : : : ; N � 1; (3.4a)u(x0) = 0; u(xN) = 0: (3.4b)Now (3.4) indiates that the approximate solution U should be sought as the solution of thesystem of di�erene equations:�D+xD�x Ui + (xi)Ui = f(xi); i = 1; : : : ; N � 1; (3.5a)U0 = 0; UN = 0: (3.5b)Using matrix notation, this an be written as266666666664
2h2 + (x1) � 1h2 � 1h2 2h2 + (x2) � 1h2. . . . . . . . .� 1h2 2h2 + (xN�2) � 1h2 � 1h2 2h2 + (xN�1)

377777777775
2666664 U1U2...UN�2UN�1

3777775 = 2666664 f(x1)f(x2)...f(xN�2)f(xN�1)
3777775 ;or, more ompatly, AU = F , where A is the tri-diagonal (N �1)� (N �1) matrix displayedabove, and U and F are olumn vetors of size N � 1:We begin the analysis of the �nite di�erene sheme (3.5) by showing that it has a uniquesolution. It suÆes to show that the matrix A is non-singular. For this purpose, we introdue,for two funtions V and W de�ned at the interior mesh-points xi, i = 1; : : : ; N �1, the innerprodut (V;W )h = N�1Xi=1 hViWi(whih resembles the L2-inner produt(v; w) = Z 10 v(x)w(x) dx):20



Lemma 3.1 Suppose that V is a funtion de�ned at the mesh-points xi, i = 0; : : : ; N , andlet V0 = VN = 0; then, (�D+xD�x V; V )h = NXi=1 h ��D�x Vi��2 : (3.6)Proof Performing summation by parts,(�D+xD�x V; V )h = �N�1Xi=1 (D+xD�x Vi)Vih= �N�1Xi=1 Vi+1 � Vih Vi + N�1Xi=1 Vi � Vi�1h Vi= � NXi=2 Vi � Vi�1h Vi�1 + N�1Xi=1 Vi � Vi�1h Vi= � NXi=1 Vi � Vi�1h Vi�1 + NXi=1 Vi � Vi�1h Vi= NXi=1 Vi � Vi�1h (Vi � Vi�1) = NXi=1 h ��D�x Vi��2 ;where in the third line we shifted the indies in the �rst summation, and in the fourth line we madeuse of the fat that V0 = VN = 0: 2Returning to the �nite di�erene sheme (3.5), let V be as in the above lemma and note thatif (x) � 0 then, (AV; V )h = (�D+xD�x V + V; V )h= (�D+xD�x V; V )h + (V; V )h� NXi=1 h ��D�x Vi��2 : (3.7)Thus, if AV = 0 for some V , then D�x Vi = 0, i = 1; : : : ; N ; beause V0 = VN = 0, thisimplies that Vi = 0, i = 0; : : : ; N . Hene AV = 0 if and only if V = 0. We dedue that A isa non-singular matrix, and (3.5) has a unique solution, U = A�1F:Theorem 3.2 Suppose that  and f are ontinuous funtions on [0; 1℄, and (x) � 0; x 2[0; 1℄; then, the �nite di�erene sheme (3.5) possesses a unique solution U .We note that, by virtue of Theorem 2.3, the boundary value problem (3.3) has a unique(weak) solution under the same hypotheses on  and f as in Theorem 3.2.21



Next, we investigate the approximation properties of the di�erene sheme (3.5). A keyingredient in our analysis is the fat that the sheme (3.5) is stable (or disretely well-posed)in the sense that \small" perturbations in the data result in \small" perturbations in theorresponding �nite di�erene solution. E�etively, we shall prove the disrete version of theinequality (2.15). For this purpose, we de�ne the disrete L2-normkUkh = (U; U)1=2h =  N�1Xi=1 hjUij2!1=2 ;and the disrete Sobolev normkUk1;h = (kUk2h + ����D�x U���2h)1=2;where jjV ℄j2h = NXi=1 h jVij2 :Using this notation, the inequality (3.7) an be written(AV; V )h � ����D�x V ���2h : (3.8)In fat, employing a disrete version of the Poinar�e{Friedrihs inequality (1.1), stated inLemma 3.3 below, we shall prove that(AV; V )h � 0 kV k21;h ;where 0 is a positive onstant.Lemma 3.3 (Disrete Poinar�e{Friedrihs inequality.) Let V be a funtion de�ned on themesh fxi; i = 0; : : : ; Ng; and suh that V0 = VN = 0; then, there exists a positive onstant?, independent of V and h, suh thatkV k2h � ? ����D�x V ���2h (3.9)for all suh V .Proof We proeed in the same way as in the proof of (1.1). First note thatjVij2 = ������ iXj=1(D�x Vj)h������2 � 0� iXj=1 h1A iXj=1 h ��D�x Vj��2 :
22



Thene, kV k2h = N�1Xi=1 h jVij2 � N�1Xi=1 ih2 iXj=1 h ��D�x Vj��2� (N � 1)N2 h2 NXj=1 h ��D�x Vj��2� 12 ����D�x V ���2h : 2We note that the onstant ? = 1=2 in (3.9).Using (3.9) to bound the right-hand side of (3.8) from below we obtain(AV; V )h � 1? kV k2h : (3.10)Adding (3.8) to (3.10) multiplied by ?, we dedue that(AV; V )h � (1 + ?)�1 �kV k2h + ����D�x V ���2h� :Letting 0 = (1 + ?)�1; (AV; V )h � 0 kV k21;h : (3.11)Now the stability of the �nite di�erene sheme (3.5) easily follows.Theorem 3.4 The sheme (3.5) is stable in the sense thatkUk1;h � 10 kfkh : (3.12)Proof From (3.11) and (3.5) we have that0 kUk21;h � (AU;U)h = (f; U)h � j(f; U)hj� kfkh kUkh � kfkh kUk1;h ;and hene (3.12). 2Using this stability result it is easy to derive an estimate of the error between the exatsolution u, and its �nite di�erene approximation, U . We de�ne the global error, e, byei := u(xi)� Ui; i = 0; : : : ; N:23



Obviously e0 = 0, eN = 0, andAei = Au(xi)� AUi = Au(xi)� f(xi)= �D+xD�x u(xi) + (xi)u(xi)� f(xi)= u00(xi)�D+xD�x u(xi); i = 1; : : : ; N � 1:Thus, Aei = 'i; i = 1; : : : ; N � 1; (3.13a)e0 = 0; eN = 0; (3.13b)where 'i = u00(xi)�D+xD�x u(xi) is the trunation error.Applying (3.12) to the �nite di�erene sheme (3.13), we obtainku� Uk1;h = kek1;h � 10 k'kh : (3.14)It remains to estimate k'kh. We have shown on page 19 that, if u 2 C4[0; 1℄; then,'i = u00(xi)�D+xD�x u(xi) = O(h2);i.e. there is a positive onstant C, independent of h, suh thatj'ij � Ch2:Consequently, k'kh =  N�1Xi=1 h j'ij2!1=2 � Ch2: (3.15)Combining (3.14) and (3.15), it follows thatku� Uk1;h � C0h2: (3.16)In fat, a more areful treatment of the remainder term in the Taylor series expansion on p.19 reveals that 'i = u00(xi)�D+xD�x u(xi) = �h212uIV (�i); �i 2 [xi�1; xi+1℄:Thus j'ij � h2 112 maxx2[0;1℄ ��uIV (x)�� ;and hene C = 112 maxx2[0;1℄ ��uIV (x)��24



in (3.15). Realling that 0 = (1+?)�1 and ? = 1=2, we dedue that 0 = 2=3. Substitutingthe values of the onstants C and 0 into (3.16), it follows thatku� Uk1;h � 18h2 uIV C[0;1℄ :Thus we have proved the following result.Theorem 3.5 Let f 2 C[0; 1℄,  2 C[0; 1℄, with (x) � 0, x 2 [0; 1℄, and suppose that theorresponding (weak) solution of the boundary value problem (3.3) belongs to C4[0; 1℄; then,ku� Uk1;h � 18h2 uIV C[0;1℄ : (3.17)The analysis of the �nite di�erene sheme (3.3) ontains the key steps of a general erroranalysis for �nite di�erene approximations of (ellipti) partial di�erential equations:(1) The �rst step is to prove the stability of the sheme in an appropriate mesh-dependentnorm (.f. (3.12), for example). A typial stability result for the general �nite di�erenesheme (3.2) is jjjU jjj
h � (kfhk
h + kghk�h); (3.18)where jjj � jjj
h, k�k
h and k�k�h are mesh-dependent norms involving mesh-points of 
h (or�
h) and �h, respetively, and  is a positive onstant, independent of h.(2) The seond step is to estimate the size of the trunation error,'
h = Lhu� fh; in 
h;'�h = lhu� gh; on �h:(in the ase of the �nite di�erene sheme (3.3) '�h = 0, and therefore '�h never appearedexpliitly in our error analysis). Ifk'
hk
h + k'�hk�h ! 0 as h! 0;for a suÆiently smooth solution u of (3.1), we say that the sheme (3.2) is onsistent. If pis the largest positive integer suh thatk'
hk
h + k'�hk�h � Chp as h! 0;(where C is a positive onstant independent of h) for all suÆiently smooth u, the shemeis said to have order of auray p.The �nite di�erene sheme (3.2) is said to provide a onvergent approximation to (3.1) inthe norm jjj � jjj
h, if jjju� U jjj
h ! 0 as h! 0:25



If q is the largest positive integer suh thatjjju� U jjj
h � Chq as h! 0(where C is a positive onstant independent of h), then the sheme is said to have order ofonvergene q.From these de�nitions we dedue the following fundamental theorem.Theorem 3.6 Suppose that the �nite di�erene sheme (3.2) is stable (i.e. (3.18) holds forall fh and gh) and that the sheme is a onsistent approximation of (3.1); then, (3.2) is aonvergent approximation of (3.1), and the order of onvergene is not smaller then the orderof auray.Proof We de�ne the global error e = u� U . Then,Lhe = Lh(u� U) = Lhu� LhU = Lhu� fh:Thus Lhe = '
h ;and similarly, lhe = '�h :By stability, jjju� U jjj
h = jjjejjj
h � (k'
hk
h + k'�hk�h);and hene the stated result. 2Thus, paraphrasing Theorem 3.6, stability and onsisteny imply onvergene. This abstratresult is at the heart of the error analysis of �nite di�erene approximations of di�erentialequations.
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4 Finite di�erene approximation of ellipti boundaryvalue problemsIn Setion 3 we presented a detailed error analysis for a �nite di�erene approximation of atwo-point boundary value problem. Here we shall arry out a similar analysis for the modelproblem ��u+ (x)u = f(x) in 
; (4.1a)u = 0 on �
; (4.1b)where 
 = (0; 1) � (0; 1),  is a ontinuous funtion on �
 and (x) � 0. As far as thesmoothness of the funtion f is onerned, we shall onsider two separate ases:(a) First we shall assume that f is a ontinuous funtion on �
. In this ase, the erroranalysis will proeed along the same lines as in Setion 3.(b) We shall then onsider the ase when f is only in L2(
). In this instane the boundaryvalue problem (4.1) does not have a lassial solution { only a weak solution exists. Thislak of smoothness gives rise to some tehnial diÆulties: in partiular, we annot usea Taylor series expansion to estimate the size of the trunation error. We shall bypassthe problem by employing a di�erent tehnique, instead.(a) (f 2 C(�
)) The �rst step in the onstrution of the �nite di�erene approximation of(4.1) is to de�ne the mesh. Let N be an integer, N � 2, and let h = 1=N ; the mesh-pointsare (xi; yj), i; j = 0; : : : ; N; where xi = ih, yj = jh: These mesh-points form the mesh�
h = f(xi; yj) : i; j = 0; : : : ; Ng:Similarly as in Setion 3, we onsider the set of interior mesh-points
h = f(xi; yj) : i; j = 1; :::; N � 1g;and the set of boundary mesh-points �h = �
h n 
h: Analogously to (3.5), the di�erenesheme is: �(D+xD�x Uij +D+y D�y Uij) + (xi; yj)Uij = f(xi; yj); (xi; yj) 2 
h; (4.2a)U = 0 on �h: (4.2b)In an expanded form, this an be written��Ui+1;j � 2Uij + Ui�1;jh2 + Ui;j+1 � 2Uij + Ui;j�1h2 �+ (xi; yj)Uij = f(xi; yj);i; j = 1; : : : ; N � 1; (4.3)27
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Figure 1: The mesh 
h(�), the boundary mesh �h(�), and a typial 5-point di�erene stenil.Uij = 0; if i = 0; i = N or if j = 0; j = N: (4.4)For eah i and j, 1 � i; j � N � 1; the �nite di�erene equation (4.3) involves �ve valuesof the approximate solution U : Ui;j, Ui�1;j, Ui+1;j, Ui;j�1, Ui;j+1: It is again possible to write(4.3), (4.4) as a system of linear equationsAU = F; (4.5)where U = (U11; U12; : : : ; U1;N�1; U21; U22; : : : ; U2;N�1; : : : ;: : : ; Ui1; Ui2; : : : ; Ui;N�1; : : : ; UN�1;1; UN�1;2; : : : ; UN�1;N�1)T ;F = (F11; F12; : : : ; F1;N�1; F21; F22; : : : ; F2;N�1; : : : ;: : : ; Fi1; Fi2; : : : ; Fi;N�1; : : : ; FN�1;1; FN�1;2; : : : ; FN�1;N�1)T ;and A is an (N�1)2�(N�1)2 sparse matrix of banded struture. A typial row of the matrixontains �ve non-zero entries, orresponding to the �ve values of U in the �nite di�erenestenil shown in Fig. 1, while the sparsity struture of A is depited in Fig. 2.28
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Figure 2: The sparsity struture of the banded matrix A.Next we show that (4.2) has a unique solution. We proeed in the same way as in Setion 3.For two funtions, V and W , de�ned on 
h, we introdue the inner produt(V;W )h = N�1Xi=1 N�1Xj=1 h2VijWij(whih resembles the L2-inner produt (v; w) = R
 v(x; y)w(x; y) dx dy):Lemma 4.1 Suppose that V is a funtion de�ned on �
h and that V = 0 on �h; then,(�D+xD�x V; V )h + (�D+y D�y V; V )h = NXi=1 N�1Xj=1 h2jD�x Vijj2 + N�1Xi=1 NXj=1 h2jD�y Vijj2: (4.6)
Proof (4.6) is a straightforward onsequene of (3.6) and the analogous identity for �D+y D�y : 2Returning to the analysis of the �nite di�erene sheme (4.2), we note that, sine (x; y) �0 on �
, by (4.6) we have(AV; V )h = (�D+xD�x V �D+y D�y V + V; V )h= (�D+xD�x V; V )h + (�D+y D�y V; V )h + (V; V )h� NXi=1 N�1Xj=1 h2jD�x Vijj2 + N�1Xi=1 NXj=1 h2jD�y Vijj2; (4.7)29



for any V de�ned on �
h suh that V = 0 on �h. Now this implies, just as in the one-dimensional analysis presented in Setion 3, that A is a non-singular matrix. Indeed ifAV = 0; then (4.7) yields:D�x Vij = Vij � Vi�1;jh = 0; i = 1; : : : ; N;j = 1; : : : ; N � 1;D�y Vij = Vij � Vi;j�1h = 0; i = 1; : : : ; N � 1;j = 1; : : : ; N:Sine V = 0 on �h, these imply that V � 0. Thus AV = 0 if and only if V = 0. Hene A isnon-singular, and U = A�1F is the unique solution of (4.2). Thus the solution of the �nitedi�erene sheme (4.2) may be found by solving the system of linear equations (4.5).In order to prove the stability of the �nite di�erene sheme (4.2), we introdue (similarlyas in one dimension) the mesh{dependent normskUkh = (U; U)1=2h ;and kUk1;h = �kUk2h + ����D�x U���2x + ����D�y U���2y�1=2 ;where ����D�x U���x =  NXi=1 N�1Xj=1 h2jD�x Uijj2!1=2and ����D�y U���y =  N�1Xi=1 NXj=1 h2jD�y Uijj2!1=2 :The norm k � k1;h is the disrete version of the Sobolev norm k�kH1(
),kukH1(
) =  kuk2L2(
) + �u�x2L2(
) + �u�y 2L2(
)!1=2 :With this new notation, the inequality (4.7) takes the following form:(AV; V )h � ����D�x V ���2x + ����D�y V ���2y : (4.8)Using the disrete Poinar�e{Friedrihs inequality stated in the next lemma, we shall be ableto dedue that (AV; V )h � 0 kV k21;h ;where 0 is a positive onstant. 30



Lemma 4.2 (Disrete Poinar�e{Friedrihs inequality.)Let V be a funtion de�ned on �
h and suh that V = 0 on �h; then, there exists a onstant�, independent of V and h, suh thatkV k2h � � �����D�x V ���2x + ����D�y V ���2y� (4.9)for all suh V .Proof (4.9) is a straightforward onsequene of its one-dimensional ounterpart (3.9). It followsfrom (3.9) that, for eah �xed j, 1 � j � N � 1,N�1Xi=1 hjVij j2 � 12 NXi=1 hjD�x Vijj2: (4.10)Analogously, for eah �xed i, 1 � i � N � 1;N�1Xj=1 hjVij j2 � 12 NXj=1 hjD�y Vijj2: (4.11)We multiply (4.10) by h and sum through j, 1 � j � N � 1, multiply (4.11) by h and sum throughi, 1 � i � N � 1; and add these two inequalities to obtain2 kV k2h � 12 �����D�x V ���2x + ����D�y V ���2y� :Hene (4.9) with � = 14 : 2Now (4.8) and (4.9) imply that (AV; V )h � 1� kV k2h :Finally, ombining this with (4.8) and realling the de�nition of the norm k�k1;h, we obtain(AV; V )h � 0 kV k21;h ; (4.12)where 0 = (1 + �)�1:Theorem 4.3 The sheme (4.2) is stable in the sense thatkUk1;h � 10 kfkh : (4.13)
31



Proof Idential to the proof of (3.12) 2.Having established stability, we turn to the question of auray. We de�ne the global error,e, by eij = u(xi; yj)� Uij; 0 � i; j � N:Then, assuming that u 2 C4(�
); and employing Taylor series expansions,Aeij = �u(xi; yj)� (D+xD�x u(xi; yj) +D+y D�y u(xi; yj))= ��2u�x2 (xi; yj)�D+xD�x u(xi; yj)�+ ��2u�y2 (xi; yj)�D+y D�y u(xi; yj)�= �h212 �4u�x4 (�i; yj)� h212 �4u�y4 (xi; �j); 1 � i; j � N � 1;where �i 2 [xi�1; xi+1℄, �j 2 [yj�1; yj+1℄:Let 'ij = �h212 ��4u�x4 (�i; yj) + �4u�y4 (xi; �j)� ; 1 � i; j � N � 1;then, Aeij = 'ij; 1 � i; j � N � 1;e = 0 on �h:By virtue of (4.13), ku� Uk1;h = kek1;h � 10 k'kh : (4.14)Noting that j'ijj � h212  �4u�x4C(�
) + �4u�y4 C(�
)! ;we dedue that the trunation error, ', satis�esk'kh � h212  �4u�x4C(�
) + �4u�y4 C(�
)! : (4.15)Finally (4.14) and (4.15) yield the following result.Theorem 4.4 Let f 2 C(�
),  2 C(�
), with (x; y) � 0, (x; y) 2 �
; and suppose that theorresponding weak solution of the boundary value problem (4.1) belongs to C4(�
); then,ku� Uk1;h � 5h248  �4u�x4C(�
) + �4u�y4 C(�
)! : (4.16)32



Proof Reall that 0 = (1 + �)�1; � = 14 ; so that 1=0 = 54 ; and ombine (4.14) and (4.15). 2Aording to this result, the �ve-point di�erene sheme (4.2) for the boundary value problem(4.1) is seond-order onvergent, provided that u is suÆiently smooth.In general, however, even if f and  are smooth funtions, the orresponding solution, u,of (4.1) will not be a smooth funtion beause the boundary, �, of the domain, 
, is anon-smooth urve. Thus, the hypothesis u 2 C4(�
) is unrealisti.Our analysis has another limitation: it has been performed under the assumption that f 2C(�
) whih was required in order to ensure that the values of f are well de�ned at the mesh-points. However, in physial appliations one often has to onsider di�erential equationswith f disontinuous (e.g. pieewise ontinuous), or, more generally, f 2 L2(
): We knowthat in this ase Theorem 2.3 still implies that the problem has a unique weak solution, soit is natural to ask whether one an onstrut an aurate �nite di�erene approximation ofthe weak solution. This brings us to ase (b), formulated on page 26.(b) (f 2 L2(
)): We retain the same �nite di�erene mesh as in ase (a), but we modify thedi�erene sheme (4.3) to ater for the fat that f is not neessarily ontinuous on �
.The idea is to replae f(xi; yj) in (4.3) by a ell-average of f ,Tfij = 1h2 ZKij f(x; y) dx dy;where Kij = �xi � h2 ; xi + h2�� �yj � h2 ; yj + h2� :This, seemingly ad ho approah, has the following justi�ation. Integrating the partialdi�erential equation ��u + u = f over the ell Kij; and using Gauss' theorem, we have� Z�Kij �u�� dl + ZKij u dx dy = ZKij f dx dy (��)where �Kij is the boundary of Kij, and � the unit outward normal to �Kij. The normalvetors to �Kij point in the oordinate diretions, so the normal derivative �u=�� an beapproximated by divided di�erenes using the values of u at the �ve mesh-points marked\�" on Fig. 3. Approximating the seond integral on the left by mid-point quadrature, anddividing both sides by meas(Kij) = h2; we obtain�(D+xD�x u(xi; yj) +D+y D�y u(xi; yj)) + (xi; yj)u(xi; yj) � 1h2 ZKij f(x; y) dx dy:REMARK Finite di�erene shemes whih arise from integral formulations of a di�erentialequation, suh as (��), are alled �nite volume methods. �33
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Figure 3: The ell KijClearly, Tfij is well de�ned for f in L2(
) (and, in fat, even for f 2 L1(
)); this follows bynoting that jTfijj = 1h2 �����ZKij f(x; y) dx dy������ 1h2  ZKij 12 dx dy!1=2 ZKij jf(x; y)j2 dx dy!1=2= 1h kfkL2(Kij) ; (4.17)whih, in turn, is bounded by h�1 kfkL2(
). Thus we de�ne our �nite di�erene (or, morepreisely, �nite volume) approximation of (4.1) by�(D+xD�x Uij +D+y D�y Uij) + (xi; yj)Uij = Tfij; (xi; yj) 2 
h; (4.18a)U = 0 on �h: (4.18b)Sine we have not hanged the di�erene operator on the left-hand side, the argument pre-sented on page 28 still applies, and therefore (4.18) has a unique solution, U .Theorem 4.5 The sheme (4.18) is stable in the sense thatkUk1;h � 10 kfkL2(
) : (4.19)
34



Proof Aording to (4.12) and (4.17),0 kUk21;h � (AU;U)h = (Tf; U)h� kTfkh kUkh � kTfkh kUk1;h� kfkL2(
) kUk1;h ;and hene (4.19). 2Having established the stability of the sheme (4.18), we onsider the question of its auray.Let us de�ne the global error, e; as before,eij = u(xi; yj)� Uij; 0 � i; j � N:Clearly, Aeij = Au(xi; yj)� AUij= Au(xi; yj)� Tfij= �(D+xD�x u(xi; yj) +D+y D�y u(xi; yj)) + (xi; yj)u(xi; yj)+�T ��2u�x2� (xi; yj) + T ��2u�y2� (xi; yj)� T (u)(xi; yj)� : (4.20)Noting that T ��2u�x2� (xi; yj) = 1h Z yj+h=2yj�h=2 �u�x(xi + h=2; y)� �u�x(xi � h=2; y)h dy= 1h Z yj+h=2yj�h=2 D+x �u�x (xi � h=2; y) dy= D+x "1h Z yj+h=2yj�h=2 �u�x (xi � h=2; y) dy# ;and similarly, T ��2u�y2� (xi; yj) = D+y "1h Z xi+h=2xi�h=2 �u�y (x; yj � h=2) dx# ;(4.20) an be rewritten as Ae = D+x '1 +D+y '2 +  ;where '1(xi; yj) = 1h Z yj+h=2yj�h=2 �u�x (xi � h=2; y) dy �D�x u(xi; yj);'2(xi; yj) = 1h Z xi+h=2xi�h=2 �u�y (x; yj � h=2) dx�D�y u(xi; yj); (xi; yj) = (u)(xi; yj)� T (u)(xi; yj):35



Thus, Ae = D+x '1 +D+y '2 +  in 
h; (4.21a)e = 0 on �h: (4.21b)As the stability of the di�erene sheme would only imply the rude boundkek1;h � 10 D+x '1 +D+y '2 +  hwhih makes no use of the speial form of the trunation error' = D+x '1 +D+y '2 +  ;we shall proeed in a di�erent way. Aording to (4.12),0 kek21;h � (Ae; e)h= (D+x '1; e)h + (D+y '2; e)h + ( ; e)h: (4.22)Using summation by parts, we shall pass the di�erene operators D+x and D+y from '1 and'2, respetively, onto e. Realling that e = 0 on �h,(D+x '1; e)h = N�1Xj=1 h N�1Xi=1 h'1(xi+1; yj)� '1(xi; yj)h eij!= � N�1Xj=1 h NXi=1 h'1(xi; yj)eij � ei�1;jh !
= � N�1Xj=1 h NXi=1 h'1(xi; yj)D�x eij!= � NXi=1 N�1Xj=1 h2'1(xi; yj)D�x eij�  NXi=1 N�1Xj=1 h2j'1(xi; yj)j2!1=2 NXi=1 N�1Xj=1 h2jD�x eijj2!1=2= jj'1℄jx ����D�x e���x :Thus, (D+x '1; e)h � jj'1℄jx ����D�x e���x : (4.23)Similarly, (D+y '2; e)h � jj'2℄jy ����D�y e���y (4.24)36



(see page 29 for the de�nition of the mesh-dependent norms jj�℄jx and jj�℄jy :) By the Cauhy{Shwarz inequality we also have that( ; e)h � k kh kekh : (4.25)Upon substituting (4.23) { (4.25) into (4.22) we obtain0 kek21;h � jj'1℄jx ����D�x e���x + jj'2℄jy ����D�y e���y + k kh kekh� �jj'1℄j2x + jj'2℄j2y + k k2h�1=2 �����D�x e���2x + ����D�y e���2y + kek2h�1=2= �jj'1℄j2x + jj'2℄j2y + k k2h�1=2 kek1;h :Dividing both sides by kek1;h yields the following result.Lemma 4.6 The global error, e, of the �nite di�erene sheme (4.18) satis�eskek1;h � 10 (jj'1℄j2x + jj'2℄j2y + k k2h)1=2; (4.26)where '1; '2, and  are de�ned by'1(xi; yj) = 1h Z yj+h=2yj�h=2 �u�x(xi � h=2; y) dy�D�x u(xi; yj); (4.27)'2(xi; yj) = 1h Z xi+h=2xi�h=2 �u�y (x; yj � h=2) dx�D�y u(xi; yj); (4.28) (xi; yj) = (u)(xi; yj)� 1h2 Z xi+h=2xi�h=2 Z yj+h=2yj�h=2 (u)(x; y) dx dy; (4.29)i = 1; : : : ; N � 1; j = 1; : : : ; N:To omplete the error analysis, it remains to estimate '1, '2 and  . Using Taylor seriesexpansions it is easily seen thatj'1(xi; yj)j � h224   �3u�x�y2C(�
) + �3u�x3C(�
)! ; (4.30)j'2(xi; yj)j � h224   �3u�x2�yC(�
) + �3u�y3 C(�
)! ; (4.31)j (xi; yj)j � h224  �2(u)�x2 C(�
) + �2(u)�y2 C(�
)! ; (4.32)and hene the bounds for jj'1℄jx, jj'2℄jy and jj ℄jh. We have the following theorem.37



Theorem 4.7 Let f 2 L2(
),  2 C2(�
) with (x; y) � 0, (x; y) 2 �
, and suppose that theorresponding weak solution of the boundary value problem (4.1) belongs to C3(�
). Then,ku� Uk1;h � 596h2M3; (4.33)where M3 = (  �3u�x�y2C(�
) + �3u�x3C(�
)!2+  �3u�x2yC(�
) + �3u�y3 C(�
)!2
+ �2(u)�x2 C(�
) + �2(u)�y2 C(�
)!29=;1=2 :Proof Realling that 1=0 = 5=4 and substituting (4.30) - (4.32) into the right-hand side of (4.26),(4.33) immediately follows. 2Comparing (4.33) with (4.16), we see that while the smoothness requirement on the solutionhas been relaxed from u 2 C4(�
) to u 2 C3(�
), seond-order onvergene has been retained.The hypothesis u 2 C3(�
) an be further relaxed by using integral representations of '1, '2and  instead of Taylor series expansions. The key idea is to use the Newton-Leibniz formulaw(b)� w(a) = Z ba w0(x) dx:Thus, denoting xi�1=2 = xi � h=2 and yj�1=2 = yj � h=2, we have'1(xi; yj) = 1h2 Z xixi�1 Z yj+1=2yj�1=2 ��u�x (xi�1=2; y)� �u�x (x; yj)� dx dy= 1h2 Z xixi�1 Z yj+1=2yj�1=2 ��u�x (xi�1=2; y)� �u�x (x; y)� dx dy+ 1h2 Z xixi�1 Z yj+1=2yj�1=2 ��u�x(x; y)� �u�x (x; yj)� dx dy= 1h2 Z yj+1=2yj�1=2 �Z xixi�1 1 � Z xi�1=2x �2u�x2 (�; y) d�� dx dy+ 1h2 Z xixi�1 "Z yj+1=2yj�1=2 1 � Z yyj �2u�x�y (x; �) d�# dx dy38



= 1h2 Z yj+1=2yj�1=2 "x Z xi�1=2x �2u�x2 (�; y) d�����xixi�1 + Z xixi�1 x�2u�x2 (x; y) dx# dy+ 1h2 Z xixi�1 24y Z yyj �2u�x�y (x; �) d������yj+1=2yj�1=2 � Z yj+1=2yj�1=2 y �2u�x�y (x; y) dy35 dx= 1h2 Z yj+1=2yj�1=2 "Z xi�1=2xi�1 (x� xi�1)�2u�x2 (x; y) dx+ Z xixi�1=2(x� xi)�2u�x2 (x; y) dx# dy� 1h2 Z xixi�1 "Z yjyj�1=2(y � yj�1=2) �2u�x�y (x; y) dy + Z yj+1=2yj (y � yj+1=2) �2u�x�y (x; y) dy# dx:We de�ne the funtionsA(x) = ( 12(x� xi�1)2; x 2 [xi�1; xi�1=2℄;12(x� xi)2; x 2 [xi�1=2; xi℄;B(y) = ( 12(y � yj�1=2)2; y 2 [yj�1=2; yj℄;12(y � yj+1=2)2; y 2 [yj; yj+1=2℄:Note that A and B are ontinuous funtions, A(xi�1) = A(xi) = 0; and B(yj�1=2) =B(yj+1=2) = 0: Thus, upon integration by parts,'1(xi; yj) = 1h2 Z yj+1=2yj�1=2 �Z xixi�1 A0(x)�2u�x2 (x; y) dx� dy� 1h2 Z xixi�1 "Z yj+1=2yj�1=2 B0(y) �2u�x�y (x; y) dy# dx= � 1h2 Z yj+1=2yj�1=2 �Z xixi�1 A(x)�3u�x3 (x; y) dx� dy+ 1h2 Z xixi�1 "Z yj+1=2yj�1=2 B(y) �3u�x�y2 (x; y) dy# dx:But jA(x)j � h28 ; jB(y)j � h28 ;and therefore, j'1(xi; yj)j � 18 Z xixi�1 Z yj+1=2yj�1=2 �����3u�x3 (x; y)���� dx dy+ 18 Z xixi�1 Z yj+1=2yj�1=2 ���� �3u�x�y2 (x; y)���� dx dy:39



Consequently, jj'1℄j2x � h432  �3u�x32L2(
) +  �3u�x�y22L2(
)! : (4.34)Analogously, jj'2℄j2y � h432  �3u�y32L2(
) +  �3u�x2�y2L2(
)! : (4.35)In order to estimate  , we note that (xi; yj) = 1h2 Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 �Z xix �w�x (s; y) ds++ Z yjy �w�y (x; t) dt+ Z xix Z yjy �2w�x�y (s; t) ds dt� dx dy= � 1h2 Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 C(x)�2w�x2 (x; y) dx dy� 1h2 Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 D(y)�2w�y2 (x; y) dx dy+ 1h2 Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 �Z xix Z yjy �2w�x�y (s; t) ds dt� dx dy;where w(x; y) = (x; y)u(x; y);C(x) = ( 12(x� xi�1=2)2; x 2 [xi�1=2; xi℄;12(x� xi+1=2)2; x 2 [xi; xi+1=2℄;and D(y) = ( 12(y � yj�1=2)2; y 2 [yj�1=2; yj℄;12(y � yj+1=2)2; y 2 [yj; yj+1=2℄:Thene, j (xi; yj)j � 18  Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 �����2w�x2 (x; y)���� dx dy+ Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 �����2w�y2 (x; y)���� dx dy+ 2 Z xi+1=2xi�1=2 Z yj+1=2yj�1=2 ���� �2w�x�y ���� dx dy! ;40



so that, with w = u, we havek k2h � 3h464  �2w�x2 2L2(
) + �2w�y2 2L2(
) + 4  �2w�x�y2L2(
)! : (4.36)Substituting (4.34){(4.36) into the right-hand side of (4.26) and realling that 1=0 = 4=5,we obtain the following result.Theorem 4.8 Let f 2 L2(
),  2 C2(�
), with (x; y) � 0, (x; y) 2 �
, and suppose that theorresponding weak solution of the boundary value problem (4.1) belongs to H3(
). Then,ku� Uk1;h � Ch2 kukH3(
) ; (4.37)where C is a positive onstant (omputable from (4.34){(4.36)).It an be shown that the error estimate (4.37) is best possible in the sense that furtherrelaxation of the regularity hypothesis on u leads to a loss of seond-order onvergene.Error estimates of this type, where the highest possible auray has been attained with theminimum hypotheses on the smoothness of the solution are alled optimal error estimates.Thus, for example, (4.37) is an optimal error estimate for the di�erene sheme (4.18), but(4.33) is not.We have used integral representations of di�erenes to show the bounds (4.34){(4.36). Al-ternatively one an use the following abstrat devie.Lemma 4.9 (The Bramble-Hilbert Lemma) Suppose � : Hk(
) ! R is a linear form, i.e.for all u; v 2 Hk(
); and all �; � 2 R,�(�u+ �v) = ��(u) + ��(v);and assume that:(a) �(p) = 0 for every polynomial p of degree � k � 1, and(b) there exists a positive onstant C suh thatj�(u)j � C kukHk(
) 8u 2 Hk(
):Then, there exists a onstant C1 = C1(
; C; k) suh thatj�(u)j � C1 jujHk(
) 8u 2 Hk(
):41



Proof See P. Ciarlet: The Finite Element Method for Ellipti Problems, North-Holland, 1979.We shall use the Bramble-Hilbert lemma to re-derive the bound (4.34) for '1. Let K =[�1=2; 1=2℄� [�1=2; 1=2℄; and onsider the aÆne mapping�x = xi � h=2 + sh; �1=2 � s � 1=2;y = yj + th; �1=2 � t � 1=2;of K onto K�ij = [xi�1; xi℄� [yj�1=2; yj+1=2℄. We de�ne�u(s; t) := u(x; y):In terms of �u, '1 an be rewritten as follows:'1(xi; yj) = 1h�(�u);where �(�u) = Z 1=2�1=2 ��u�s (0; t) dt� f�u(12 ; 0)� �u(�12 ; 0)g:Clearly � : �u 7! �(�u) is a linear form, and �(p) = 0 for every polynomial of the formp = a0 + a1s+ a2t+ a3s2 + a4st+ a5t2(i.e. �(p) = 0 if p is a polynomial of degree � 2). In addition,j�(�u)j � Z 1=2�1=2 ������u�s (0; t)���� dt+ 2 max(s;t)2K j�u(s; t)j : (4.38)Lemma 4.10 Let v 2 H2(K); then,(a) Z 1=2�1=2 �����v�s (0; t)���� dt � p2 kvkH2(K) ;(b) max(s;t)2K jv(s; t)j � 2 kvkH2(K) :Proof(a) Note that, for any s 2 [�1=2; 1=2℄;�����v�s (0; t)���� � �����v�s (s; t)����+ ����Z 0s �2v�s2 (�; t) d����� :42



Thus, �����v�s (0; t)���� � �����v�s (s; t)����+ Z 1=2�1=2 �����2v�s2 (�; t)���� d�:Integrating both sides in s and t,Z 1=2�1=2 �����v�s (0; t)���� dt � Z 1=2�1=2 Z 1=2�1=2 �����v�s (s; t)���� dsdt+ Z 1=2�1=2 Z 1=2�1=2 �����2v�s2 (�; t)���� d� dt;�  Z 1=2�1=2 Z 1=2�1=2 �����v�s (s; t)����2 dsdt!1=2 + Z 1=2�1=2 Z 1=2�1=2 �����2v�s2 (�; t)����2 d� dt!1=2= �v�sL2(K) + �2v�s2 L2(K) :Finally, using the inequalitya+ b � p2(a2 + b2)1=2; a; b � 0;and the de�nition of k�kH2(K), we get (a).(b) Let (x; y) 2 K and (s; t) 2 K. Then,v(x; y) = v(s; t) + Z xs �v�s (�; t) d� + Z yt �v�t (s; �) d�+ Z xs Z yt �2v�s�t(�; �) d� d�;and therefore jv(x; y)j � jv(s; t)j + Z 1=2�1=2 �����v�s (�; t)���� d� + Z 1=2�1=2 �����v�t (s; �)���� d�+ Z 1=2�1=2 Z 1=2�1=2 ���� �2v�s�t(�; �)���� d� d�:Integrating both sides in s and t, we obtainjv(x; y)j = Z 1=2�1=2 Z 1=2�1=2 jv(s; t)j dsdt+ Z 1=2�1=2 Z 1=2�1=2 �����v�s (�; t)���� d� dt+ Z 1=2�1=2 Z 1=2�1=2 �����v�t (s; �)���� dsd� + Z 1=2�1=2 Z 1=2�1=2 ���� �2v�s�t(�; �)���� d� d�� kvkL2(K) + �v�sL2(K) + �v�t L2(K) +  �2v�s�tL2(K)� 2 kvkH2(K) 8(x; y) 2 K:Taking the maximum over all (x; y) in K, we obtain (b). 243



Equipped with the inequalities (a) and (b), we return to (4.38). It follows thatj�(�u)j � (p2 + 4) k�ukH2(K) :Sine k�ukH2(K) � k�ukH3(K) ; we also havej�(�u)j � (p2 + 4) k�ukH3(K) :Thus we have shown that the mapping � satis�es the hypotheses of the Bramble-Hilbertlemma with k = 3 and 
 = K.Hene, there exists a onstant C1 suh thatj�(�u)j � C1 j�ujH3(K) 8�u 2 H3(K):Returning from (s; t) 2 K to our original variables (x; y) 2 K�ij , we dedue thatj�(�u)j � C1h3�1 jujH3(K�ij ) ;and therefore, j'1(xi; yj)j = 1h j�(�u)j � C1h jujH3(K�ij ) :Consequently, jj'1℄j2x = NXi=1 N�1Xj=1 h2 j'1(xi; yj)j2� C21h4 NXi=1 N�1Xj=1 juj2H3(K�ij )� C21h4 juj2H3(
) :Therefore, jj'1℄jx � C1h2 jujH3(
) : (4.39)Similarly, jj'2℄jy � C2h2 jujH3(
) (4.40)and jj ℄jh � C3h2 jujH2(
) : (4.41)The bounds (4.39){(4.41) derived by using the Bramble-Hilbert lemma are essentially thesame as those obtained earlier by integral representations, and stated in (4.34){(4.36). There44



is, however, an important pratial di�erene: while the onstants involved in (4.34){(4.36)are known, those whih appear in (4.39){(4.41) (namely, C1, C2, C3) are unknown beausethe Bramble-Hilbert lemma does not tell us what these are, so the onstant in the resultingerror estimate is not omputable. We note, however, that in reent years several onstrutiveproofs of the Bramble-Hilbert lemma have been derived for restrited lasses of 
. (e.g. 
onvex or star-shaped). These onstrutive proofs give an expliit expression for C1 (see thestatement of the Bramble-Hilbert lemma) in terms of C, k and the area (volume) of 
.Conluding remarks. We have arried out an error analysis of �nite di�erene shemesfor the partial di�erential equation��u+ (x; y)u = f(x; y)on a square domain 
. The error analysis of di�erene shemes for more general elliptiequations would proeed along similar lines. Consider, for example,� � ��x �a1(x; y)�u�x�+ ��y �a2(x; y)�u�y��+ b1(x; y)�u�x + b2(x; y)�u�y + (x; y)u = f(x; y)on the unit square 
 in R2 . We approximate the equation by� 1h �a1(xi+1=2; yj)Ui+1;j � Ui;jh � a1(xi�1=2; yj)Ui;j � Ui�1;jh �� 1h �a2(xi; yj+1=2)Ui;j+1 � Ui;jh � a2(xi; yj�1=2)Ui;j � Ui;j�1h �+ b1(xi; yj)Ui+1;j � Ui�1;j2h + b1(xi; yj)Ui;j+1 � Ui;j�12h+ (xi; yj)Uij = 1h2 Z xi+1=2xi�1=2 Z yi+1=2yi�1=2 f(x; y) dx dy:This is still a �ve-point di�erene sheme. Provided u 2 H3(
) \ H10 (
), the sheme isseond-order onvergent in the k�k1;h norm (i.e. (4.38) holds).When 
 has a urved boundary, a non-uniform mesh has to be used near �
 to avoid a lossof auray. To be more preise, let us introdue the following notation: let hi+1 = xi+1�xi,hi = xi � xi�1, and let ~i = 12(hi+1 + hi): We de�neD+x Ui = Ui+1 � Ui~i ; D�x Ui = Ui � Ui�1hi ;D+xD�x Ui = 1~i �Ui+1 � Uihi+1 � Ui � Ui�1hi � :Similarly, let kj+1 = yj+1 � yj, kj = yj � yj�1, and letki = 12(kj+1 + kj):45



Let D+y Uj = Uj+1 � Ujkj ; D�y Uj = Uj � Uj�1kj ;D+y D�y Uj = 1kj �Uj+1 � Ujkj+1 � Uj � Uj�1kj � :So, on a general non-uniform mesh�
h = f(xi; yj) : xi+1 � xi = hi; yj+1 � yj = kjg;the Laplae operator, �, an be approximated by D+xD�x + D+y D�y , with the di�ereneoperators D+xD�x , D+y D�y de�ned above.Consider, for example, the Dirihlet problem��u = f(x; y) in 
;u = 0 on �
;where 
 and the non-uniform mesh �
h are depited in Fig. 4.

� 
h; � �h; �
h = 
h \ �h:Figure 4: Non-uniform mesh �
h:The �nite di�erene approximation of this boundary value problem is�(D+xD�x Uij +D+y D�y Uij) = f(xi; yj) in 
h;Uij = 0 on �h:Equivalently,� 1~i �Ui+1;j � Uijhi+1 � Uij � Ui�1;jhi �� 1kj �Ui;j+1 � Uijkj+1 � Uij � Ui;j�1kj � = f(xi; yj) in 
h;Uij = 0 on �h:A typial di�erene stenil is shown in Fig. 5; learly we still have a �ve-point di�erenesheme. 46



uu u
u
u(xi; yj�1)(xi�1; yj) (xi+1; yj)
(xi; yj+1)

(xi; yj)hi hi+1kjkj+1
Figure 5: Five-point stenil on a non-uniform mesh.
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5 Finite element methods for ellipti boundary valueproblemsIn setions 3 and 4 we desribed the onstrution of �nite di�erene methods for elliptiboundary value problems and outlined some simple tehniques for their analysis. There,beause of the very nature of �nite di�erene shemes, the emphasis was plaed on approx-imating the values of the exat solution at a �nite number of mesh-points. In this setionwe onentrate on an alternative approah whih is based on the approximation of the exatsolution by ontinuous pieewise polynomial funtions. Numerial methods of this type arealled �nite element methods.Finite element methods were proposed by Courant in 1943, but the importane of his on-tribution was not reognised at the time and the idea was forgotten. The method wasredisovered by engineers in the early 1950's, though the mathematial analysis of �nite el-ement shemes only began in the 1960's, the �rst important theoretial results being thoseof Zl�amal in 1968.In this setion we present some of the basi properties of �nite element methods for elliptiboundary value problems. Unlike �nite di�erene shemes whih are onstruted in a more-or-less ad ho fashion by replaing the derivatives in the di�erential equation by divideddi�erenes, the derivation of �nite element methods is muh more systemati.The �rst step in the onstrution of a �nite element method for an ellipti boundary valueproblem (e.g. (2.3), (2.4)) is to onvert the problem into its weak formulation:�nd u 2 V suh that a(u; v) = l(v) 8v 2 V , (P )where V is the solution spae (e.g. H10 (
) for a homogeneous Dirihlet boundary valueproblem), a(�; �) is a bilinear form on V � V , and l(�) is a linear form on V (e.g. (2.7) and(2.8)).The seond step in the onstrution is to replae V in (P ) by a �nite-dimensional subspaeVh � V whih onsists of ontinuous pieewise polynomial funtions of a �xed degree, andto onsider the following approximation of (P ):�nd uh 2 Vh suh that a(uh; vh) = l(vh) 8vh 2 Vh. (Ph)Suppose, for example, that dimVh = N(h) and Vh = spanf�1; : : : ; �N(h)g, where the linearlyindependent basis funtions �i; i = 1; : : : ; N(h), have \small" support. Expressing theapproximate solution uh in terms of the basis funtions, �i, we an writeuh(x) = N(h)Xi=1 Ui�i(x), (�)where Ui, i = 1; : : : ; N(h), are to be determined. Thus (Ph) an be rewritten as follows:48



0 = x0 x1 x2 : : : xn xN = 1Figure 6: Subdivision of �
 = [0; 1℄:�nd (U1; : : : ; UN(h)) 2 RN(h) suh that N(h)Xi=1 a(�i; �j)Ui = l(�j), j = 1; : : : ; N(h). (P 0h)This is a system of linear equations for U = (U1; : : : ; UN(h))T , with the matrix of the system,A = (a(�j; �i)), of size N(h) �N(h): Beause the �i's have small support, a(�j; �i) = 0 formost i and j, so the matrix A is sparse. One the system of linear equations (P 0h) has beensolved for U = (U1; : : : ; UN(h))T , (�) provides the required approximation of u.After this brief outline of the �nite element method, we illustrate the onstrution of thisnumerial tehnique through some simple examples.5.1 Constrution of the �nite element method: pieewise linearbasis funtionsIn this setion we desribe two spei� examples of �nite element methods for boundaryvalue problems.5.1.1 One-dimensional problemLet us onsider the boundary value problem�(p(x)u0)0 + q(x)u = f(x); x 2 (0; 1); (5.1a)u(0) = 0; u(1) = 0; (5.1b)where p 2 C[0; 1℄, q 2 C[0; 1℄, f 2 L2(0; 1), p(x) � ~ > 0, q(x) � 0, x 2 [0; 1℄. The weakformulation of this problem is:�nd u 2 H10 (0; 1) suh thatZ 10 p(x)u0(x)v0(x) dx+ Z 10 q(x)u(x)v(x) dx = Z 10 f(x)v(x) dx8v 2 H10 (0; 1): 9>>=>>; (P )In order to onstrut the �nite element approximation of this problem, we subdivide �
 = [0; 1℄into N subintervals [xi; xi+1℄, i = 0; : : : ; N � 1, by the points xi = ih, i = 0; : : : ; N , whereh = 1=N , N � 2 (see Fig. 6). 49



The subintervals are alled \elements". The solution, u 2 H10 (0; 1), of (P ) will be approx-imated by a ontinuous pieewise linear funtion on this subdivison. For this purpose wede�ne the �nite element basis funtions�i(x) = �1� ����x� xih �����+ ; i = 1; : : : ; N � 1:Here, for z 2 R, we used the notation z+ = maxf0; zg. Clearly �i 2 H10 (0; 1), and supp �i =[xi�1; xi+1℄, i = 1; : : : ; N � 1: The funtions �i, i = 1; : : : ; N � 1, are linearly independentand therefore Vh := spanf�1; : : : ; �N�1gis an (N � 1)-dimensional subspae of H10 (0; 1). The �nite element approximation of (P ) is:�nd uh 2 Vh suh thatZ 10 p(x)u0h(x)v0h(x) dx + Z 10 q(x)uh(x)vh(x) dx= Z 10 f(x)vh(x) dx 8vh 2 Vh:
9>>>>=>>>>; (Ph)Sine uh 2 Vh = spanf�1; : : : ; �N�1g, it an be written as a linear ombination of the basisfuntions: uh(x) = N�1Xi=1 Ui�i(x):Substituting this into (Ph) we obtain the following problem, equivalent to (Ph):�nd U = (U1; : : : ; UN�1)T 2 RN�1 suh thatN�1Xi=1 Ui Z 10 [p(x)�0i(x)�0j(x) + q(x)�i(x)�j(x)℄ dx= Z 10 f(x)�j(x) dx; j = 1; : : : ; N � 1:

9>>>>>=>>>>>; (P 0h)Letting aij := Z 10 [p(x)�0i(x)�0j(x) + q(x)�i(x)�j(x)℄ dx; i; j = 1; : : : ; N � 1;Fj := Z 10 f(x)�j(x) dx; j = 1; : : : ; N � 1;(P 0h) an be written as a system of linear equationsAU = F;50



where A = (aji), F = (F1; : : : ; FN�1)T . The matrix A is symmetri (i.e. AT = A) andpositive de�nite (i.e. xTAx > 0, x 6= 0). Sine supp �i [ supp�j has empty interior whenji� jj > 1, it follows that the matrix A is tri-diagonal. Having solved the system of linearequations AU = F , we substitute the values U1; : : : ; UN�1 intouh(x) = N�1Xi=1 Ui�i(x)to obtain uh.In pratie the entries aji of the matrix A and the entries Fj of the vetor F are alulatedapproximately using numerial quadrature rules. In the simple ase when p and q are onstantfuntions on [0; 1℄, the entries of A an be alulated exatly:aij = p Z 10 �0i(x)�0j(x) dx+ q Z 10 �i(x)�j(x) dx= p8<: 2=h; i = j;�1=h; ji� jj = 1;0; ji� jj > 1; + q8<: 4h=6; i = j;h=6; ji� jj = 1;0; ji� jj > 1:= 8<: 2p=h+ 4hq=6; i = j;�p=h + qh=6; ji� jj = 1;0; ji� jj > 1:5.1.2 Two-dimensional problemLet 
 be a bounded domain in R2 with a polygonal boundary �
, so that 
 an be exatlyovered by a �nite number of triangles. We shall suppose that a family of suh sets oftriangles is parametrised by h, where h is the maximum diameter of triangles in the set. Weshall assume that any pair of triangles in a triangulation of 
 interset along a ompleteedge, at a vertex, or not at all, as shown in Fig. 7.

Figure 7: A subdivision (triangulation) of �
.51



With eah interior node (marked � in the �gure) we assoiate a basis funtion � whih isequal to 1 at that node and to 0 at all the other nodes; � is assumed to be ontinuous andpieewise linear on the triangulation, as shown in Fig. 8.

0 00 00 0
1

Figure 8: A typial �nite element basis funtion.Let us suppose that the interior nodes are labelled 1; 2; : : : ; N(h), let �1(x; y); : : : ; �N(h)(x; y)be the orresponding basis funtions. The funtions �1; : : : ; �N(h) are linearly independentand they span an N(h)-dimensional linear subspae Vh of H10 (
).Let us onsider the ellipti boundary value problem��u = f in 
;u = 0 on �
:The weak formulation of this problem is:�nd u 2 H10 (
) suh thatZ
��u�x �v�x + �u�y �v�y� dx dy = Z
 fv dx dy 8v 2 H10 (
):The �nite element approximation of the problem is:�nd uh 2 Vh suh thatZ
��uh�x �vh�x + �uh�y �vh�y � dx dy = Z
 fvh dx dy 8vh 2 Vh:52



Writing uh(x; y) = N(h)Xi=1 Ui�i(x; y);the �nite element approximation an be restated as follows:�nd U = (U1; : : : ; UN(h))T 2 RN(h) suh thatN(h)Xi=1 Ui �Z
���i�x ��j�x + ��i�y ��j�y � dx dy� = Z
 f�j dx dy; j = 1; : : : ; N(h):Letting A = (aij), F = (F1; : : : ; FN(h))T ,aij = aji = Z
���i�x ��j�x + ��i�y ��j�y � dx dy;Fj = Z
 f�j dx dy;the �nite element approximation an be restated as a system of linear equationsAU = F:Solving this, we obtain U = (U1; : : : ; UN(h))T , and hene the approximate solutionuh(x; y) = N(h)Xi=1 Ui�i(x; y):To simplify matters let us suppose that 
 = (0; 1)� (0; 1) and onsider the triangulation of�
 shown in Fig. 9.Let �ij denote the basis funtion assoiated with the interior node (xi; yj):
�ij(x; y) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
1� x� xih � y � yjh ; (x; y) 2 11� y � yjh ; (x; y) 2 21� xi � xh ; (x; y) 2 31� xi � xh � yj � yh ; (x; y) 2 41� yj � yh ; (x; y) 2 51� x� xih ; (x; y) 2 60 otherwise;where 1; 2; : : : ; 6 denote the triangles surrounding the node (xi; yj) (see Fig. 10.)53
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Figure 9: Subdivision (triangulation) of �
 = [0; 1℄� [0; 1℄.
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Figure 10: Triangles surrounding a node.54



Thus ��ij�x = 8>>>>>>>><>>>>>>>>:
�1=h; (x; y) 2 10; (x; y) 2 21=h; (x; y) 2 31=h; (x; y) 2 40; (x; y) 2 5�1=h; (x; y) 2 60; otherwise;and ��ij�y = 8>>>>>>>><>>>>>>>>:
�1=h; (x; y) 2 1�1=h; (x; y) 2 20; (x; y) 2 31=h; (x; y) 2 41=h; (x; y) 2 50; (x; y) 2 60; otherwise:Sine N�1Xi=1 N�1Xj=1 Uij Z
���ij�x ��kl�x + ��ij�y ��kl�y � dx dy= 4Ukl � Uk�1;l � Uk+1;l � Uk;l�1 � Uk;l+1; k; l = 1; :::; N � 1;the �nite element approximation is equivalent to�Uk+1;l � 2Uk;l + Uk�1;lh2 � Uk;l+1 � 2Uk;l + Uk;l�1h2= 1h2 Z Zsupp �kl f(x; y)�kl(x; y) dx dy; k; l = 1; : : : ; N � 1;Ukl = 0 on �
:Thus, on this speial partition of 
, the �nite element approximation gives rise to the familiar5-point �nite di�erene sheme with the foring funtion f averaged in a speial way.5.2 Variational formulation of self-adjoint ellipti boundary valueproblemsLet us onsider, as in Setion 2, the ellipti boundary value problem� nXi;j=1 ��xj �aij(x) �u�xi� + nXi=1 bi(x) �u�xi + (x)u = f(x); x 2 
; (5.2a)u = 0 on �
; (5.2b)55



where 
 is a bounded open set in Rn , aij 2 C(�
), i; j = 1; : : : ; n; bi 2 C1(�
), i = 1; : : : ; n, 2 C(�
), f 2 L2(
), and assume that there exists a positive onstant ~ suh thatnXi;j=1 aij(x)�i�j � ~ nXi=1 �2i 8� = (�1; : : : ; �n) 2 Rn ; 8x 2 �
: (5.3)We reall from Setion 2 that the weak formulation of (5.2) is:�nd u 2 H10 (
) suh that a(u; v) = l(v) 8v 2 H10 (
); (5.4)where the bilinear form a(�; �) and the linear form l(�) are de�ned bya(u; v) = nXi;j=1Z
 aij �u�xi �v�xj dx + nXi=1 Z
 bi(x) �u�xi v dx + Z
 (x)uv dx;and l(v) = Z
 f(x)v(x) dx:We have shown that if (x)� 12 nXi=1 �bi�xi � 0; x 2 �
;then (5.4) has a unique solution u in H10 (
), | the weak solution of (5.2).In the speial ase when the boundary value problem is self-adjoint, i.e.aij(x) = aji(x); i; j = 1; : : : ; n; x 2 �
;and bi(x) � 0; i = 1; : : : ; n; x 2 �
;the bilinear form a(�; �) is symmetri in the sense thata(v; w) = a(w; v) 8v; w 2 H10 (
);in the following this will always be assumed to be the ase. Thus we onsider� nXi;j=1 ��xj �aij(x) �u�xi� + (x)u = f(x); x 2 
; (5.5a)u = 0; on �
 (5.5b)with aij(x) satisfying the elliptiity ondition (5.3); aij(x) = aji(x), (x) � 0, x 2 �
.It turns out that (5.5) an be restated as a minimisation problem. To be more preise, letus de�ne the quadrati funtional J : H10 (
)! R byJ(v) = 12a(v; v)� l(v); v 2 H10 (
):56



Lemma 5.1 Let u be the (unique) solution of (5.4) and suppose that a(�; �) is a symmetribilinear form on H10 (
); then, u is the unique minimiser of J(�) over H10 (
).Proof Let u be the unique solution of (5.4) and, for v 2 H10 (
), onsider J(v)� J(u):J(v)� J(u) = 12a(v; v) � l(v) � 12a(u; u) + l(u)= 12a(v; v) � 12a(u; u)� l(v � u)= 12a(v; v) � 12a(u; u)� a(u; v � u)= 12 [a(v; v) � 2a(u; v) + a(u; u)℄= 12 [a(v; v) � a(u; v)� a(v; u) + a(u; u)℄= 12a(v � u; v � u):Thene J(v)� J(u) = 12a(v � u; v � u):Beause of (2.14), a(v � u; v � u) � 0 kv � uk2H1(
) ;where 0 is a positive onstant. ThusJ(v)� J(u) � 02 kv � uk2H1(
) 8v 2 H10 (
); (5.6)and therefore, J(v) � J(u) 8v 2 H10 (
); (5.7)i.e. u minimises J(�) over H10 (
).In fat, u is the unique minimiser of J(�) on H10 (
). Indeed, if ~u also minimises J(�) on H10 (
),then J(v) � J(~u) 8v 2 H10 (
): (5.8)Taking v = ~u in (5.7) and v = u in (5.8), we dedue thatJ(u) = J(~u);but then, by virtue of (5.6), k~u� ukH1(
) = 0;and hene u = ~u. 2 57
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Figure 11: The quadrati funtional J(�).It is easily shown that J(�) is onvex (down), i.e.J((1� �)v + �w) � (1� �)J(v) + �J(w) 8� 2 [0; 1℄; 8v; w 2 H10 (
):This follows from the identity(1� �)J(v) + �J(w) = J((1� �)v + �w) + 12�(1� �)a(v � w; v � w)and the fat that a(v � w; v � w) � 0 on noting that � 2 [0; 1℄.Moreover, if u minimises J(�) then the Gateaux derivative J 0(u) of J(�) at u,J 0(u)v := lim�!0 J(u+ �v)� J(u)� = 0for all v 2 H10 (
). SineJ(u+ �v)� J(u)� = a(u; v)� l(v) + �2a(v; v);we dedue that if u minimises J(�) thenlim�!0[a(u; v)� l(v) + �2a(v; v)℄ = a(u; v)� l(v) = 0 8v 2 H10 (
);whih proves the following result.Lemma 5.2 Suppose that u 2 H10 (
) minimises J(�) over H10 (
); then, u is the (unique)solution of problem (5.4). 58



This lemma is preisely the onverse of the previous lemma, and the two results togetherexpress the equivalene of the weak formulation:�nd u 2 H10 (
) suh that a(u; v) = l(v) 8v 2 H10 (
) (W )of the self-adjoint ellipti boundary value problem (5.5) to the assoiated minimisation prob-lem: �nd u 2 H10 (
) suh that J(u) � J(v) 8v 2 H10 (
): (M)We shall use of this equivalene to perform an error analysis of the �nite element method.5.3 Constrution of the �nite element method: abstrat settingLet us onsider the self-adjoint ellipti boundary value problem (5.5), and reall that its weakformulation is �nd u 2 H10 (
) suh that a(u; v) = l(v) 8v 2 H10 (
); (W )where a(u; v) = nXi;j=1Z
 aij(x) �u�xi �v�xj dx + Z
 (x)uv dx;l(v) = Z
 f(x)v(x) dx;we suppose that aij(x) = aji(x), i; j = 1; : : : ; n, x 2 �
, (x) � 0, x 2 �
, aij,  2 C(�
),f 2 L2(
), and the elliptiity ondition (5.3) holds. Reall also that (W ) is equivalent tothe minimisation problem�nd u 2 H10 (
) suh that J(u) � J(v) 8v 2 H10 (
); (M)where J(v) = 12a(v; v)� l(v).We an derive the �nite element approximation of (5.5) by replaing the spae H10 (
) in (W )by a ertain �nite-dimensional subspae Vh � H10 (
) whih onsists of ontinuous pieewisepolynomials of a �xed degree k, k � 1.Leaving aside for a moment the question of the atual onstrution of Vh, we onsider,instead, some general questions onerning �nite element methods whih do not depend onthe partiular properties of Vh.In its most general form, the �nite element approximation of (W ) is:�nd uh 2 Vh suh that a(uh; vh) = l(vh) 8vh 2 Vh: (Wh)59



As Vh � V = H10 (
), the existene of a unique solution uh 2 Vh is a straightforwardonsequene of the Lax{Milgram theorem (see, Setion 2). In addition, we an repeat theargument presented in the previous setion to show the equivalene of (Wh) to the followingminimisation problem:�nd uh 2 Vh suh that J(uh) � J(vh) 8vh 2 Vh. (Mh)Next we study the approximation properties of (Wh).5.4 C�ea's lemmaC�ea's lemma expresses the fat that, in a ertain sense, the �nite element solution uh 2 Vhis the best approximation to u 2 V = H10 (
) from Vh. To be more preise, we de�ne(v; w)a := a(v; w); v; w 2 H10 (
):Beause a(�; �) is a symmetri bilinear form on H10 (
)�H10 (
) anda(v; v) � 0 kvk2H1(
) 8v 2 H10 (
);(f. Setion 2), it is easily seen that (�; �)a satis�es all axioms of an inner produt. Let k�kadenote the assoiated \energy norm":kvka := [a(v; v)℄1=2:Sine Vh � H10 (
), taking v = vh 2 Vh in the statement of (W ), we dedue thata(u; vh) = l(vh); vh 2 Vh; (5.9)also by, (Wh), a(uh; vh) = l(vh); vh 2 Vh: (5.10)Subtrating (5.10) from (5.9) and using the fat that a(�; �) is a bilinear form, we dedue thata(u� uh; vh) = 0 8vh 2 Vh;i.e. (u� uh; vh)a = 0 8vh 2 Vh: (5.11)Thus, the error between the exat solution u and its �nite element approximation uh isorthogonal to Vh. 60
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Figure 12: The error u� uh is orthogonal to Vh.By virtue of the orthogonality property (5.11) (see Figure 12),ku� uhk2a = (u� uh; u� uh)a= (u� uh; u)a � (u� uh; uh)a= (u� uh; u)a= (u� uh; u)a � (u� uh; vh)a= (u� uh; u� vh)a 8vh 2 Vh:Thene, by the Cauhy{Shwarz inequality,ku� uhk2a = (u� uh; u� vh)a� ku� uhka ku� vhka 8vh 2 Vh;therefore ku� uhka � ku� vhka 8vh 2 Vh:Consequently, ku� uhka = minvh2Vh ku� vhka ;the minimum being ahieved when vh = uh. Thus we have proved the following resultLemma 5.3 (C�ea's lemma) The �nite element approximation uh 2 Vh of u 2 H10 (
) is thebest �t to u from Vh in the energy norm k�ka ; i.e.ku� uhka = minvh2Vh ku� vhka :This result is the key to the error analysis of the �nite element method for self-adjoint elliptiboundary value problems. In the next setion we desribe how suh an analysis proeedsfor a partiularly simple �nite element spae, Vh, onsisting of ontinuous pieewise linearfuntions on 
. 61



5.5 Optimal error bounds in the energy normIn this setion, we shall employ C�ea's lemma to derive an optimal error bound for the �niteelement approximation (Wh) of problem (W ) in the ase of pieewise linear basis funtions.Let 
 = (0; 1)� (0; 1), and onsider the ellipti boundary value problem��u = f in 
; (5.12a)u = 0 on �
: (5.12b)We reall that the weak formulation of this problem is:�nd u 2 H10 (
) suh thatZ
��u�x �v�x + �u�y �v�y� dx dy = Z
 fv dx dy 8v 2 H10 (
): (5.13)In order to onstrut the �nite element approximation, we triangulate the domain as shownin the Fig. 13. Let h = 1=N , and de�ne xi = ih, i = 0; : : : ; N , yj = jh, j = 0; : : : ; N . Witheah node, (xi; yj), ontained in the interior of 
 (labelled � in the �gure), we assoiate abasis-funtion �ij, i; j = 1; : : : ; N � 1, de�ned by
�ij(x; y) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
1� x� xih � y � yjh ; (x; y) 2 11� y � yjh ; (x; y) 2 21� xi � xh ; (x; y) 2 31� xi � xh � yj � yh ; (x; y) 2 41� yj � yh ; (x; y) 2 51� x� xih ; (x; y) 2 60 otherwise:Let Vh = spanf�ij; i = 1; : : : ; N � 1; j = 1; : : : ; N � 1g. The �nite element approximationof (5.12) (and (5.13)) is: �nd uh 2 Vh suh thatZ
��uh�x �vh�x + �uh�y �vh�y � dx dy = Z
 fvh dx dy 8vh 2 Vh: (5.14)Letting l(v) = Z
 f(x)v(x) dx; and(v; w)a = a(v; w) = Z
��v�x �w�x + �v�y �w�y � dx dy;62
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Figure 13: Subdivision (triangulation) of �
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(5.13) and the �nite element method (5.14) an be written, respetively, as follows:�nd u 2 H10 (
) suh that a(u; v) = l(v) 8v 2 H10 (
); (5:130)and �nd uh 2 Vh suh that a(uh; vh) = l(vh) 8vh 2 Vh: (5:140)Let us suppose that u 2 H2(
)\H10 (
). By the Sobolev embedding theorem H2(
) � C(�
)(f. also Lemma 4.10 (b)); therefore u 2 C(�
). Aording to C�ea's lemma,ku� uhka = minvh2Vh ku� vhka � ku� Ihuka ; (5.15)where Ihu denotes the ontinuous pieewise linear interpolant of u on 
:(Ihu)(x; y) = N�1Xi=1 N�1Xj=1 u(xi; yj)�ij(x; y):Clearly (Ihu)(xk; yl) = u(xk; yl). Sine u 2 C(�
), Ihu is orretly de�ned. Let us estimateku� Ihuka:ku� Ihuk2a = Z
 ���� ��x(u� Ihu)����2 dx dy + Z
 ���� ��y (u� Ihu)����2 dx dy=X4 (Z4 ���� ��x (u� Ihu)����2 dx dy + Z4 ���� ��y (u� Ihu)����2 dx dy) ; (5.16)where 4 is a triangle in the partition of 
. Suppose, for example, that4 = f(x; y) : xi � x � xi+1; yj � y � yj+1 + xi � xg:In order to estimateZ4 ���� ��x (u� Ihu)����2 dx dy + Z4 ���� ��y (u� Ihu)����2 dx dy;we de�ne the anonial triangleK = f(s; t) : 0 � s � 1; 0 � t � 1� sgand the aÆne mapping (x; y) 7! (s; t) from 4 to K byx = xi + sh; 0 � s � 1;y = yj + th; 0 � t � 1:Let �u(s; t) := u(x; y). Then,�u�x = ��u�s � �s�x + ��u�t � �t�x = 1h � ��u�s ;�u�y = ��u�s � �s�y + ��u�t � �t�y = 1h � ��u�t :64



The Jaobian of the mapping (s; t) 7! (x; y) isJ = �(x; y)�(s; t) = ���� xs xtys yt ���� = h2:Thus,Z4 ���� ��x(u� Ihu)����2 dx dy= ZK ���� ��s (�u(s; t)� [(1� s� t)�u(0; 0) + s�u(1; 0) + t�u(0; 1)℄)����2 ds dt= Z 10 Z 1�s0 ������u�s (s; t)� [�u(1; 0)� �u(0; 0)℄����2 ds dt= Z 10 Z 1�s0 ������u�s (s; t)� Z 10 ��u�s (�; 0) d�����2 ds dt= Z 10 Z 1�s0 ���� Z 10 ���u�s (s; t)� ��u�s (�; t)� d� + Z 10 ���u�s (�; t)� ��u�s (�; 0)� d�����2 ds dt= Z 10 Z 1�s0 ����Z 10 Z s� �2�u�s2 (�; t) d� d� + Z 10 Z t0 �2�u�s�t (�; �) d� d�����2 ds dt� 2 Z 10 Z 1�s0 Z 10 Z 10 �����2�u�s2 (�; t)����2 d� d� ds dt+ 2 Z 10 Z 1�s0 Z 10 Z 10 ���� �2�u�s�t (�; �)����2 d� d� ds dt� 2 Z 10 Z 10 �����2�u�s2 (�; t)����2 d� dt + Z 10 Z 10 ���� �2�u�s�t (�; �)����2 d� d�= 2 Z xi+1xi Z yj+1yj �����2u�x2 (x; y)����2 � ��h2��2 � h�2 dx dy + Z xi+1xi Z yj+1yj ���� �2u�x�y (x; y)����2 � ��h2��2 � h�2 dx dy:Therefore,Z4 ���� ��x (u� Ihu)����2 dx dy � 2h2 Z xi+1xi Z yj+1yj  �����2u�x2 ����2 + 12 ���� �2u�x�y ����2! dx dy: (5.17)Similarly,Z4 ���� ��y (u� Ihu)����2 dx dy � 2h2 Z xi+1xi Z yj+1yj  �����2u�y2 ����2 + 12 ���� �2u�x�y ����2! dx dy: (5.18)Substituting (5.17) and (5.18) into (5.16),ku� Ihuk2a � 4h2 Z
 �����2u�x2 ����2 + ���� �2u�x�y ����2 + �����2u�y2 ����2! dx dy: (5.19)Finally by (5.15) and (5.19), ku� uhka � 2h jujH2(
) : (5.20)Thus we have proved the following result. 65



Theorem 5.4 Let u be the weak solution of the boundary value problem (5.12), and let uhbe its pieewise linear �nite element approximation de�ned by (5.14). Suppose that u 2H2(
) \H10 (
); then, ku� uhka � 2h jujH2(
) :Corollary Under the hypotheses of Theorem 5.4ku� uhkH1(
) � p5h jujH2(
) :Proof Aording to Theorem 5.4,ku� uhk2a = ju� uhj2H1(
) � 4h2 juj2H2(
) :Sine u 2 H10 (
), uh 2 Vh � H10 (
), it follows that u � uh 2 H10 (
). By the Poinar�e{Friedrihsinequality, ku� uhk2L2(
) � 14 ju� uhj2H1(
) ; (5.21)thus, ku� uhk2H1(
) = ku� uhk2L2(
) + ju� uhj2H1(
)� 54 ju� uhj2H1(
) � 5h2 juj2H2(
) ;and that ompletes the proof. 2Aording to (5.21) and (5.20),ku� uhkL2(
) � h � jujH2(
) :This error estimate seems to indiate that the error in the L2-norm between u and its �niteelement approximation uh is of the size O(h). It turns out, however, that this bound isrude and an be improved to O(h2). For this purpose, let us �rst observe that if w 2H2(
) \H10 (
); 
 = (0; 1)� (0; 1), thenk�wk2L2(
) = Z
��2w�x2 + �2w�y2 �2 dx dy= Z
��2w�x2 �2 + 2 Z
 �2w�x2 � �2w�y2 dx dy + Z
��2w�y2 �2 dx dy:Performing integration by parts and using the fat that w = 0 on �
,Z
 �2w�x2 � �2w�y2 dx dy = Z
 �2w�x�y � �2w�x�y dx dy= Z
 ���� �2w�x�y ����2 dx dy:66



Thus, k�wk2L2(
) = Z
 �����2w�x2 ����2 + 2 ���� �2w�x�y ����2 + �����2w�y2 ����2! dx dy= jwj2H2(
) :Given g 2 L2(
), let wg 2 H10 (
) denote the weak solution of the boundary value problem��wg = g in 
; (5.22a)wg = 0 on �
; (5.22b)then, wg 2 H2(
) \H10 (
); andjwgjH2(
) = k�wgkL2(
) = kgkL2(
) : (5.23)After this brief preparation, we turn to the derivation of the optimal error bound in theL2-norm.Aording to the Cauhy{Shwarz inequality for the L2-inner produt (�; �),(u� uh; g) � ku� uhkL2(
) kgkL2(
) 8g 2 L2(
):Therefore, ku� uhkL2(
) = supg2L2(
) (u� uh; g)kgkL2(
) : (5.24)Given g 2 L2(
), let wg 2 H10 (
) denote the weak solution of the problem (5.22), i.e.a(wg; v) = lg(v) 8v 2 H10 (
); (5.25)where lg(v) = Z
 gv dx dy = (g; v);a(wg; v) = Z
��wg�x �v�x + �wg�y �v�y� dx dy:Consider the �nite element approximation of (5.25):�nd wgh 2 Vh suh that a(wgh; vh) = lg(vh) 8vh 2 Vh: (5.26)From (5.25), (5.26) and the error bound (5.20), we dedue thatkwg � wghka � 2h jwgjH2(
) ;67



and therefore, by (5.23), kwg � wghka � 2h kgkL2(
) : (5.27)Now, (u� uh; g) = (g; u� uh) = lg(u� uh)= a(wg; u� uh) = a(u� uh; wg): (5.28)Beause wgh 2 Vh, (5.11) implies thata(u� uh; wgh) = 0;and therefore, by (5.28),(u� uh; g) = a(u� uh; wg)� a(u� uh; wgh)= a(u� uh; wg � wgh)= (u� uh; wg � wgh)a:Applying the Cauhy{Shwarz inequality on the right,(u� uh; g) � ku� uhka kwg � wghka ;and thene by (5.20) and (5.27)(u� uh; g) � 4h2 jujH2(
) � kgkL2(
) : (5.29)Substituting (5.29) into the right-hand side of (5.24), we obtainku� uhkL2(
) � 4h2 jujH2(
) ;whih is our improved error bound in the L2-norm.The proof presented above is alled the Aubin{Nitshe duality argument.
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6 Finite di�erene approximation of evolutionary prob-lemsIn Setions 3{5 we onsidered numerial methods for the approximate solution of elliptiequations. This setion is devoted to �nite di�erene methods for time-dependent problemsdesribed by paraboli and hyperboli equations.6.1 Finite di�erene methods for paraboli equationsLet 
 be a bounded open set in Rn , n � 1, with boundary � = �
, and let T > 0. InQ = 
 � (0; T ℄, we onsider the initial boundary value problem for the unknown funtionu(x; t), x 2 
, t 2 (0; T ℄ :�u�t � nXi;j=1 ��xj (aij(x; t) �u�xi ) + nXi=1 bi(x; t) �u�xi + (x; t)u = f(x; t); x 2 
; t 2 (0; T ℄; (6.1)u(x; t) = 0; x 2 �; t 2 [0; T ℄; (6.2)u(x; 0) = u0(x); x 2 �
; (6.3)where, for the sake of onsisteny between the boundary ondition (6.2) and the initialondition (6.3), we shall assume that the initial datum u0 satis�es: u0(x) = 0, x 2 �:Suppose that u0 2 L2(
), and that there exists a positive onstant ~ suh thatnXi;j=1 aij(x; t)�i�j � ~ nXi=1 �2i ; 8� = (�1; : : : ; �n) 2 Rn ; 8x 2 �
; t 2 [0; T ℄: (6.4)We shall also assume thataij 2 C1( �Q); bi 2 C1( �Q); i; j = 1; : : : ; n; 2 C0( �Q); f 2 L2(Q);and that (x; t)� 12 nXi=1 �bi�xi (x; t) � 0; (x; t) 2 �Q; (6.5)similarly as in the ellipti ase.A partial di�erential equation of the form (6.1) is alled a paraboli equation (of seondorder). Simple examples of paraboli equations are the heat equation�u�t = �u69



and the onvetion-di�usion equation�u�t ��u+ nXi=1 bi �u�xi = 0:The proof of the existene of a unique solution of a paraboli initial boundary value problemis more tehnial than the proof of the orresponding result for an ellipti boundary valueproblem and so it is omitted. Instead, we shall assume that (6.1){(6.3) has a unique solu-tion and we shall investigate its deay in t (t typially signi�es time), and the question ofontinuous dependene of the solution on the initial datum, u0, and the foring funtion, f .We reall that, for v; w 2 L2(
); the inner produt (u; v) and the norm kvkL2(
) are de�nedby (v; w) = Z
 v(x)w(x) dx;kvkL2(
) = (v; v)1=2:Taking the inner produt of (6.1) with u, noting that u(x; t) = 0, x 2 �, integrating by parts,and employing (6.4) and (6.5),��u�t (�; t); u(�; t)�+ ~ nXi=1  �u�xi (�; t)2L2(
) � (f(�; t); u(�; t)):Noting that ��u�t (�; t); u(�; t)� = 12 ddt ku(�; t)k2L2(
) ;and using the Poinar�e{Friedrihs inequality (1.1), we obtain12 ddt ku(�; t)k2L2(
) + ~? ku(�; t)k2L2(
) � (f(�; t); u(�; t)):Let K = ~=?; then, by the Cauhy{Shwarz inequality,12 ddt ku(�; t)k2L2(
) +K ku(�; t)k2L2(
) � kf(�; t)kL2(
) ku(�; t)kL2(
)� 12K kf(�; t)k2L2(
) + K2 ku(�; t)k2L2(
) :Thene, ddt ku(�; t)k2L2(
) +K ku(�; t)k2L2(
) � 1K kf(�; t)k2L2(
) :70



Multiplying both sides by eKt,ddt �eKt ku(�; t)k2L2(
)� � eKtK kf(�; t)k2L2(
) :Integrating from 0 to t,eKt ku(�; t)k2L2(
) � ku0k2L2(
) � 1K Z t0 eK� kf(�; �)k2L2(
) d�:Hene ku(�; t)k2L2(
) � e�Kt ku0k2L2(
) + 1K Z t0 e�K(t��) kf(�; �)k2L2(
) d�: (6.6)Assuming that (6.1){(6.3) has a solution, (6.6) implies that the solution is unique. Indeed,if u1 and u2 are solutions of (6.1){(6.3), then u = u1�u2 satis�es (6.1){(6.3) with f � 0 andu0 � 0; therefore, by (6.6), u � 0, i.e. u1 � u2.Let us also look at the speial ase when f � 0 in (6.1). This orresponds to onsidering theevolution of the solution from the initial datum, u0, in the absene of external fores. In thisase (6.6) yields ku(�; t)k2L2(
) � e�Kt ku0k2L2(
) ; t � 0: (6.7)In other words, the energy, 12 ku(�; t)k2L2(
) deays (dissipates) exponentially fast. Sine K =~=?, we have ku(�; t)k2L2(
) � e�~t=? ku0k2L2(
) ; t � 0; (6.8)and we dedue that the rate of dissipation depends on the lower bound, ~, on the di�usionoeÆients (i.e. the smaller ~, the slower the deay of the energy).In the next setion we onsider some simple �nite di�erene shemes for the numerial so-lution of paraboli initial boundary value problems. Analogous results an be proved whenthe spatial disretisation is based on the �nite di�erene method. In order to simplify thepresentation, we restrit ourselves to the heat equation in one spae dimension.6.1.1 Expliit and impliit shemesWe onsider the following simple model problem for the heat equation in one spae dimension.Let Q = 
� (0; T ℄, where 
 = (0; 1), T > 0;�nd u(x; t) suh that�u�t = �2u�x2 + f(x; t); x 2 (0; 1); t 2 (0; T ℄;u(0; t) = 0; u(1; t) = 0; t 2 [0; T ℄; (6.9)u(x; 0) = u0(x); x 2 [0; 1℄:71
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Figure 15: Four-point stenil for the expliit sheme.We desribe two shemes for the numerial solution of (6.9). They both use the same dis-retisation of �2u=�x2, but while the �rst sheme (alled the expliit sheme) employs aforward di�erene in t to approximate �u=�t, the seond (alled the impliit sheme) uses abakward di�erene in t.The expliit sheme. We begin by onstruting a mesh on �Q = [0; 1℄�[0; T ℄: Let h = 1=Nbe the mesh-size in the x-diretion and let �t = T=M be the mesh-size in the t-diretion;here N and M are two integers, N � 2, M � 1. We de�ne the uniform mesh �Q�th on �Q by�Q�th = f(xj; tm) : xj = jh; 0 � j � N ; tm = m ��t; 0 � m �Mg:On �Q�th we approximate (6.9) by the following �nite di�erene sheme:�nd Umj ; 0 � j � N; 0 � m �M; suh thatUm+1j � Umj�t = D+xD�x Umj + f(xj; tm); 1 � j � N � 1; 0 � m �M � 1;Um0 = 0; UmN = 0; 0 � m �M; (6.10)U0j = u0(xj); 0 � j � N;where Umj represents the approximation of u(xj; tm), the value of u at the mesh-point (xj; tm).Clearly, (6.10) is a 4-point di�erene sheme involving the values of U at the mesh-points(xj�1; tm); (xj; tm); (xj+1; tm); (xj; tm+1);shown in Fig. 15. The sheme (6.10) is applied as follows. First we set m = 0. SineU0j�1, U0j , U0j+1 are given by the initial ondition U0j = u0(xj), j = 0; : : : ; N , the values U1j ,j = 0; : : : ; N , an be omputed from (6.10):U1j = U0j + �th2 (U0j+1 � 2U0j + U0j�1) + �t � f(xj; t0); j = 1; : : : ; N � 1;U10 = 0; U1N = 0; 72



the values of U on the time-level t = t1 = 1 � �t an be alulated expliitly from U0j ,j = 0; : : : ; N , and hene the terminology expliit sheme.Suppose we have already alulated Umj , j = 0; : : : ; N , the values of U on time level tm =m � �t. The values of U on the next time level tm+1 = (m + 1) ��t an be obtained from(6.10): Um+1j = Umj + �th2 (Umj+1 � 2Umj + Umj�1) + �t � f(xj; tm); j = 1; : : : ; N � 1;Um+10 = 0 Um+1N = 0;for any m, 0 � m �M � 1.The impliit sheme. Alternatively, one an approximate the time derivative by a bak-ward di�erene, whih gives rise to the following impliit sheme:�nd Umj ; 0 � j � N; 0 � m �M; suh thatUm+1j � Umj�t = D+xD�x Um+1j + f(xj; tm+1); 1 � j � N � 1; 0 � m � M � 1;Um+10 = 0; Um+1N = 0; 0 � m �M � 1; (6.11)U0j = u0(xj); 0 � j � N;where Umj represents the approximation of u(xj; tm), the value of u at the mesh-point (xj; tm).Equivalently, (6.11) an be written��th2 Um+1j+1 + �2�th2 + 1�Um+1j � �th2 Um+1j�1 = Umj +�t � f(xj; tm+1); (6.12)1 � j � N � 1;Um+10 = 0; Um+1N = 0;for eah m, 0 � m �M � 1.This is, again, a 4-point �nite di�erene sheme, but it involves the values of U at themesh-points (xj�1; tm+1); (xj; tm+1); (xj+1; tm+1); (xj; tm);shown in Fig. 16. The impliit sheme (6.12) is implemented as follows. First we set m = 0;then, (6.12) is a system of linear equations with a tridiagonal matrix, and the right-handside an be omputed from the initial datum U0j = u0(xj), and the foring funtion f(xj; t1).Suppose we have already omputed Umj , j = 0; : : : ; N , the values of U on time level tm =m ��t: The values of U on the next time level tm+1 = (m + 1) ��t are obtained by solvingthe system of linear equations (6.12). 73
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(xj; tm)Figure 16: Four-point stenil for the impliit sheme.6.1.2 Stability of expliit and impliit shemesWe shall study the stability of the shemes (6.10) and (6.11) simultaneously, by embeddingthem into a one-parameter family of �nite di�erene shemes:�nd Umj ; 0 � j � N; 0 � m �M; suh thatUm+1j � Umj�t = D+xD�x (�Um+1j + (1� �)Umj ) + f(xj; tm+�); 1 � j � N � 1;0 � m �M � 1;Um0 = 0; UmN = 0; 0 � m �M; (6.13)U0j = u0(xj); 0 � j � N;where 0 � � � 1. Reall that (V;W )h = N�1Xj=1 hVjWj;kV kh = (V; V )1=2h :Taking the inner produt of (6.13) withUm+� := �Um+1 + (1� �)Um;we get �Um+1 � Um�t ; Um+��h � (D+xD�x Um+�; Um+�)h = (fm+�; Um+�)h;where fm+�j = fm+�(xj) = f(xj; tm+�). LetjjV ℄jh =  NXj=1 h jVjj2!1=2 :74



Noting that Um+�0 = 0, Um+�N = 0, it follows from Lemma 3.1 that�(D+xD�x Um+�; Um+�)h = ����D�x Um+����2h :Thus, �Um+1 � Um�t ; Um+��h + ����D�x Um+����2h = (fm+�; Um+�)h:Sine Um+� = �t(� � 12)Um+1 � Um�t + Um+1 + Um2 ;it follows that�t(� � 12) Um+1 � Um�t 2h + kUm+1k2h � kUmk2h2�t + ����D�x Um+����2h = (fm+�; Um+�)h: (6.14)Suppose � 2 [1=2; 1℄; then, � � 1=2 � 0, and thereforekUm+1k2h � kUmk2h2�t + ����D�x Um+����2h � (fm+�; Um+�)h� fm+�h Um+�h :Aording to the disrete Poinar�e{Friedrihs inequality (3.9),Um+�2h � 12 ����D�x Um+����2h :Thus kUm+1k2h � kUmk2h2�t + 2 Um+�2h � 12 fm+�2h + 12 Um+�2h ;so that Um+12h � kUmk2h +�t fm+�2h :Summing through m, Uk2h � U02h + k�1Xm=0�t fm+�2h ; (6.15)for all k, 1 � k �M .The inequality (6.15) an be thought of as the disrete version of (6.6). If follows from (6.15)that max1�k�M Uk2h � U02h + M�1Xm=0 �t fm+�2h ;75



i.e. max1�k�M Ukh � "U02h + M�1Xm=0 �t fm+�2h#1=2 ; (6.16)whih expresses the ontinuous dependene of the solution of the �nite di�erene sheme(6.13) on the initial data and the right-hand side. This property is alled stability.Thus we have proved that for � 2 [1=2; 1℄, the sheme (6.13) is stable without any limitationson the time step in terms of h. In other words, the sheme (6.13) is unonditionally stablefor � 2 [1=2; 1℄.Now let us onsider the ase � 2 [0; 1=2). First suppose that f � 0: Then, aording to(6.14), kUm+1k2h � kUmk2h2�t + ����D�x Um+����2h = �t(12 � �) Um+1 � Um�t 2h : (6.17)Realling (6.13) and the fat that f � 0, it follows thatUm+1 � Um�t = D+xD�x Um+�:Moreover, a simple alulation based on the inequality (a� b)2 � 2a2 + 2b2 shows thatD+xD�x Um+�2h � 4h2 ����D�x Um+����2h : (6.18)Thus, (6.17) implies thatkUm+1k2h � kUmk2h2�t + ����D�x Um+����2h � 4�th2 (12 � �) ����D�x Um+����2h ;i.e. kUm+1k2h � kUmk2h2�t + �1� 2�t(1� 2�)h2 � ����D�x Um+����2h � 0:Let us assume that �t � h22(1� 2�) ; � 2 [0; 1=2); (6.19)then, Um+12h � kUmk2h ; m = 0; : : : ;M � 1;and hene, max1�k�M Ukh � U0h :76



Thus, again, the sheme is stable, but only if (6.19) holds. In other words, for � 2 [0; 1=2)the sheme (6.13) is onditionally stable, the ondition being (6.19) (when f � 0).Let us suppose that � 2 [0; 1=2), as before, but onsider the general situation when f isnot identially zero. We shall prove that (6.13) is still only onditionally stable, and, inpartiular, that the expliit sheme, orresponding to � = 0, is onditionally stable.Realling (6.14),kUm+1k2h � kUmk2h2�t + ����D�x Um+����2h � fm+�h Um+�h +�t(12 � �) Um+1 � Um�t 2h : (6.20)By (6.13), for any � 2 (0; 1),Um+1 � Um�t 2h = D+xD�x Um+� + fm+�2h� �D+xD�x Um+�h + fm+�h�2� (1 + �) D+xD�x Um+�2h + (1 + ��1) fm+�2h� (1 + �) 4h2 ����D�x Um+����2h + (1 + ��1) fm+�2h ;where (6.18) has been applied in the last line. Substituting into (6.20),kUm+1k2h � kUmk2h2�t + �1��t(12 � �) � 4(1 + �)h2 � ����D�x Um+����2h� fm+�h Um+�h +�t(12 � �)(1 + ��1) fm+�2h : (6.21)Aording to the disrete Poinar�e{Friedrihs inequality (3.9),Um+�2h � 12 ����D�x Um+����2h ;and therefore, fm+�h Um+�h � 18�2 fm+�2h + 2�2 Um+�2h� 18�2 fm+�2h + �2 ����D�x Um+����2h : (6.22)Substituting (6.22) into (6.21),kUm+1k2h � kUmk2h2�t + �1��t2(1� 2�)(1 + �)h2 � �2� ����D�x Um+����2h� 18�2 fm+�2h +�t(12 � �)(1 + ��1) fm+�2h :77



Let us suppose that �t � h22(1� 2�)(1� �); � 2 [0; 1=2);where � is a �xed real number, � 2 (0; 1). Then1��t 2(1� 2�)(1 + �)h2 � �2 � 0;so that Um+12h � kUmk2h + �t4�2 fm+�2h +�t2(1� 2�)(1 + ��1) fm+�2h :Letting � = 1=(4�2) +�t(1� 2�)(1 + ��1), upon summation through all m this implies thatmax1�k�M Uk2h � U02h + � M�1Xm=0 �t fm+�2h :Taking the square root of both sides, we dedue that for � 2 [0; 1=2) the sheme (6.13) isonditionally stable in the sense thatmax1�k�M Ukh � "U02h + � M�1Xm=0 �t fm+�2h#1=2 ; (6.23)provided �t � h22(1� 2�)(1� �); 0 < � < 1: (6.24)To summarise: when � 2 [1=2; 1℄, the di�erene sheme (6.13) is unonditionally stable.In the partiular the impliit sheme, orresponding to � = 1, and the Crank{Niolsonsheme, orresponding to � = 1=2, are both unonditionally stable, and (6.16) holds. When� 2 [0; 1=2), the sheme (6.13) is onditionally stable, subjet to the time step limitation(6.24). In partiular the expliit sheme, orresponding to � = 0; is only onditionally stable.6.1.3 Error analysis of di�erene shemes for the heat equationIn this setion we investigate the auray of the �nite di�erene sheme (6.13) for thenumerial solution of the initial boundary value problem (6.9).We de�ne the trunation error of the sheme (6.13) by'm+�j = u(xj; tm+1)� u(xj; tm)�t�D+xD�x [�u(xj; tm+1) + (1� �)u(xj; tm)℄� f(xj; tm+�); 1 � j � N � 1;0 � m �M � 1;78



and the global error by emj = u(xj; tm)� Umj :It is easily seen that emj satis�es the following �nite di�erene sheme:em+1j � emj�t �D+xD�x [�em+1j + (1� �)emj ℄ = 'm+�j ; 1 � j � N � 1;0 � m �M � 1:em0 = 0; emN = 0; 0 � m �M;e0j = 0; 0 � j � N:Aording to the stability results proved in Setion 6.1.2,max1�m�M kum � Umkh � "M�1Xk=0 �t 'k+�2h#1=2 ; � 2 [1=2; 1℄; (6.25)by (6.16), and max1�m�M kum � Umkh � "� M�1Xk=0 �t 'k+�2h#1=2 ; � 2 [0; 1=2); (6.26)provided �t � h22(1� 2�)(1� �); 0 < � < 1; � 2 [0; 1=2):In either ase we have to estimate 'm+�h. Using the di�erential equation, 'm+�j an bewritten as 'm+�j = �u(xj; tm+1)� u(xj; tm)�t � �u�t (xj; tm+�)�+ ��2u�x2 (xj; tm+�)�D+xD�x (�u(xj; tm+1) + (1� �)u(xj; tm))� : (6.27)In order to estimate the size of the trunation error, 'm+�j , we expand it into a Taylor seriesabout the point (xj; tm+1=2).um+1j = "u+ �t2 �u�t + 12 ��t2 �2 �2u�t2 + 16 ��t2 �3 �3u�t3 + : : :#m+1=2jumj = "u� �t2 �u�t + 12 ��t2 �2 �2u�t2 � 16 ��t2 �3 �3u�t3 + : : :#m+1=2j :79



If we subtrat the seond of these expansions from the �rst, all the even-numbered termswill anel, and we obtainu(xj; tm+1)� u(xj; tm)�t = ��u�t + 124(�t)2�3u�t3 + : : :�m+1=2j : (6.28)Also, sine D+xD�x u(xj; tm+1) = ��2u�x2 + 112h2�4u�x4 + 26!h4�6u�x6 + : : :�m+1j ;expanding the right-hand side about the point (xj; tm+1=2),D+xD�x u(xj; tm+1) = ��2u�x2 + h212 �4u�x4 + 2h46! �6u�x6 + : : :�m+1=2j+ �t2 � �3u�x2�t + h212 �5u�x4�t + : : :�m+1=2j+ 12 ��t2 �2 � �4u�x2�t2 + : : :�m+1=2j :There is a similar expansion for D+xD�x u(xj; tm); ombining these we obtain:D+xD�x [�u(xj; tm+1) + (1� �)u(xj; tm)℄ = ��2u�x2 + h212 �4u�x4 + 2h46! �6u�x6 + : : :�m+1=2j+ (� � 12)�t � �3u�x2�t + h212 �5u�x4�t + : : :�m+1=2j (6.29)+ 18(�t)2 � �4u�x2�t2 + : : :�m+1=2j :Substituting (6.28) and (6.29) into (6.27):'m+�j = �(12 � �)�t �3u�x2�t � h212 �4u�x4 �m+1=2j+ (�t)2 � 124 �3u�t3 � 18 �4u�x2�t2 �m+1=2j+ h2 � 112(12 � �)�t �5u�x4�t � 26!h2�6u�x6 + : : :�m+1=2j+ f(xj; tm+1=2)� f(xj; tm+�):Thene ��'m+�j �� � h212M4x + �t224 (M3t + 3M2x2t) +H:O:T:; � = 12 ; (6.30)80



��'m+�j �� � ��12 � ����t(M2t + 2M2x1t) + h212M4x +H:O:T:; � 6= 12 ; (6.31)where Mkxlt = max(x;t)2 �Q ���� �k+l�xk�tlu(x; t)���� :Substituting (6.30) into (6.25) and (6.31) into (6.25) or (6.26) we obtain the following errorbounds: max1�m�M kum � Umkh � C1(h2 +�t2); � = 12 ; (6.32)where C1 is a positive onstant, independent of h and �t;max1�m�M kum � Umkh � C2(h2 +�t); � 2 (1=2; 1℄; (6.33)where C2 is a positive onstant, independent of h and �t. Moreover,max1�m�M kum � Umkh � C3(h2 +�t); � 2 [0; 1=2); (6.34)where C3 = (�)1=2 � C2, provided that�t � h22(1� 2�)(1� �); � 2 (0; 1); � 2 [0; 1=2):Thus we dedue that the Crank{Niolson sheme (� = 1=2) onverges in the norm k�kh un-onditionally, with error O(h2+(�t)2): For � 2 (1=2; 1℄ the sheme onverges unonditionallywith error O(h2+�t): For � 2 [0; 1=2) the di�erene sheme onverges with error O(h2+�t),but only onditionally.The stability and onvergene results presented here an be extended to paraboli equationsin more than one spae dimension, but the exposition of this theory is beyond the sope ofthese notes.6.2 Finite di�erene methods for hyperboli equationsLet 
 be a bounded open set in Rn , n � 1, with boundary � = �
, and let T > 0. InQ = 
� (0; T ℄, we onsider the initial boundary value problem�u�t + nXi=1 bi(x) � �u�xi + (x; t)u = f(x; t); x 2 
; t 2 (0; T ℄; (6.35)u(x; t) = 0; x 2 ��; t 2 [0; T ℄; (6.36)u(x; 0) = u0(x) x 2 �
; (6.37)81
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��where �� = fx 2 � : b(x) � �(x) < 0g;b = (b1; : : : ; bn) and �(x) denotes the unit outward normal to � at x 2 �.�� will be alled the inow boundary. Its omplement, �+ = �n��, will be referred toas the outow boundary. It is important to note that, unlike paraboli equations where aboundary ondition is spei�ed on the whole of � � [0; T ℄, in a hyperboli initial boundaryvalue problem the boundary ondition is only imposed on part of the boundary, namely on�� � [0; T ℄, or else the problem may have no solution.We shall assume that bi 2 C1(�
); i = 1; : : : ; n; (6.38a) 2 C( �Q); f 2 L2(Q); (6.38b)u0 2 L2(
): (6.38)In order to ensure onsisteny between the initial and the boundary ondition, we shallsuppose that u0(x) = 0, x 2 ��.The existene of a unique solution (at least for , f 2 C1( �Q), u0 2 C1(�
)) an be shownusing the method of harateristis. More generally, for bi, , f , u0, obeying the smoothness82



requirements of (6.38), a unique solution still exists, but the proof of this result is beyond thesope of these notes. Let us, instead, onsider the behaviour of the solution of (6.35){(6.37)in time.We make the additional hypothesis:(x; t)� 12 nXi=1 �bi�xi (x) � 0; x 2 �
; t 2 [0; T ℄: (6.39)Taking the inner produt of (6.35) with u in L2(
), we obtain:��u�t ; u� +  (�; t)� 12 nXi=1 �bi�xi (�); u2!+ 12 Z�+ " nXi=1 bi(x)�i(x)# u2(x; t) ds(x) = (f; u); (6.40)where �(x) = (�1(x); : : : ; �n(x)) is the unit outward normal vetor to � at x 2 �. By virtueof (6.39) and noting that��u�t ; u� = Z
 �u�t (x; t) � u(x; t) dx= Z
 12 ��tu2(x; t) dx = 12 ddt Z
 u2(x; t) dx= 12 ddt ku(�; t)k2 ;it follows from (6.40) that12 ddt ku(�; t)k2 + 12 Z�+ " nXi=1 bi(x)�i(x)# u2(x; t) ds(x) � (f; u):By the Cauhy{Shwarz inequality,(f; u) � kf(�; t)k � ku(�; t)k� 12 kf(�; t)k2 + 12 ku(�; t)k2 ;and therefore,ddt ku(�; t)k2 + Z�+ " nXi=1 bi(x)�i(x)# u2(x; t) ds(x)� ku(�; t)k2 � kf(�; t)k2 ; t 2 [0; T ℄:Multiplying both sides by e�t, this an be rewritten as follows:ddte�t ku(�; t)k2 + e�t Z�+ " nXi=1 bi(x)�i(x)# u2(x; t) ds � e�t kf(�; t)k2 ; t 2 [0; T ℄:83



Integrating this inequality with respet to t yieldse�t ku(�; t)k2 + Z t0 e�� Z�+ " nXi=1 bi(x)�i(x)# u2(x; �) ds(x) d�� ku0k2 + Z t0 e�� kf(�; �)k2 d�; t 2 [0; T ℄:Hene ku(�; t)k2 + Z t0 et�� Z�+ " nXi=1 bi(x)�i(x)# u2(x; �) ds(x) d�� et ku0k2 + Z t0 et�� kf(�; �)k2 d�; t 2 [0; T ℄: (6.41)This, so alled, energy inequality expresses the ontinuous dependene of the solution to(6.35){(6.37) on the data. In partiular it an be used to prove the uniqueness of thesolution. Indeed, if u1 and u2 are solutions of (6.35){(6.37), then u := u1 � u2 also solves(6.35){(6.37), with f � 0 and u0 � 0. Thus, by (6.41), ku(�; t)k = 0, t 2 [0; T ℄ and thereforeu � 0, i.e. u1 � u2.Let us onsider a partiularly important ase when � 0; f � 0; and div b = nXi=1 �bi�xi � 0;where b(x) = (b1(x); : : : ; bn(x)): Then, by virtue of (6.40),12 ddt ku(�; t)k2 + 12 Z�+ [b(x) � �(x)℄ u2(x; t) ds(x) = 0;and therefore, ku(�; t)k2 + Z t0 Z�+ [b(x) � �(x)℄ u2(x; �) ds(x) d� = ku0k2 ; (6.42)whih expresses the onservation of energy in the physial system modelled by (6.35){(6.37).6.2.1 Expliit �nite di�erene shemeIn this setion we desribe a simple expliit �nite di�erene sheme for the numerial solutionof the onstant-oeÆient hyperboli equation in one spae dimension:�u�t + b�u�x = f(x; t); x 2 (0; 1); t 2 (0; T ℄; (6.43)84



subjet to the boundary and initial onditionsu(x; t) = 0; x 2 ��; t 2 [0; T ℄; (6.44a)u(x; 0) = u0(x); x 2 [0; 1℄: (6.44b)If b > 0 then �� = f0g, and if b < 0 then �� = f1g. Let us assume, for example, that b > 0.Then the appropriate boundary ondition isu(0; t) = 0; t 2 [0; T ℄: (6.45)To onstrut a �nite di�erene approximation of (6.43){(6.45) let h = 1=N be the mesh-sizein the x-diretion and �t = T=M the mesh-size in the time-diretion, t. Let us also de�nexj = jh; j = 0; : : : ; N; tm = m ��t; m = 0; : : : ;M:At the mesh-point (xj; tm), (6.43) is approximated by the expliit �nite di�erene shemeUm+1j � Umj�t + b �D�x Umj = f(xj; tm); j = 1; : : : ; N; (6.46)m = 0; : : : ;M � 1;Um0 = 0; m = 0; : : : ;M; (6.47)U0j = u0(xj); j = 0; : : : ; N: (6.48)Equivalently, Um+1j = (1� �)Umj + �Umj�1 +�tf(xj; tm); j = 1; : : : ; N;m = 0; : : : ;M � 1;Um0 = 0; m = 0; : : : ;M;U0j = u0(xj); j = 0; : : : ; N;where � = b�th ;� is alled the Courant number.Suppose that 0 � � � 1; then,��Um+1j �� � (1� �) ��Umj ��+ � ��Umj�1��+�t jf(xj; tm)j� (1� �) max0�j�N ��Umj ��+ � max1�j�N+1 ��Umj�1��+�t max0�j�N jf(xj; tm)j= max0�j�N ��Umj ��+�t max0�j�N jf(xj; tm)j :85



Hene max0�j�N ��Um+1j �� � max0�j�N ��Umj �� +�t max0�j�N jf(xj; tm)j :Let us de�ne the mesh-dependent normkUk1 = max0�j�N jUjj ;then, Um+11 � kUmk1 +�t kf(�; tm)k1 ; m = 0; : : : ;M � 1:Summing through m, we getmax1�k�M Uk1 � U01 + M�1Xm=0 �t kf(�; tm)k1 ;whih expresses the stability of the �nite di�erene sheme (6.46){(6.48) under the ondition0 � � = b�th � 1:Thus we have proved that (6.46){(6.48) is onditionally stable in the k�k1 norm, the onditionbeing that the Courant number, �, is in the interval [0; 1℄.It is possible to show that the sheme (6.46){(6.48) is also stable in the mesh-dependentL2-norm, jj�℄jh. Reall that jjV ℄j2h = NXi=1 hV 2i :The assoiated inner produt is (V;W ℄h = NXi=1 hViWi:Sine Umj = Umj + Umj�12 + Umj � Umj�12 ;and Um0 = 0, it follows that(Um; D�x Um℄h = NXj=1 hUmj Umj � Umj�1h= 12 NXj=1f(Umj )2 � (Umj�1)2g+ h2 NXj=1 h�Umj � Umj�1h �2 (6.49)= 12(UmN )2 + h2 ����D�x Um���2h :86



In addition, sineUmj = Um+1j + Umj2 � Um+1j � Umj2 ; m = 0; : : : ;M � 1;we have that�Um+1 � Um�t ; Um�h = 12�t �����Um+1���2h � jjUm℄j2h� (6.50)��t2 ��������Um+1 � Um�t �����2h ; m = 0; : : : ;M � 1: (6.51)Thus, taking the (�; �℄h-inner produt of (6.46) with Um and using (6.49) and (6.51),����Um+1���2h + �t � b(UmN )2 + bh�t ����D�x Um���2h � jjUm℄j2h� �t2 ��������Um+1 � Um�t �����2h = 2�t(fm; Um℄h; m = 0; : : : ;M � 1: (6.52)First suppose that f � 0; then, Um+1 � Um�t = �b �D�x Um;so that����Um+1���2h +�t � b jUmN j2 + bh�t(1� �) ����D�x Um���2h = jjUm℄j2h ; m = 0; : : : ;M � 1:Summing through m,����Uk���2h + k�1Xm=0�t � b jUmN j2 + bh(1� �) k�1Xm=0�t ����D�x Um���2h = ����U0���2h ; k = 1; : : : ;M;(6.53)whih proves the stability of the sheme in the ase when f � 0 under the assumption that0 � � = b�th � 1:In partiular, if � = 1, we have that����Uk���2h + k�1Xm=0�t � b jUmN j2 = ����U0���2h ; k = 1; : : : ;M;whih is the disrete version of the identity (6.41), and expresses onservation of energy inthe disrete sense. This is equality is also trivially valid when � = 0 (i.e. when b = 0).More generally, for 0 � � � 1, (6.53) implies����Uk���2h + k�1Xm=0�t � b jUmN j2 � ����U0���2h ; k = 1; : : : ;M;87



with strit inequality when 0 < � < 1. Therefore, when 0 < � < 1 the disrete energydissipates even through, as we have shown in (6.42), the ontinuous ounterpart of thedisrete energy is onserved. This feature of the �rst-order upwind sheme is also quiteevident in numerial experiments: as time evolves, the numerial solution will be seen to besmeared in omparison with the analytial solution.Now let us onsider the question of stability in the jj�℄jh-norm in the general ase of f 6� 0:Sine��������Um+1 � Um�t �����2h = ����fm � bD�x Um���2h � fjjfm℄jh + b ����D�x Um���hg2� �1 + 1�0� jjfm℄j2h + (1 + �0)b2 ����D�x Um���2h ; �0 > 0;and (fm; Um℄h � jjfm℄jh jjUm℄jh � 12 jjfm℄j2h + 12 jjUm℄j2h ;it follows from (6.52) that����Um+1���2h +�t � b jUmn j2 + bh�t �1� (1 + �0)b�th � ����D�x Um���2h� �t ��1 + 1�0��t+ 1� jjfm℄j2h + (1 + �t) jjUm℄j2h :Letting � = 1� 1=(1 + �0) 2 (0; 1), and assuming0 � � = b�th � 1� �;we have, for m = 0; : : : ;M � 1,����Um+1���2h +�t � b jUmN j2 � jjUm℄j2h +�t�1 + �t� � jjfm℄j2h +�t jjUm℄j2h :Upon summation,����Uk���2h + k�1Xm=0�t � b jUmN j2! � ����U0���2h + �1 + �t� � k�1Xm=0�t jjfm℄j2h + k�1Xm=0�t jjUm℄j2h :(6.54)for k = 1; : : : ;M: The next lemma is easily proved by indution.Lemma 6.1 Let (ak), (bk), (k) and (dk) be four sequenes of non-negative numbers suhthat the sequene (k) is non-dereasing andak + bk � k + k�1Xm=0 dmam; k � 1; a0 + b0 � 0:88



Then ak + bk � k exp k�1Xm=0 dm! ; k � 1:Applying this lemma to (6.54) withak = ����Uk���2h ; k � 0;bk = k�1Xm=0�t � b jUmN j2 ; k � 1; b0 = 0;k = ����U0���2h + �1 + �t� � k�1Xm=0�t jjfm℄j2h ; k � 1; 0 = ����U0���2h ;dk = �t; k = 1; 2; : : : ;M;we obtain,����Uk���2h + k�1Xm=0�t � b � jUmN j2 � etk  ����U0���2h + �1 + �t� � k�1Xm=0�t jjfm℄j2h! ; k = 1; : : : ;M;and hene stability:max1�k�M ����Uk���2h + k�1Xm=0�t � b � jUmN j2! � eT  ����U0���2h + �1 + �t� �M�1Xm=0 �t jjfm℄j2h! : (6.55)An error estimate for the di�erene sheme (6.46){(6.48) is easily derived from stability.We de�ne the global error, e, and the trunation error, ', byemj = u(xj; tm)� Umj ;'mj = u(xj; tm+1)� u(xj; tm)�t � bD�x u(xj; tm)� f(xj; tm):It is easily seen thatem+1j � emj�t + bD�x emj = 'mj ; j = 1; : : : ; N; m = 0; : : : ;M � 1;em0 = 0; m = 0; : : : ;M;e0j = 0; j = 0; : : : ; N:By virtue of the stability inequality established in the �rst part of this setion,max1�m�M kemk1 � M�1Xk=0 �t k'mk1 : (6.56)89



By Taylor series expansion of 'mj about the point (xj; tm),'mj = 12�t�2u�t2 (xj; �m) + 12bh�2u�x2 (�j; tm); �m 2 (tm; tm+1); �j 2 (xj�1; xj);so that ��'mj �� � 12(�tM2t + bhM2x);where Mkxlt = max(x;t)2 �Q ���� �k+l�xk�tl (x; t)���� :De�ning M = max(M2t;M2x), we have��'mj �� � 12M(�t + bh) (= O(h+�t)): (6.57)Thus, by (6.56), max1�m�M kum � Umk1 � 12TM(�t + bh);so the sheme (6.46){(6.48) is �rst-order onvergent.Analogously, using the stability result (6.54) in the disrete L2-norm jj�℄jh, (6.57) implies thatmax1�m�M kum � Umkh � ?� � (�t+ bh);where ?� = 12eT=2(1 + T=�)1=2T 1=2M .The analysis presented here an be extended to linear �rst-order hyperboli equations withvariable oeÆients and to hyperboli problems in more than one spae-dimension, as wellas to di�erene shemes on non-uniform meshes.
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