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Université de Genève, Switzerland
E-mail: Ernst.Hairer@math.unige.ch

Christian Lubich
Mathematisches Institut,

Universität Tübingen, Germany
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The subject of geometric numerical integration deals with numerical integra-
tors that preserve geometric properties of the flow of a differential equation,
and it explains how structure preservation leads to improved long-time be-
haviour. This article illustrates concepts and results of geometric numerical
integration on the important example of the Störmer–Verlet method. It thus
presents a cross-section of the recent monograph by the authors, enriched by
some additional material.

After an introduction to the Newton–Störmer–Verlet–leapfrog method and
its various interpretations, there follows a discussion of geometric properties:
reversibility, symplecticity, volume preservation, and conservation of first in-
tegrals. The extension to Hamiltonian systems on manifolds is also described.
The theoretical foundation relies on a backward error analysis, which trans-
lates the geometric properties of the method into the structure of a modified
differential equation, whose flow is nearly identical to the numerical method.
Combined with results from perturbation theory, this explains the excellent
long-time behaviour of the method: long-time energy conservation, linear
error growth and preservation of invariant tori in near-integrable systems,
a discrete virial theorem, and preservation of adiabatic invariants.



400 E. Hairer, Ch. Lubich and G. Wanner

CONTENTS

1 The Newton–Störmer–Verlet–leapfrog method 400
2 Geometric properties 408
3 Conservation of first integrals 416
4 Backward error analysis 419
5 Long-time behaviour of numerical solutions 425
6 Constrained Hamiltonian systems 440
7 Geometric integration beyond Störmer–Verlet 447
References 447

1. The Newton–Störmer–Verlet–leapfrog method

We start by considering systems of second-order differential equations

q̈ = f(q), (1.1)

where the right-hand side f(q) does not depend on q̇. Many problems in
astronomy, molecular dynamics, and other areas of physics are of this form.

1.1. Two-step formulation

If we choose a step size h and grid points tn = t0 + nh, the most natural
discretization of (1.1) is

qn+1 − 2qn + qn−1 = h2f(qn), (1.2)

which determines qn+1 whenever qn−1 and qn are known. Geometrically, this
amounts to determining an interpolating parabola which, in the mid-point,
assumes the second derivative prescribed by equation (1.1); see Figure 1.1,
left.
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Figure 1.1. Method (1.2): two-step formulation (left);
one-step formulations (right).
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1.2. One-step formulations

Introducing the velocity q̇ = v turns equation (1.1) into a first-order system
of doubled dimension

q̇ = v, v̇ = f(q), (1.3)

an equation in the so-called phase space. In analogy to this, we introduce
discrete approximations of v and q as follows:

vn =
qn+1 − qn−1

2h
, vn− 1

2
=

qn − qn−1

h
, qn− 1

2
=

qn + qn−1

2
, (1.4)

where some derivatives, in order to preserve second-order and symmetry,
are evaluated on the staggered grid tn− 1

2
, tn+ 1

2
, . . .; see Figure 1.1, right.

Inserting these expressions into the method (or simply looking at the picture)
we see that method (1.2) can now be interpreted as a one-step method Φh :
(qn, vn) �→ (qn+1, vn+1), given by

(A)

vn+ 1
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2 f(qn),

qn+1 = qn + h vn+ 1
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(1.5)

There is a dual variant of the method on the staggered grid (vn− 1
2
, qn− 1

2
) �→

(vn+ 1
2
, qn+ 1

2
) as follows:
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(1.6)

For both arrays (A) and (B), we can concatenate, in the actual step-by-
step procedure, the last line of the previous step with the first line of the
subsequent step. Both schemes then turn into the same method, where the
q-values are evaluated on the original grid, and the v-values are evaluated
on the staggered grid:

vn+ 1
2

= vn− 1
2

+ h f(qn), (1.7)

qn+1 = qn + h vn+ 1
2
.

This is the computationally most economic implementation, and numerically
more stable than (1.2); see Hairer, Nørsett and Wanner (1993, p. 472).
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1.3. Historical remarks

Isn’t that ingenious? I borrowed it straight from Newton. It comes right out of
the Principia, diagram and all. R. Feynman (1965, p. 43)

The above schemes are known in the literature under various names. In
particular, in molecular dynamics they are often called the Verlet method
(Verlet 1967) and have become by far the most widely used integration
scheme in this field.

Another name for this method is the Störmer method, since C. Störmer,
in 1907, used higher-order variants of it for his computations of the motion
of ionized particles in the earth’s magnetic field (aurora borealis); see, e.g.,
Hairer et al. (1993, Section III.10). Sometimes it is also called the Encke
method, because J. F. Encke, around 1860, did extensive calculations for the
perturbation terms of planetary orbits, which obey systems of second-order
differential equations of precisely the form (1.1). Mainly in the context of
partial differential equations of wave propagation, this method is called the
leapfrog method. In yet another context, this formula is the basic method for
the GBS extrapolation scheme, as it was proposed, for the case of equation
(1.1), by Gragg in 1965; see Hairer et al. (1993, p. 294f.). Furthermore, the
scheme (1.7) is equivalent to Nyström’s method of order 2; see Hairer et al.
(1993, p. 362, formula (III.1.13′)).

A curious fact is that Professor Loup Verlet, who later became inter-
ested in the history of science, discovered precisely ‘his’ method in several
places in the classical literature, for example, in the calculations of loga-
rithms and astronomical tables by J. B. Delambre in 1792: this paper was
translated and discussed in McLachlan and Quispel (2002, Appendix C).
Even more spectacular is the finding that the ‘Verlet method’ was used in
Newton’s Principia from 1687 to prove Kepler’s second law. An especially
clear account can be found in Feynman’s Messenger Lecture from 1964; see
Feynman (1965, p. 41), from which we reproduce with pleasure1 two of
Feynman’s original hand drawings.

The argument is as follows: if there are no forces, the body advances
with uniform speed, and the radius vector covers equal areas in equal times,
simply because the two triangles Sun-1-2 and Sun-2-3 have the same base
and common altitudes (see Figure 1.2). If the gravitational force acts at the
midpoint, the planet is deviated in such a way that the top of the second
triangle moves parallel to the sun ray (see Figure 1.3). Hence, the triangle
Sun-2-4 also has the same area. The whole procedure (uniform motion on
half the interval, then a ‘kick’ to the velocity in the direction of the Sun,
and another uniform motion on the second half) is precisely variant (B) of
the Störmer–Verlet scheme.

1 . . . and with permission of the publisher
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Figure 1.2. Uniform motion of a planet
(drawing by R. Feynman).

Figure 1.3. Gravitation acting at mid-point
(drawing by R. Feynman).

1.4. Interpretation as composition method (symplectic Euler)

We can go a step further and split the formulae in the middle of the schemes
(1.5) and (1.6). We then arrive at the schemes (vn, qn) �→ (vn+ 1
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2
)

given by
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(1.8)

as well as the adjoint scheme (vn+ 1
2
, qn+ 1

2
) �→ (vn+1, qn+1) obtained by for-

mally replacing the subscript n by n + 1 and h by −h,
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Both these schemes, in which one variable is used at the old value and the
other at the new value, are called the symplectic Euler method.

We thus see that the above scheme (A) is the composition of the symplectic
Euler schemes (SE1) with (SE2), while the scheme (B) is the composition
of method (SE2) followed by (SE1).

1.5. Interpretation as splitting method

We consider the vector field (v, f(q)) of (1.3) ‘split’ as the sum of two vector
fields (v, 0) and (0, f(q)), as indicated in Figure 1.4. The exact flows ϕ

[1]
t and

ϕ
[2]
t of these two vector fields, which both have a constant time derivative,

are easily obtained:

ϕ
[1]
t :

{
q1 = q0 + t · v0

v1 = v0
and ϕ

[2]
t :

{
q1 = q0

v1 = v0 + t · f(q0).
(1.10)

These formulae are precisely those which build up the formulae (SE1) and
(SE2) above:

(SE2) = ϕ
[2]
h/2 ◦ ϕ

[1]
h/2,

(SE1) = ϕ
[1]
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(1.11)

For the two versions of the Störmer–Verlet method we thus obtain the dia-
grams

(A) = (SE2) ◦ (SE1),

(B) = (SE1) ◦ (SE2),

(A)

y0

y1

ϕ
[2]
h/2 ϕ

[1]
h

ϕ
[2]
h/2 (B)

y0

y1

ϕ
[1]
h/2

ϕ
[2]
h

ϕ
[1]
h/2

(1.12)
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Figure 1.4. The phase space vector field split into two fields.
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or, in explicit formulae,

Φ(A)
h = ϕ

[2]
h/2 ◦ ϕ

[1]
h ◦ ϕ

[2]
h/2,

Φ(B)
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2. (1.13)

This way of composing the flows of split vector fields is often referred to
as Strang splitting, after Strang (1968). For a careful survey of splitting
methods we refer to McLachlan and Quispel (2002).

1.6. Interpretation as variational integrator

A further approach to the Störmer–Verlet method is obtained by discretizing
Hamilton’s principle. This variational principle states that the motion of a
mechanical system between any two positions q(t0) = q0 and q(tN ) = qN is
such that the action integral∫ tN

t0

L
(
q(t), q̇(t)

)
dt is minimized, (1.14)

where L(q, v) is the Lagrangian of the system. Typically, it is the difference
between the kinetic and the potential energy, that is,

L(q, v) = 1

2
vT Mv − U(q), (1.15)

with a symmetric positive definite mass matrix M . When M does not
depend on q, the Euler–Lagrange equations of this variational problem,
d
dt

∂L
∂v = ∂L

∂q , reduce to the second-order differential equation Mq̈ = −∇U(q).
We now approximate q(t) by a piecewise linear function, interpolating grid

values (tn, qn) for n = 0, 1, . . . , N , and the action integral by the trapezoidal
rule. We then require that q1, . . . , qN−1 be such that, instead of (1.14),

N−1∑
n=0

Sh(qn, qn+1) is minimized, (1.16)

where

Sh(qn, qn+1) =
h

2
L

(
qn,

qn+1 − qn

h

)
+

h

2
L

(
qn+1,

qn+1 − qn

h

)
. (1.17)

The requirement that the gradient with respect to qn be zero, yields the
discrete Euler–Lagrange equations

∇QSh(qn−1, qn) + ∇qSh(qn, qn+1) = 0

for n = 1, . . . , N − 1, where the partial gradients ∇q,∇Q refer to Sh =
Sh(q, Q). In the case of the Lagrangian (1.15) these equations reduce to

M(qn+1 − 2qn + qn−1) + h2∇U(qn) = 0, (1.18)
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which is just the two-step formulation (1.2) of the Störmer–Verlet method,
with f(q) = −M−1∇U(q).

This variational interpretation of the Störmer–Verlet method was given
by MacKay (1992). A comprehensive survey of variational integrators can
be found in Marsden and West (2001).

1.7. Numerical example

We choose the Kepler problem

q̈1 = − q1

(q2
1 + q2

2)3/2
, q̈2 = − q2

(q2
1 + q2

2)3/2
. (1.19)

As initial values we take

q1(0) = 1 − e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =

√
1 + e

1 − e
, (1.20)

with e = 0.6. The period of the exact solution is 2π. Figure 1.5 presents
the numerical values of the Störmer–Verlet method for two different step
sizes. These solutions are compared to those of the explicit midpoint rule in
Runge’s one-step formulation; see Hairer, Lubich and Wanner (2002, p. 24,
Figure 1.2. and equation (1.3)). This second method is of the same order and
for the first steps it behaves very similarly to the Störmer–Verlet scheme (the
first step is even identical!), but it deteriorates significantly as the integration
interval increases. The explanation of this strange difference is the subject
of the theories below.

1.8. Extension to general partitioned problems

For the extension of the above formulae to the more general system

q̇ = g(q, v), v̇ = f(q, v), (1.21)

we follow the ideas of De Vogelaere (1956). This is a marvellous paper,
short, clear, elegant, written in one week, submitted for publication – and
never published. We first extend the formulae (1.8) and (1.9), by taking
over the missing arguments from one equation to the other. This gives

(SE1)
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)
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)
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(1.22)

and
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2
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)
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2 f

(
qn+1, vn+ 1

2

)
.

(1.23)
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Figure 1.5. Kepler problem: the dashed line is the exact solution.

In each of these algorithms the derivative evaluations of both formulae are
taken at the same point. The extensions of the Störmer–Verlet schemes are
now obtained by composition, in the same way as in Section 1.4:

(A) = (SE2)◦(SE1)
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)
,
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2
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g
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(
qn+1, vn+ 1

2

))
,

vn+1 = vn+ 1
2

+ h
2 f

(
qn+1, vn+ 1

2

)
,

(1.24)

and, for the dual version,

(B) = (SE1)◦(SE2)
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(1.25)
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Figure 1.6. Störmer–Verlet methods for q̇ = v, v̇ = − sin q − v2/5,
initial values (−1.8, 0.3), step size h = 1.5. Black points indicate
where the vector field is evaluated.

For illustrations see Figure 1.6. The first equation of (1.24) is now an implicit
formula for vn+ 1

2
, the second one for qn+1, while only the last one is explicit.

Such implicit methods were not common in the 1950s and might then not
have delighted journal editors – or programmers:

No detailed example or discussion is given. This will best be done by those
working on these problems in the Brookhaven, Harwell, MURA or CERN group.

De Vogelaere (1956)

2. Geometric properties

We study geometric properties of the flow of differential equations which
are preserved by the Störmer–Verlet method. The properties discussed are
reversibility, symplecticity, and volume preservation.

2.1. Symmetry and reversibility

The Störmer–Verlet method is symmetric with respect to changing the di-
rection of time: in its one-step formulation (1.5), replacing h by −h and
exchanging the subscripts n ↔ n + 1 (i.e., reflecting time at the centre
tn+1/2) gives the same method again. Similarly, the replacements h ↔ −h

and n − 1
2 ↔ n + 1

2 leave the formulation (1.6) unchanged. In terms of the
numerical one-step map Φh : (qn, vn) �→ (qn+1, vn+1), this symmetry can be
stated more formally as

Φh = Φ−1
−h. (2.1)

Such a relation does not hold for the symplectic Euler methods (1.8) and
(1.9), where the above time-reflection transforms (SE1) to (SE2) and vice
versa.
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ρ ρ

Figure 2.1. A reversible system (left) and the symmetric Störmer–
Verlet method (right); the same equation as in Figure 1.6.

The time-symmetry of the Störmer–Verlet method implies an important
geometric property of the numerical map in the phase space, namely re-
versibility, to which we turn next. The importance of this property in nu-
merical analysis was first emphasized by Stoffer (1988).

The system (1.3) has the property that inverting the direction of the initial
velocity does not change the solution trajectory, it just inverts the direction
of motion. The flow ϕt thus satisfies that

ϕt(q, v) = (q̂, v̂) implies ϕt(q̂,−v̂) = (q,−v), (2.2)

and we call it reversible with respect to the reflection ρ : (q, v) �→ (q,−v).
This property is illustrated in Figure 2.1, left. The numerical one-step map
Φh of the Störmer–Verlet method satisfies similarly

Φh(q, v) = (q̂, v̂) implies Φh(q̂,−v̂) = (q,−v), (2.3)

for all q, v and all h; see Figure 2.1, right. This holds because practically all
numerical methods for (1.3), and in particular the Störmer–Verlet method
and the symplectic Euler methods, are such that

Φh(q, v) = (q̂, v̂) implies Φ−h(q,−v) = (q̂,−v̂), (2.4)

as is readily seen from the defining formulae such as (1.5). The symmetry
(2.1) of the Störmer–Verlet method is therefore equivalent to the reversibility
(2.3). Let us summarize these considerations.

Theorem 2.1. The Störmer–Verlet method applied to the second-order
differential equation (1.1) is both symmetric and reversible, i.e., its one-step
map satisfies (2.1) and (2.3).
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In some situations, the flow is ρ-reversible with respect to involutions ρ
other than (q, v) �→ (q,−v), that is, it satisfies

ρ ◦ ϕt = ϕ−1
t ◦ ρ. (2.5)

For example, the flow of the Kepler problem (1.19) is ρ-reversible also with
respect to ρ : (q1, q2, v1, v2) �→ (q1,−q2,−v1, v2). In general, the flow of a
differential equation ẏ = F (y) is ρ-reversible if and only if the vector field
satisfies ρ ◦ F = −F ◦ ρ. We then call the differential equation ρ-reversible.

By the same argument as above, the Störmer–Verlet method is then also
ρ-reversible for ρ of the form ρ(q, v) = (ρ1(q), ρ2(v)), that is,

ρ ◦ Φh = Φ−1
h ◦ ρ. (2.6)

2.2. Hamiltonian systems and symplecticity

We now turn to the important class of Hamiltonian systems

ṗ = −∇qH(p, q), q̇ = ∇pH(p, q), (2.7)

where H(p, q) is an arbitrary scalar function of the variables (p, q). When
the Hamiltonian is of the form

H(p, q) =
1
2

pT M−1p + U(q), (2.8)

with a positive definite mass matrix M and a potential U(q), then the
system (2.7) turns into the second-order differential equation (1.3) upon
expressing the momenta p = Mv in terms of the velocities and setting
f(q) = −M−1∇U(q). Equation (2.8) expresses the total energy H as the
sum of kinetic and potential energy.

A characteristic geometric property of Hamiltonian systems is that the
flow ϕt is symplectic, that is, the derivative ϕ′

t = ∂ϕt/∂(p, q) of the flow
satisfies, for all (p, q) and t where ϕt(p, q) is defined,

ϕ′
t(p, q)T J ϕ′

t(p, q) = J with J =
(

0 I
−I 0

)
, (2.9)

where I is the identity matrix of the dimension of p or q; see, e.g., Arnold
(1989, p. 204) or Hairer et al. (2002, p. 172).

The relation (2.9) is formally similar to orthogonality (which it would be
if J were replaced by the identity matrix), but, unlike orthogonality, it is not
related to the conservation of lengths but of areas in phase space. In fact, for
systems with one degree of freedom (i.e., p, q ∈ R), equation (2.9) expresses
that the flow preserves the area of sets of initial values in the (p, q)-plane; see
Figure 2.2, left. For higher-dimensional systems, symplecticity (2.9) means
that the flow preserves the sum of the oriented areas of the projections of
ϕt(A) onto the (pi, qi)-coordinate planes, for any two-dimensional bounded
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manifold of initial values A; see, e.g., Hairer et al. (2002, p. 171f.) for a
justification of this interpretation.

The Störmer–Verlet method (1.24) applied to the Hamiltonian system
(2.7) reads

(A)

pn+ 1
2

= pn − h
2 ∇qH

(
pn+ 1

2
, qn

)
,

qn+1 = qn + h
2

(
∇pH

(
pn+ 1

2
, qn

)
+ ∇pH

(
pn+ 1

2
, qn+1

))
,

pn+1 = pn+ 1
2
− h

2 ∇qH
(
pn+ 1

2
, qn+1

)
,

(2.10)

and a similar formula for variant (B). In the particular case of the Hamil-
tonian (2.8), the method reduces to the Störmer–Verlet method (1.5) with
f(q) = −M−1∇U(q), upon setting pn = Mvn.

A numerical method is called symplectic if, for Hamiltonian systems (2.7),
the Jacobian of the numerical flow Φh : (pn, qn) �→ (pn+1, qn+1) satisfies
condition (2.9), that is, if

Φ′
h(p, q)T J Φ′

h(p, q) = J (2.11)

for all (p, q) and all step sizes h.
Symplecticity of numerical methods was first considered by De Vogelaere

(1956), but was not followed up until Ruth (1983) and Feng (1985). In
the late 1980s, the results of Lasagni (1988), Sanz-Serna (1988), and Suris
(1988) started off an avalanche of papers on symplectic numerical methods.
Sanz-Serna and Calvo (1994) was the first book dealing with this subject.

Theorem 2.2. The Störmer–Verlet method applied to a Hamiltonian sys-
tem is symplectic.

ϕt

Figure 2.2. Symplecticity of the Störmer–Verlet
method for a separable Hamiltonian.



412 E. Hairer, Ch. Lubich and G. Wanner

We give four different proofs of this result, which all correspond to differ-
ent interpretations of the method: as a composition method, as a splitting
method, as a variational integrator, and using generating functions. Each
of these interpretations lends itself to generalizations to other symplectic
integrators, of higher order and/or for constrained Hamiltonian systems.
Yet another proof is based on the preservation of quadratic invariants and
will be mentioned in Section 3 below. The second proof applies only to
Hamiltonians of the special form (2.8), the third proof is formulated for
such Hamiltonians for convenience.

The historically first proof, due to De Vogelaere (1956), uses the interpre-
tation of the Störmer–Verlet method as the composition of the symplectic
Euler method

(SE1)
pn+ 1

2
= pn − h

2 ∇qH
(
pn+ 1

2
, qn

)
,

qn+ 1
2

= qn + h
2 ∇pH

(
pn+ 1

2
, qn

)
,

(2.12)

and its adjoint

(SE2)
qn+1 = qn+ 1

2
+ h

2 ∇pH
(
pn+ 1

2
, qn+1

)
,

pn+1 = pn+ 1
2
− h

2 ∇qH
(
pn+ 1

2
, qn+1

)
.

(2.13)

The method (SE1) is indeed symplectic, as is seen by direct verification of
the symplecticity condition(

∂(pn+1/2, qn+1/2)
∂(pn, qn)

)T

J

(
∂(pn+1/2, qn+1/2)

∂(pn, qn)

)
= J.

The matrix of partial derivatives is obtained from differentiating equation
(2.12): (

I + hHT
qp 0

−hHpp I

)(
∂(pn+1/2, qn+1/2)

∂(pn, qn)

)
=

(
I −hHqq

0 I + hHqp

)
,

where all the submatrices of the Hessian, Hqp, Hpp, etc., are evaluated at
(pn+1/2, qn). In the same way, (SE2) is seen to be symplectic. Hence their
composition (2.10) is also symplectic.

The second proof is the most elegant one, but it applies only to the case
of separable Hamiltonians H(p, q) = T (p) + U(q). It is based on the inter-
pretation of the Störmer–Verlet method as a splitting method. As in (1.13),
we have for variant (A)

Φh = ϕU
h/2 ◦ ϕT

h ◦ ϕU
h/2, (2.14)

where ϕT
t and ϕU

t are the exact flows of the Hamiltonian systems with
Hamiltonian T (p) = 1

2 pT M−1p and U(q), i.e., ṗ = 0, q̇ = M−1p and
ṗ = −∇U(q), q̇ = 0, respectively, corresponding to the splitting H(p, q) =
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T (p)+U(q) of the Hamiltonian (2.8) into kinetic and potential energy. Since
the flows of Hamiltonian systems are symplectic, so is their composition
(2.14). This is illustrated in Figure 2.2, right. Variant (B) has the flows of
T and U interchanged in (2.14), and is thus likewise symplectic.

The third proof uses the interpretation of the Störmer–Verlet method
as a variational integrator (see Section 1.6). The symplecticity of varia-
tional integrators derives from non-numerical work by Maeda (1980) and
Veselov (1991). Using (1.4) and the first line of (1.5), we have for Sh(q, Q)
of (1.17), in the case of the Lagrangian (1.15) which corresponds to the
Hamiltonian (2.8),

−∇qSh(qn, qn+1) = M
qn+1 − qn

h
+

h

2
∇U(qn) = Mvn = pn (2.15)

and similarly

∇QSh(qn, qn+1) = M
qn+1 − qn

h
− h

2
∇U(qn+1) = Mvn+1 = pn+1. (2.16)

Given (pn, qn), the first of the above two equations determines qn+1, and
the second one pn+1. The one-step map Φh : (pn, qn) �→ (pn+1, qn+1) of the
Störmer–Verlet method is thus generated by the scalar-valued function Sh

via (2.15) and (2.16). The desired result then follows from the fact that a
map (p, q) �→ (P, Q) generated by

−∇qS(q, Q) = p, ∇QS(q, Q) = P,

is symplectic for any function S. This is verified by directly checking the
symplecticity condition. Differentiation of the above equations gives the
following relations for the matrices of partial derivatives Pp, Pq, Qp, Qq:

Sqq + SqQQq = 0, SqQQp = I,

SQq + SQQQq = Pq, SQQQp = Pp.

These equations yield(
Pp Pq

Qp Qq

)T (
0 I
−I 0

)(
Pp Pq

Qp Qq

)
=

(
0 I
−I 0

)
after multiplying out, as is required for symplecticity. This completes the
third proof of symplecticity of the Störmer–Verlet method.

A fourth proof of the symplecticity is based on ideas of Lasagni (1988). A
step of the Störmer–Verlet method can be generated by a function Ŝh(p1, q0)
in the same way as the symplectic Euler method:

p1 = p0 −∇qŜh(p1, q0), (2.17)

q1 = q0 + ∇pŜh(p1, q0).

As we have seen in the first proof, such maps are symplectic. The generating
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function is simply Ŝh = hH for the symplectic Euler method. For the
Störmer–Verlet method Ŝh is obtained as

Ŝh(p1, q0) =
h

2

(
H(p1/2, q0) + H(p1/2, q1)

)
(2.18)

− h2

4
∇qH(p1/2, q1)T

(
∇pH(p1/2, q0) + ∇pH(p1/2, q1)

)
,

where q1 and p1/2 are defined by the Störmer–Verlet formulae and are now
considered as functions of (p1, q0). We do not give the computational details,
which can be found in Hairer et al. (2002, Section VI.5) for a more general
class of symplectic integrators.

2.3. Volume preservation

The flow ϕt of a system of differential equations ẏ = F (y) with divergence-
free vector field (divF (y) = 0 for all y) satisfies det ϕ′

t(y) = 1 for all y. It
therefore preserves volume in phase space: for every bounded open set Ω,
and for every t for which ϕt(y) exists for all y ∈ Ω,

vol (ϕt(Ω)) = vol (Ω).

The vector field (v, f(q)) of a second-order differential equation (1.3), written
as a first-order system, is divergence-free. The same is true for Hamiltonian
vector fields (−∇qH(p, q),∇pH(p, q)).

The Störmer–Verlet method preserves volume,

vol (Φh(Ω)) = vol (Ω),

in the following two situations.
For the method (2.10), applied to a Hamiltonian system (2.7), this follows

from its symplecticity (2.11), which implies det Φ′
h(p, q) = 1 for all (p, q).

For partitioned differential equations of the form

q̇ = g(v), v̇ = f(q), (2.19)

the method (1.24) can be interpreted as the splitting (1.13), where ϕ
[1]
t and

ϕ
[2]
t are the exact flows of q̇ = g(v), v̇ = 0 and q̇ = 0, v̇ = f(q), respectively.

Since the vector fields of these flows are divergence-free, they are volume-
preserving and so is their composition.

The same idea allows us to extend the Störmer–Verlet method to a volume-
preserving algorithm for systems partitioned into the three equations

ẋ = a(y, z), ẏ = b(x, z), ż = c(x, y), (2.20)

for which the diagonal blocks of the Jacobian are zero. We split them sym-
metrically, giving

ϕ
[1]
h/2 ◦ ϕ

[2]
h/2 ◦ ϕ

[3]
h ◦ ϕ

[2]
h/2 ◦ ϕ

[1]
h/2, (2.21)
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t = 1.6

Figure 2.3. Volume-preserving deformation of the ball of
radius 0.9, centred at the origin, by the ABC flow (left)
and by method (2.22) (right).

where ϕ
[1]
t is the (volume-preserving) flow of ẋ = a(y, z), ẏ = 0, ż = 0 and

similarly for ϕ
[2]
t and ϕ

[3]
t . Written out, this becomes

xn+ 1
2

= xn +
h

2
a(yn, zn),

yn+ 1
2

= yn +
h

2
b
(
xn+ 1

2
, zn

)
,

zn+1 = zn + h c
(
xn+ 1

2
, yn+ 1

2

)
, (2.22)

yn+1 = yn+ 1
2

+
h

2
b
(
xn+ 1

2
, zn+1

)
,

xn+1 = xn+ 1
2

+
h

2
a(yn+1, zn+1).

An illustration of this algorithm, applied to the ABC-flow

ẋ = A sin z + C cos y,

ẏ = B sinx + A cos z,

ż = C sin y + B cos x,

is presented in Figure 2.3 for A = 1/2, B = C = 1.
More ingenuity is necessary if the system is divergence-free with nonzero

elements on the diagonal of the Jacobian. Feng and Shang (1995) give a
volume-preserving extension of the above scheme to the general case.
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3. Conservation of first integrals

A non-constant function I(y) is a first integral (or conserved quantity, or
constant of motion, or invariant) of the differential equation ẏ = F (y) if
I(y(t)) is constant along every solution, or equivalently, if

I ′(y)F (y) = 0 for all y. (3.1)

The latter condition says that the gradient ∇I(y) is orthogonal to the vector
field F (y) in every point of the phase space.

The foremost example is the Hamiltonian H(p, q) of a Hamiltonian system
(2.7): since H ′ = (∇pH

T ,∇qH
T ) and ∇pH

T (−∇qH)+∇qH
T ∇pH = 0, the

total energy H is a first integral. Apart from very exceptional cases, H is
not constant along numerical solutions computed with the Störmer–Verlet
method. Later we will see, however, that H is conserved up to O(h2) over
extremely long time intervals.

Example 3.1. The Kepler problem (1.19) is Hamiltonian with H(p, q) =
1
2(p2

1 + p2
2) − 1/

√
q2
1 + q2

2. In addition to the Hamiltonian, this system has
the following conserved quantities, as can be easily checked: the angular
momentum L = q1p2 − q2p1, and the nonzero components of the Runge–
Lenz–Pauli vectorA1

A2

0

 =

p1

p2

0

 ×

 0
0

q1p2 − q2p1

 − 1√
q2
1 + q2

2

q1

q2

0

.

Figure 3.1 shows the behaviour of these quantities along a numerical so-
lution of the Störmer–Verlet method. The method preserves the angular
momentum exactly (see Section 1.3), and there are only small errors in the
Hamiltonian along the numerical solution, but no drift. There is, however, a
linear drift in the Runge–Lenz–Pauli vector. In contrast, for explicit Runge–
Kutta methods, none of the first integrals is preserved, and there is a drift
away from the constant value for all of them.

10 20

−.006
−.004
−.002

.000

.002 H

A2

Figure 3.1. The Hamiltonian and the second component of
the Runge–Lenz–Pauli vector along the numerical solution
of the Störmer–Verlet method with step size h = 0.02.
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Example 3.2. (Conservation of total linear and angular momentum
of N-body systems) A system of N particles interacting pairwise, with
potential forces depending on the distances of the particles, is formulated as
a Hamiltonian system with total energy

H(p, q) =
1
2

N∑
i=1

1
mi

pT
i pi +

N∑
i=2

i−1∑
j=1

Vij

(
‖qi − qj‖

)
. (3.2)

Here qi, pi ∈ R
3 represent the position and momentum of the ith particle of

mass mi, and Vij(r) (i > j) is the interaction potential between the ith and
jth particle. The equations of motion read

q̇i =
1

mi
pi, ṗi =

N∑
j=1

νij (qi − qj)

where, for i > j, we have νij = νji = −V ′
ij(rij)/rij with rij = ‖qi − qj‖, and

νii is arbitrary, say νii = 0. The conservation of the total linear momen-
tum P =

∑N
i=1 pi and the total angular momentum L =

∑N
i=1 qi × pi is a

consequence of the symmetry relation νij = νji:

d
dt

N∑
i=1

pi =
N∑

i=1

N∑
j=1

νij(qi − qj) = 0,

d
dt

N∑
i=1

qi × pi =
N∑

i=1

1
mi

pi × pi +
N∑

i=1

N∑
j=1

qi × νij(qi − qj) = 0.

The exact preservation of linear first integrals, such as the total linear
momentum, is common to most numerical integrators.

Theorem 3.3. The Störmer–Verlet method preserves linear first integrals.

Proof. Let the linear first integral be I(q, v) = bT q + cT v, so that bT v +
cT f(q) = 0 for all q, v. Necessarily then, cT f(q) = 0 for all q, and b = 0.
Multiplying the formulae for v in (1.5) by cT thus yields cT v1 = cT v0.

Quadratic first integrals are not generally preserved by the Störmer–Verlet
method, as the following example shows.

Example 3.4. Consider the harmonic oscillator, which has the Hamil-
tonian H(p, q) = 1

2p2 + 1
2ω2q2 (p, q ∈ R). Applying the Störmer–Verlet

method gives (
pn+1

ωqn+1

)
= A(hω)

(
pn

ωqn

)
(3.3)
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with the propagation matrix

A(hω) =

(
1 − h2ω2

2 −hω
2

(
1 − h2ω2

4

)
hω
2 1 − h2ω2

2

)
. (3.4)

Since A(hω) is not an orthogonal matrix, H(p, q) is not preserved along
numerical solutions. Notice, however, that the characteristic polynomial is
λ2− (2−h2ω2)λ+1, so that the eigenvalues are of modulus one if (and only
if) |hω| ≤ 2. The matrix V of eigenvectors is close to the identity for small
hω, and the norm of V −1(pn, ωqn)T is conserved.

The Störmer–Verlet method does, however, preserve an important sub-
class of quadratic first integrals, and in particular the total angular momen-
tum of N -body systems. As we have seen in Section 1.3, Newton was aware
that the method preserves angular momentum in the Kepler problem and
used this fact to prove Kepler’s second law. In the following result C is a
constant square matrix and c a constant vector.

Theorem 3.5. The Störmer–Verlet method preserves quadratic first in-
tegrals of the form I(q, v) = vT (Cq + c) (or I(p, q) = pT (Bq + b) in the
Hamiltonian case).

Proof. By (3.1), f(q)T (Cq+c)+vT Cv = 0 for all q, v. Writing the Störmer–
Verlet method as the composition of the two symplectic Euler methods (1.8)
and (1.9), we obtain for the first half-step

vT
n+1/2(Cqn+1/2 + c) = vT

n (Cqn + c)

+
h

2
(
f(qn)T (Cqn + c) + vT

n+1/2Cvn+1/2

)
,

where we notice that the term in the second line vanishes. For the second
half-step we obtain in the same way vT

n+1(Cqn+1 +c) = vT
n+1/2(Cqn+1/2 +c),

and the result follows.

The most important source of first integrals of Hamiltonian systems is
Noether’s theorem, which states that continuous symmetries yield first in-
tegrals: if the associated Lagrangian is invariant under the flow αs of the
vector field a(q), that is, L(αs(q), α′

s(q)v) = L(q, v) for all real s near 0 and
all (q, v), then I(p, q) = pT a(q) is a first integral; see, e.g., Arnold (1989,
p. 88). For Hamiltonian systems of the form (2.8), where the associated La-
grangian is (1.15), it can be shown that a(q) must be linear: a(q) = Bq + b,
with MB skew-symmetric. Hence, for Hamiltonian systems (2.7) with a
Hamiltonian of the form (2.8), all first integrals originating from Noether’s
theorem are preserved by the Störmer–Verlet method.

Theorem 3.5 yields yet another proof (and further insight) of the symplec-
ticity of the Störmer–Verlet method, following an argument by Bochev and
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Scovel (1994): consider the Hamiltonian system ṗ = −∇U(q), q̇ = M−1p
together with its variational equation

Ẏ =
(

0 −∇2U(q)
M−1 0

)
Y with Y =

(
Pp Pq

Qp Qq

)
.

The derivative of the flow is then ϕ′
t(p, q) = Y (t) corresponding to the

initial conditions p, q and Y (0) = I. The derivative Φ′
h(p, q) of the numeri-

cal solution with respect to the initial values equals the result Y1 obtained
by applying the method to the combined system of the Hamiltonian sys-
tem together with its variational equation, partitioned into (p, Pp, Pq) and
(q, Qp, Qq). Symplecticity means that the components of Y T JY are first
integrals. Since they are of the mixed quadratic type considered above,
Theorem 3.5 shows that they are preserved by the Störmer–Verlet method:
Y T

1 JY1 = Y T
0 JY0, which is just the symplecticity Φ′

h
T JΦ′

h = J .

4. Backward error analysis

The theoretical foundation of geometric integrators is mainly based on a
backward interpretation which considers the numerical approximation as
the exact solution of a modified problem. Such an interpretation has been
intuitively used in the physics literature, e.g., Ruth (1983). A rigorous for-
mulation evolved around 1990, beginning with the papers by Feng (1991),
McLachlan and Atela (1992), Sanz-Serna (1992) and Yoshida (1993). Expo-
nentially small error bounds and applications of backward error analysis to
explain the long-time behaviour of numerical integrators were subsequently
given by Benettin and Giorgilli (1994), Hairer and Lubich (1997), and Re-
ich (1999a). We explain the essential ideas and we illustrate them for the
Störmer–Verlet method.

4.1. Construction of the modified equation

The idea of backward error analysis applies to general ordinary differential
equations and to general numerical integrators, and a restriction to special
methods for second-order problems would hide the essentials. We therefore
consider the differential equation

ẏ = F (y), (4.1)

and a numerical one-step method yn+1 = Φh(yn). The idea consists in
searching and studying a modified differential equation

ẏ = F (y) + hF2(y) + h2F3(y) + · · · , (4.2)

such that the exact time-h flow ϕ̃h(y) of (4.2) is equal to the numerical flow
Φh(y). Unfortunately, the series in (4.2) cannot be expected to converge in
general, and the precise statement has to be formulated as follows.
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Theorem 4.1. Consider (4.1) with an infinitely differentiable vector field
F (y), and assume that the numerical method admits a Taylor series expan-
sion of the form

Φh(y) = y + hF (y) + h2D2(y) + h3D3(y) + · · · (4.3)

with smooth Dj(y). Then there exist unique vector fields Fj(y) such that,
for any N ≥ 1,

Φh(y) = ϕ̃h,N (y) + O(hN+1),

where ϕ̃t,N is the exact flow of the truncated modified equation

ẏ = F (y) + hF2(y) + · · · + hN−1FN (y). (4.4)

Proof. Disregarding convergence issues, we expand the exact flow of (4.2)
into a Taylor series (using the notation ỹ(t) = ϕ̃t(y))

ϕ̃h(y) = y + h ˙̃y (0) +
h2

2!
¨̃y (0) +

h3

3!
ỹ(3)(0) + · · ·

= y + h
(
F (y) + hF2(y) + h2F3(y) + · · ·

)
(4.5)

+
h2

2!
(
F ′(y) + hF ′

2(y) + · · ·
)(

F (y) + hF2(y) + · · ·
)

+ · · ·

and we compare like powers of h in the expressions (4.5) and (4.3). This
yields recurrence relations for the functions Fj(y), namely,

F2(y) = D2(y) − 1

2!
F ′F (y), (4.6)

F3(y) = D3(y) − 1

3!

(
F ′′(F, F )(y) + F ′F ′F (y)

)
− 1

2!

(
F ′F2(y) + F ′

2F (y)
)
,

and uniquely defines the functions Fj(y) in a constructive manner.

4.2. Modified equation of the Störmer–Verlet method

Putting y = (q, v)T and F (y) = (v, f(q))T , the differential equation (1.3) is
of the form (4.1). For the Störmer–Verlet scheme (1.5) we have

Φh(q, v) =

(
q + hv + h2

2 f(q)
v + h

2f(q) + h
2f

(
q + hv + h2

2 f(q)
)). (4.7)

Expanding this function into a Taylor series we get (4.3) with

D2(q, v) = 1

2

(
f(q)

f ′(q)v

)
, D3(q, v) = 1

4

(
0

f ′(q)f(q) + f ′′(q)(v, v)

)
, . . .

and the functions Fj(q, v) can be computed as in the proof of Theorem 4.1.
Since the Störmer–Verlet method is of second order, the function D2(q, v)
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Figure 4.1. Numerical solution with step size h = 0.9 for the two
versions of the Störmer–Verlet method compared to the exact
flow of their modified differential equations truncated after the
O(h2) term.

has to coincide with the h2-coefficient of the exact solution and we have
F2(q, v) = 0. We then get

F3(q, v) = 1

12

(
−2 f ′(q)v

f ′(q)f(q) + f ′′(q)(v, v)

)
, (4.8)

and for the next function we obtain F4(q, v) = 0. The vanishing of this
function follows from the symmetry of the method (cf. Section 4.3). For
larger (odd) j the functions Fj(q, v) become more and more complicated,
and higher derivatives of f(q) are involved. The explicit formula for F3(q, v)
also shows that the modified differential equation (4.2) is no longer a second-
order equation like (1.3).

A similar computation for the version (B) of the Störmer–Verlet method
(see (1.6)) gives

F3(q, v) = 1

24

(
2 f ′(q)v

−4 f ′(q)f(q) − f ′′(q)(v, v)

)
, (4.9)

and, obviously, also F2(q, v) = F4(q, v) = 0.
As a concrete example consider the pendulum equation for which f(q) =

− sin q. The two pictures of Figure 4.1 show the exact flow of the modi-
fied differential equations (truncated after the O(h2) term) corresponding
to the two versions (1.5) and (1.6) of the Störmer–Verlet scheme together
with the numerical solution for the initial value (p0, q0) = (1.0,−1.2). The
shade of the numerical approximations (dark grey to light grey) indicates
the increasing time. We observe a surprisingly good agreement.

In both cases the solutions of the modified equation are periodic, and the
numerical approximation lies near a closed curve, so that correct qualitative
behaviour is obtained. This is explained by the fact that for f(q) = −∇U(q)
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the vector fields (4.8) and (4.9) are Hamiltonian with

H3(p, q) = 1

12
∇2U(q)(p, p) + 1

24
∇U(q)T∇U(q) and

H3(p, q) = − 1

24
∇2U(q)(p, p) − 1

6
∇U(q)T∇U(q),

respectively. Consequently, the exact solutions of the truncated modified
equation stay on the level curves of H̃(p, q) = H(p, q) + h2H3(p, q) which
are drawn in Figure 4.1.

4.3. Properties of the modified differential equation

In Section 4.4 we shall see that the numerical solution is extremely close to
the exact solution of a truncated modified equation. To study properties
of the numerical solution it is therefore justified to investigate instead the
corresponding properties of the modified differential equation.

It follows from the definition of the modified equation that for methods
of order r, that is, Φh(y) = ϕh(y) + O(hr+1), we have

Fj(y) = 0 for j = 2, . . . , r.

Furthermore, if the leading term of the local truncation error is Er+1(y),
that is, Φh(y) = ϕh(y) + hr+1Er+1(y) + O(hr+2), then

Fr+1(y) = Er+1(y).

By Theorem 2.1 the Störmer–Verlet method is symmetric. For such meth-
ods the modified equation has an expansion in even powers of h, that is,

F2j(y) = 0 for j = 1, 2, . . . . (4.10)

This can be proved as follows: to indicate the h-dependence of the vector
field (4.2), we let ϕ̃t,h(y) denote the (formal) flow of (4.2). Backward error
analysis tells us that Φh(y) = ϕ̃h,h(y). We thus have Φ−h(y) = ϕ̃−h,−h(y)
and, by the group property of the exact flow, Φ−1

−h(y) = ϕ̃h,−h(y). The
symmetry condition (2.1) thus implies that ϕ̃t,h(y) = ϕ̃t,−h(y) for t = h,
and the computation of (4.5) shows that this is only possible if (4.10) holds.

Geometric properties of a numerical method have their counterparts in
the modified equation. Let us explain this for the properties discussed in
Sections 2 and 3.

Theorem 4.2. (Reversible systems) If the Störmer–Verlet method (1.5)
is applied to a differential equation (1.3), then every truncation of the
modified differential equation is reversible with respect to the reflection
ρ(q, v) = (q,−v).

Theorem 4.3. (Hamiltonian systems) If the Störmer–Verlet method
(2.10) is applied to a Hamiltonian system, then every truncation of the
modified differential equation is Hamiltonian.
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Theorem 4.4. (Divergence-free systems) If the Störmer–Verlet method
(1.24) is applied to a divergence-free system of the form (2.19), then every
truncation of the modified differential equation is divergence-free.

Theorem 4.5. (First integrals) If the Störmer–Verlet method (1.24) is
applied to a differential equation with a first integral of the form I(q, v) =
vT (Cq + c), then every truncation of the modified differential equation has
I(q, v) as a first integral.

The proofs are based on an induction argument. Since they are all very
similar (see Hairer et al. (2002, Chapter IX)), we only present the proof
of Theorem 4.3, for the case where the Hamiltonian H(p, q) is defined on
a simply connected domain. This proof was first given by Benettin and
Giorgilli (1994) and Tang (1994), and its ideas can be traced back to Moser
(1968).

Proof. With y = (p, q), the Hamiltonian system (2.7) is written more com-
pactly as ẏ = J−1∇H(y) with J of (2.9). We will show that all the coefficient
functions of the modified equation can be written as

Fj(y) = J−1∇Hj(y). (4.11)

Assume, by induction, that (4.11) holds for j = 1, 2, . . . , N (this is satisfied
for N = 1, because F1(y) = F (y) = J−1∇H(y)). We have to prove the
existence of a Hamiltonian HN+1(y). The idea is to consider the truncated
modified equation (4.4), which is then a Hamiltonian system with Hamil-
tonian H(y) + hH2(y) + · · · + hN−1HN (y). Its flow ϕN,t(y), compared to
that of (4.2) and thus to the one-step map Φh of the Störmer–Verlet method,
satisfies

Φh(y) = ϕN,h(y) + hN+1FN+1(y) + O(hN+2),

and also
Φ′

h(y) = ϕ′
N,h(y) + hN+1F ′

N+1(y) + O(hN+2).

By Theorem 2.2 and by the induction hypothesis, Φh and ϕN,h are sym-
plectic transformations. This, together with ϕ′

N,h(y) = I + O(h), therefore
implies

J = Φ′
h(y)T JΦ′

h(y) = J + hN+1
(
F ′

N+1(y)T J + JF ′
N+1(y)

)
+ O(hN+2).

Consequently, the matrix JF ′
N+1(y) is symmetric. The function JFN+1(y) is

therefore the gradient of some scalar function HN+1(y), which proves (4.11)
for j = N + 1.

The last argument of this proof requires that the domain be simply con-
nected. For general domains, we have to use the representation (2.17) with
the help of the generating function (2.18). We refer to Section IX.3.2 of
Hairer et al. (2002) for details of the proof.
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4.4. Exponentially small error estimates

Theorem 4.1 proves a statement that is valid for all N ≥ 1, and it is natural
to ask which choice of N gives the best estimate.

Example 4.6. Consider the simple differential equation q̈ = f(t) (which
becomes autonomous after adding ẗ = 0). If we try to compute the modified
equation for the Störmer–Verlet method, we are readily convinced that its
q-component is of the form

q̈(t) = f(t) + h2b2f̈(t) + h4b4f
(4)(t) + h6b6f

(6)(t) + · · · . (4.12)

Putting f(t) = et, the solution of this modified equation is

q̃(t) = C1 + tC2 + (1 + b2h
2 + b4h

4 + b6h
6 + · · · ) et,

and inserted into (1.2) we obtain

(1 + b2h
2 + b4h

4 + b6h
6 + · · · )(e−h − 2 + eh) = h2. (4.13)

This shows that 1+b2h
2+b4h

4+ · · · is analytic in a disc of radius 2π centred
at the origin. Consequently, the coefficients behave like b2k ≈ Const (2π)−2k

for k → ∞.
Now consider functions f(t) whose derivatives grow like f (k)(t)≈k! M R−k.

This is the case for analytic f(t) with finite poles. The individual terms of
the modified equation (4.12) then behave like

h2kb2kf
(2k)(t) ≈ Const

h2k(2k)!
(R · 2π)2k

≈ Const
√

4πk

(
h · 2k

R · 2π e

)2k

(4.14)

(using Stirling’s formula). Even for very small step sizes h this expression is
unbounded for k → ∞, so that the series (4.12) cannot converge. However,
formula (4.14) tells us that the terms of the series decrease until 2k ap-
proaches the value 2πR/h, and then they tend rapidly to ∞. It is therefore
natural to truncate the modified equation after N terms, where N ≈ 2πR/h.

To find a reasonably good truncation index N for general differential
equations, we have to know estimates for all derivatives of F (y) and of the
coefficient functions Dj(y) of the Taylor expansion of the numerical flow.
One convenient way of doing this is to assume analyticity of these functions.

Exponentially small error bounds were first derived by Benettin and Gior-
gilli (1994). The following estimates are from Hairer et al. (2002, p. 306).

Theorem 4.7. Let F (y) be analytic in B2R(y0), let the coefficients Dj(y)
of the method (4.3) be analytic in BR(y0), and assume that

‖F (y)‖ ≤ M and ‖Dj(y)‖ ≤ µM

(
2κM

R

)j−1

(4.15)

hold for y ∈ B2R(y0) and y ∈ BR(y0), respectively. If h ≤ h0/4 with
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h0 = R/(eηM) and η = 2 max
(
κ, µ/(2 ln 2−1)

)
, then there exists N = N(h)

(namely N equal to the largest integer satisfying hN ≤ h0) such that the
difference between the numerical solution y1 = Φh(y0) and the exact solution
ϕ̃N,t(y0) of the truncated modified equation (4.4) satisfies

‖Φh(y0) − ϕ̃N,h(y0)‖ ≤ hγMe−h0/h,

where γ = e(2 + 1.65η + µ) depends only on the method.

The proof of this theorem is technical and long; see Hairer et al. (2002,
Section IX.7) for details. We just explain how the assumptions can be
checked for the Störmer–Verlet method (4.7).

We let y = (q, v)T , F (y) = (v, f(q))T , and we consider the scaled norm
‖y‖ = ‖q‖+ h‖v‖. The quantities R and M are then given by the problem.
The computation of the beginning of Section 4.2 shows that the functions
Dj(q, v) are composed of derivatives of f(q) so that they are analytic on
the same domain as f(q). To find the constants µ and κ in (4.15), we use
‖F (y)‖ = ‖v‖+h‖f(q)‖ ≤ M for ‖q−q0‖+h‖v−v0‖ ≤ 2R, and we estimate∥∥∥∥Φh(q, v) −

(
q + hv

v + h
2 f(q)

) ∥∥∥∥ =
∥∥∥∥

(
h2

2 f(q)
h
2 f(q + hv + h2

2 f(q))

) ∥∥∥∥ ≤ hM

for ‖q − q0‖ + h‖v − v0‖ ≤ R and for hM ≤ R. This follows from the fact
that the argument of f satisfies ‖q + hv + h2

2 f(q) − q0‖ ≤ R + hM ≤ 2R.
Considered as a function of h, Φh(q, v) is analytic in the complex disc |h| ≤
R/M . Cauchy’s estimate therefore yields

‖Dj(q, v)‖ =
1
j!

∥∥∥∥ dj

dhj

(
Φh(q, v) −

(
q + hv

v + h
2 f(q)

))∣∣∣∣
h=0

∥∥∥∥ ≤ M

(
M

R

)j−1

for j ≥ 2. This proves the estimates (4.15) with µ = 1 and κ = 1/2.

5. Long-time behaviour of numerical solutions

In this section we show how the geometric properties of Section 2 turn into
favourable long-term behaviour. Most of the results are obtained with the
help of backward error analysis.

5.1. Energy conservation

We have seen in Example 3.4 that the total energy H(p, q) of a Hamiltonian
system is not preserved exactly by the Störmer–Verlet method. In that ex-
ample it is, however, approximately preserved. Also for the Kepler problem,
Figure 3.1 indicates no drift in the energy. As the following theorem shows,
the Hamiltonian is in fact approximately preserved over very long times for
general Hamiltonian systems.
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Theorem 5.1. The total energy along a numerical solution (pn, qn) of the
Störmer–Verlet method satisfies

|H(pn, qn) − H(p0, q0)| ≤ Ch2 + CNhN t for 0 ≤ t = nh ≤ h−N

for arbitrary positive integer N . The constants C and CN are independent
of t and h. CN depends on bounds of derivatives of H up to (N +1)th order
in a region that contains the numerical solution values (pn, qn).

We give two different proofs of this result, the first one based on the
symplecticity, the second one on the symmetry of the method. When the
Hamiltonian is analytic, both proofs can be refined to yield an estimate
Ch2 + C0e−c/ht over exponentially long times t ≤ ec/h, with c proportional
to 1/Ω, where Ω is an upper bound of ‖M−1/2∇2U(q)M−1/2‖1/2, i.e., of the
highest frequency in the linearized system.

The first proof uses the symplecticity of the Störmer–Verlet method via
backward error analysis, in an argument due to Benettin and Giorgilli (1994).
It applies to general symplectic methods for general (smooth) Hamiltonian
systems (2.7). We know from Theorem 4.3 that the modified differential
equation, truncated after N terms, is again Hamiltonian, with a modified
Hamiltonian H̃ that is O(h2) close to the original Hamiltonian H in a neigh-
bourhood of the numerical solution values. Consider now H̃ along the nu-
merical solution. We write the deviation of H̃ as a telescoping sum

H̃(pn, qn) − H̃(p0, q0) =
n−1∑
j=0

(
H̃(pj+1, qj+1) − H̃(pj , qj)

)
.

By construction of the modified equation, we have for its flow ϕ̃h(pj , qj) =
(pj+1, qj+1) +O(hN+1). On the other hand, the flow ϕ̃t preserves the mod-
ified Hamiltonian, and hence

H̃(pj+1, qj+1) − H̃(pj , qj) = H̃(pj+1, qj+1) − H̃(ϕ̃h(pj , qj)) = O(hN+1).

Inserting this estimate in the above sum yields the result.
The second proof uses only the symmetry of the Störmer–Verlet method.

It was given in Hairer and Lubich (2000b) because its arguments extend
to numerical energy conservation in oscillatory systems when the product
of the step size with the highest frequencies is bounded away from 0 (see
Section 5.4). Backward error analysis, or the asymptotic h2-expansion of
the numerical solution, shows that there exists, for every n, a function qn(t)
with qn(0) = qn and qn(−h) = qn−1 + O(hN+1) satisfying

qn(t + h) − 2qn(t) + qn(t − h) = h2f(qn(t)) + O(hN+2) (5.1)

for t in some fixed interval around 0. The functions qn(t + h) and qn+1(t)
agree up to O(hN+1), as do their kth derivatives multiplied with hk,
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for k ≤ N . By Taylor expansion in (5.1),

N/2∑
l=1

2
(2l)!

d2lqn

dt2l
(t)h2l−2 = f(qn(t)) + O(hN ). (5.2)

Because of the symmetry of the method, only even-order derivatives of qn(t)
(and even powers of the step size) are present in (5.2).

We multiply (5.2) with q̇n(t)T M and integrate over t. The key observation
is now that the product of q̇n(t) with an even-order derivative of qn(t) is a
total differential (we omit the superscript n in the following formula):

q̇T Mq(2l) =
d
dt

Al[q]

with

Al[q] =
(
q̇T Mq(2l−1)− q̈T Mq(2l−2)+· · ·∓(q(l−1))T Mq(l+1)± 1

2
(q(l))T Mq(l)

)
.

In particular, A1[q] = 1
2 q̇T Mq̇. Moreover, for f(q) = −M−1∇U(q) we

clearly have q̇T Mf(q) = −( d/dt)U(q). For the energy functional

H[q](t) =
N/2∑
l=1

2
(2l)!

Al[q](t)h2l−2 + U(q(t))

we thus obtain ( d/dt)H[qn](t) = O(hN ), and hence

H[qn](h) −H[qn](0) = O(hN+1). (5.3)

Since the functions qn(t+h) and qn+1(t), together with their kth derivatives
scaled by hk (k ≤ N), are equal up to O(hN+1), we further have

H[qn+1](0) −H[qn](h) = O(hN+1). (5.4)

Moreover, with pn(t) = Mq̇n(t) we have

H[qn](0) = H(pn(0), qn(0)) + O(h2) = H(pn, qn) + O(h2), (5.5)

where the last equation follows by noting

pn = M
qn+1 − qn−1

2h
= pn(0) + O(h2).

Hence, from (5.3)–(5.5),

H(pn, qn) − H(p0, q0) = H[qn](0) −H[q0](0) + O(h2)

= O(nhN+1) + O(h2),

which completes the proof.



428 E. Hairer, Ch. Lubich and G. Wanner

5.2. Linear error growth for integrable systems

General Hamiltonian systems may have extremely complicated dynamics,
and little can be said about the long-time behaviour of their discretizations
apart from the long-time near-conservation of the total energy considered
above. At the other end, the simplest conceivable dynamics – uniform mo-
tion on a Cartesian product of circles – appears in integrable Hamiltonian
systems. Their practical interest lies in the fact that many physical sys-
tems are perturbations of integrable systems, with planetary motion as the
classical example and historical driving force.

A Hamiltonian system (2.7) is integrable if there exists a symplectic trans-
formation

(p, q) = ψ(a, θ) (5.6)

to action-angle variables (a, θ), defined for actions a = (a1, . . . , ad) in some
open set of R

d and for angles θ on the whole d-dimensional torus

T
d = R

d/(2πZ
d) = {(θ1, . . . , θd); θi ∈ R mod 2π},

such that the Hamiltonian in these variables depends only on the actions

H(p, q) = H(ψ(a, θ)) = K(a). (5.7)

In the action-angle variables, the equations of motion are simply

ȧ = 0, θ̇ = ω(a), (5.8)

with the frequencies ω = (ω1, . . . , ωd)T = ∇aK (note that ∇θK = 0). This
has a quasi-periodic (or possibly periodic) flow:

ϕt(a, θ) = (a, θ + ω(a)t). (5.9)

For every a, the torus {(a, θ) : θ ∈ T
d} is thus invariant under the flow. We

express the actions and angles in terms of the original variables (p, q) via
the inverse transform of (5.6) as

(a, θ) = (I(p, q), Θ(p, q)),

and note that the components of I = (I1, . . . , Id) are first integrals of the
integrable system.

Integrability of a Hamiltonian system is an exceptional property: the
system has d independent first integrals I1, . . . , Id whose Poisson brackets
vanish pairwise, that is,

{Ii, Ij} = ∇qI
T
i ∇pIj −∇pI

T
i ∇qIj = 0 for all i, j.

The solution trajectories of the Hamiltonian systems with Hamiltonian Ii

exist for all time (in the action-angle variables, their flow is simply ϕ
[i]
t (a, θ) =
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Figure 5.1. Transformation to action-angle variables.

(a, θ + tei) with ei denoting the ith unit vector of R
d), and the level sets

of I are compact (the invariant tori {a = Const θ ∈ T
d}). Conversely, the

Arnold–Liouville theorem (Arnold 1963) states that every Hamiltonian sys-
tem having d first integrals with the above properties can be transformed to
action-angle variables with a Hamiltonian depending only on the actions.

Example 5.2. The harmonic oscillator H(p, q) = 1
2p2 + 1

2q2 is integrable,
with the transformation to action-angle coordinates given by(

p
q

)
=

(√
2a cos θ√
2a sin θ

)
,

with a = H(p, q): see Figure 5.1. Here, the action-angle coordinates are
symplectic polar coordinates.

Example 5.3. The Kepler problem, with H(p, q) = 1
2(p2

1+p2
2)−(q2

1+q2
2)

− 1
2

in the range H < 0, is integrable with actions a1 = 1/
√
−2H and a2 = L (the

angular momentum, L = q1p2−q2p1). The frequencies are ω1 = ω2 = 2π/T ,
where T = 2π/(−2H)3/2 is the period of a trajectory with total energy H.

Example 5.4. A further celebrated example of an integrable system is
the Toda lattice (Toda 1970, Flaschka 1974), which describes a system of
particles on a line interacting with exponential forces. The Hamiltonian is

H(p, q) =
d∑

k=1

(
1
2
p2

k + exp(qk − qk+1)
)
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Figure 5.2. Toda eigenvalues along the numerical solution.

with periodic extension qd+1 = q1. The eigenvalues of the matrix

L =


a1 b1 bd

b1 a2 b2 0

b2
. . . . . .

0
. . . ad−1 bd−1

bd bd−1 ad

,
ak = −1

2pk,

bk = 1
2 exp

(
1
2(qk − qk+1)

)

are first integrals whose Poisson brackets vanish pairwise.
We consider the case d = 3 and choose initial values q0 = (1, 2,−1)T and

p0 = (−1.5, 1, 0.5)T . Figure 5.2 shows the eigenvalues of L along the nu-
merical solution of the Störmer–Verlet and the second-order Runge method
obtained with step sizes h = 0.1 (left) and h = 0.05 (right) on the interval
0 ≤ t ≤ 50. Not only the Hamiltonian (Theorem 5.1), but all d first integrals
of the integrable system are well approximated over long times with an error
of size O(h2). This is explained by Theorem 5.5 below.

The global error in (p, q) is plotted in Figure 5.3. We observe a linear
error growth for the Störmer–Verlet method, in contrast to a quadratic error
growth for the second-order Runge method.

The study of the error behaviour of the numerical method combines
backward error analysis, by means of which the numerical map is inter-
preted as being essentially the time-h flow of a modified Hamiltonian sys-
tem, and the perturbation theory of integrable systems, a rich mathematical
theory originally developed for problems of celestial mechanics (Poincaré
1892/1893/1899, Siegel and Moser 1971). The effect of a small perturbation
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Figure 5.3. Global error of the Störmer–Verlet and
the second-order Runge method on the Toda lattice.

of an integrable system is well under control in subsets of the phase space
where the frequencies ω satisfy Siegel’s diophantine condition:

|k · ω| ≥ γ|k|−ν for all k ∈ Z
d (5.10)

for some positive constants γ and ν, with |k| =
∑

i ki. For ν > d−1, almost
all frequencies (in the sense of the Lebesgue measure) satisfy (5.10) for some
γ > 0. For any choice of γ and ν the complementary set is, however, open
and dense in R

d.
For general numerical integrators applied to integrable systems (or per-

turbations thereof) the error grows quadratically with time, and there is a
linear drift away from the first integrals Ii. For symplectic methods such
as the Störmer–Verlet method there is linear error growth and long-time
near-preservation of the first integrals Ii, as is shown by the following result
from Hairer et al. (2002, Section X.3).

Theorem 5.5. Consider applying the Störmer–Verlet method to an inte-
grable system (2.7) with real-analytic Hamiltonian. Suppose that ω∗ ∈ R

d

satisfies the diophantine condition (5.10). Then there exist positive con-
stants C, c and h0 such that the following holds for all step sizes h ≤ h0:
every numerical solution (pn, qn) starting with frequencies ω0 = ω(I(p0, q0))
such that ‖ω0 − ω∗‖ ≤ c| log h|−ν−1, satisfies

‖(pn, qn) − (p(t), q(t))‖ ≤ C t h2,

‖I(pn, qn) − I(p0, q0)‖ ≤ C h2,
for t = nh ≤ h−2.

The constants h0, c, C depend on d, γ, ν and on bounds of the Hamiltonian.

The basic steps of the proof are summarized in Figure 5.4. By backward
error analysis, the numerical method coincides, up to arbitrary order in h,
with the flow of the modified differential equation, which is a Hamiltonian
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backward error
analysis

integrable
Hamiltonian

H(p, q)
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solution
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Hamiltonian

H̃(p, q)

Hamiltonian
K(a)

action-angle
variables

(p, q) = ψ(a, θ)
modified Hamiltonian

K(a) + εK̃1(a, θ)
with ε = hp

Lindstedt–Poincaré
series

(a, θ) = χ(b, ϕ)

modified Hamiltonian
K(b) + εK1(b) + · · · + εNKN (b)

+εN+1R(b, ϕ)

Figure 5.4. Transformations in the proof of Theorem 5.5.

perturbation of size ε = h2 of the original, integrable system. We are thus in
the realm of classical perturbation theory. In addition to the transformation
to the action-angle variables (a, θ), which gives the modified Hamiltonian in
the form K(a) + εK̃1(a, θ), we use a further symplectic coordinate transfor-
mation (a, θ) = χ(b, ϕ) which eliminates, up to high-order terms in ε, the
dependence on the angles in the modified Hamiltonian. This transformation
is O(ε) close to the identity. It is constructed as

b = a −∇θS(b, θ), ϕ = θ + ∇bS(b, θ),

where the generating function S(b, θ) is given by a Lindstedt–Poincaré per-
turbation series,

S(b, θ) = εS1(b, θ) + ε2S2(b, θ) + · · · + εNSN (b, θ).

The error propagation is then studied in the (b, ϕ)-variables, with the result

‖b(t) − b0‖ ≤ C t εN+1,

‖ϕ(t) − ϕ0 − ωε(b0) t‖ ≤ C (t + t2) εN ,
for t2 ≤ 1/εN ,

with ωε(b) = ω(b) +O(ε). Transforming back to the original variables (p, q)
finally yields the stated result.

Theorem 5.5 admits extensions in several directions. It is just one of a
series of results on the long-time behaviour of geometric integrators.



Geometric numerical integration 433

• The theorem does not apply directly to the Kepler problem, which
has two identical frequencies ω1 = ω2 = (−2H)3/2. However, since
the angular momentum a2 = L is preserved exactly by the Störmer–
Verlet method, it turns out that the modified Hamiltonian written
in the action-angle variables of the Kepler problem is independent of
the angle θ2. Only the angle θ1 must therefore be eliminated via the
perturbation series, and this involves only the single frequency ω1 for
which the diophantine condition is trivially satisfied. The proof and
result of Theorem 5.5 thus extend to the Kepler problem.

• The linear error growth remains intact when the method is applied
to perturbed integrable systems H(p, q) + εG(p, q) with a perturbation
parameter of size ε = O(hα) for some positive exponent α.

• Under stronger conditions on the initial values or on the system, the
near-preservation of the action variables along the numerical solution
holds for times that are exponentially long in a negative power of the
step size (Hairer and Lubich 1997, Moan 2002). For a Cantor set of
initial values and a Cantor set of step sizes this holds even perpetually,
in view of the existence of invariant tori of the numerical integrator
close to the invariant tori of the integrable system (Shang 1999, 2000).

• Perturbed integrable systems have KAM tori, i.e., deformations of the
invariant tori of the integrable system corresponding to diophantine fre-
quencies ω, which are invariant under the flow of the perturbed system.
If the method is applied to such a perturbed integrable system, then the
numerical method has tori which are near-invariant over exponentially
long times (Hairer and Lubich 1997). For a Cantor set of non-resonant
step sizes there are even truly invariant tori on which the numerical
one-step map reduces to rotation by hω in suitable coordinates (Hairer
et al. 2002, p. 371).

• There is a completely analogous theory for integrable reversible systems
(Hairer et al. 2002, Chapter XI). These are differential equations with
reversible flow (2.2), which are transformed to the form (5.8) by a trans-
formation (q, v) = (µ(a, θ), ν(a, θ)) that preserves reversibility, i.e., µ
is odd in θ and ν is even in θ. In that theory, only the reversibility
of the numerical method comes into play, not the symplecticity. There
is again linear error growth, long-time near-preservation of the action
variables, and an abundance of invariant tori.

• For dissipatively perturbed integrable systems, where only one torus
survives the perturbation and becomes weakly attractive, the existence
of a nearby invariant torus of the numerical method is shown under
weak assumptions on the step size in Stoffer (1998) and Hairer and
Lubich (1999).
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5.3. Statistical behaviour

The equation of motion of a system of 864 particles interacting through a Lennard-
Jones potential has been integrated for various values of the temperature and
density, relative, generally, to a fluid state. The equilibrium properties have been
calculated and are shown to agree very well with the corresponding properties of
argon. L. Verlet (1967)

In molecular dynamics, it is the computation of statistical or thermodynamic
quantities, such as temperature, which is of interest, rather than single tra-
jectories. The success of the Störmer–Verlet method in this field lies in the
observation that the method is apparently able to reproduce the correct
statistical behaviour over long times. Since Verlet (1967), this has been
confirmed in countless computational experiments. Backward error analysis
gives indications as to why this might be so, but to our knowledge there
are as yet no rigorous mathematical results in the literature explaining the
favourable statistical behaviour.

In the following we derive a result which is a discrete analogue of the
virial theorem of statistical mechanics; cf. Abraham and Marsden (1978,
p. 243) and Gallavotti (1999, p. 129). It comes as a consequence of the long-
time near-conservation of energy. Consider the Poisson bracket {F, H} =
∇qF

T∇pH −∇pF
T∇qH of an arbitrary differentiable function F (p, q) with

the Hamiltonian. Along every solution (p(t), q(t)) of the Hamiltonian system
we have

{F, H}(p(t), q(t)) =
d
dt

F (p(t), q(t)),

and hence the time average of the Poisson bracket along a solution is

1
T

∫ T

0
{F, H}(p(t), q(t)) dt =

1
T

(
F (p(T ), q(T )) − F (p(0), q(0))

)
.

If F is bounded along the solution, this shows that the average is of size
O(1/T ) as T → ∞. In particular, this condition is satisfied if the energy
level set {(p, q) : H(p, q) = H(p(0), q(0))} is compact.

Example 5.6. For a separable Hamiltonian (2.8) the choice F (p, q) = pT q
yields the virial theorem of Clausius (Gallavotti 1999, p. 129),

lim
T→∞

1
T

∫ T

0
p(t)T M−1p(t) dt = lim

T→∞

1
T

∫ T

0
q(t)T∇U(q(t)) dt,

i.e., the time average of twice the kinetic energy equals that of the virial
function qT∇U(q).
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For the numerical discretization there is the following result.

Theorem 5.7. Let H(p, q) be a real-analytic Hamiltonian for which

Kδ = {(p, q) : |H(p, q) − H0| ≤ δ} is compact

for some δ > 0. Let F (p, q) be any smooth real-valued function, bounded
by µ on Kδ. Then the numerical solution (pn, qn) obtained by the Störmer–
Verlet method satisfies∣∣∣∣ 1

N

N∑
n=0

′ {F, H}(pn, qn)
∣∣∣∣ ≤ 2µ

Nh
+ Ch2 for Nh ≤ ec/h and h ≤ h0,

(5.11)
where the prime on the sum indicates that the first and last term are taken
with weight 1

2 . The constants C, c, h0 > 0 depend on bounds of H on a
complex neighbourhood of Kδ and on bounds of the first three derivatives
of F on Kδ, but they are independent of h and (p0, q0) ∈ Kδ/2.

In particular, the left-hand side of (5.11) is O(h2) for h−2 ≤ Nh ≤ ec/h.

Proof. By Theorem 5.1 and the remark thereafter, we know that

yn := (pn, qn) ∈ Kδ for nh ≤ ec/h.

Since yn+1 = ϕh(yn) + O(h3) and {F, H}(ϕt(y)) = d

dt
F (ϕt(y)), we have

h

2
{F, H}(yn) + h

2
{F, H}(yn+1) =

∫ h

0
{F, H}

(
ϕt(yn)

)
dt + O(h3)

= F (yn+1) − F (yn) + O(h3).

Hence

1
N

N∑
n=0

′ {F, H}(yn) =
1

Nh

(
F (yN ) − F (y0)

)
+ O(h2),

which yields the stated estimate.

Example 5.8. We give a numerical experiment with a small-scale version
of Verlet’s argon model. It considers NA atoms interacting by the Lennard-
Jones potential

V (r) = 4 ε

((
σ

r

)12

−
(

σ

r

)6)
.

The Hamiltonian of the system is (3.2) with Vij = V . We choose NA = 7
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Figure 5.5. Computed total energy, temperature and virial function
of the argon crystal, 10 000 steps of size h = 40 [fsec].

and the data of Biesiadecki and Skeel (1993); see also Hairer et al. (2002,
p. 15). Figure 5.5 shows the Hamiltonian, the temperature

T (p) =
1

NAkB

1
2 m

NA∑
i=1

‖pi‖2

(kB is Boltzmann’s constant), and the virial function

C(q) =
NA∑
i=2

i−1∑
j=1

V ′(rij)rij

(with rij = ‖qi − qj‖) over an interval of length 4 · 105 [fsec], obtained by
the Störmer–Verlet method with step size h = 40 [fsec]. The units in the
figure are such that kB = 1. The size of the oscillations in the Hamiltonian
is proportional to h2, whereas that in the temperature and in the virial
function is independent of h. At the end of the integration (after 10 000
steps) the averages of twice the kinetic energy and of the virial function are
217.1 and 217.8, respectively.

5.4. Oscillatory differential equations

Nonlinear mass-spring models have traditionally been very useful in explain-
ing various phenomena of more complicated ‘real’ physical systems. We
have already mentioned the Toda lattice. An equally famous problem is the
Fermi–Pasta–Ulam model (Fermi, Pasta and Ulam 1955, Ford 1992), where
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a nonlinear perturbation to a primarily linear problem is studied over long
times. Here we use a variant of this problem for gaining insight into the long-
time energy behaviour of the Störmer–Verlet method applied to oscillatory
systems with multiple time scales. We are interested in using step sizes h for
which the product with the highest frequency ω in the system is bounded
away from zero. (Values of hω ≈ 1/2 are routinely used in molecular dynam-
ics.) In this situation, backward error analysis is no longer applicable, since
the ‘exponentially small’ error terms are then of size O(e−c/hω) = O(1).

x1 x2 x2m−1 x2m· · ·

stiff
harmonic

soft
nonlinear

Figure 5.6. Chain with alternating soft nonlinear
and stiff linear springs.

Example 5.9. Consider a chain of 2m mass points, connected with alter-
nating soft nonlinear and stiff linear springs, and fixed at the end points; see
Galgani, Giorgilli, Martinoli and Vanzini (1992) and Figure 5.6. The vari-
ables x1, . . . , x2m stand for the displacements of the mass points. In terms
of the new variables

qi = (x2i + x2i−1)/
√

2, qm+i = (x2i − x2i−1)/
√

2

(which represent a scaled displacement and a scaled expansion/compression
of the ith stiff spring) and the momenta pi = q̇i, the motion is described by
a Hamiltonian system with

H(p, q) =
1
2

2m∑
i=1

p2
i +

ω2

2

m∑
i=1

q2
m+i +

1
4

(
(q1 − qm+1)4

+
m−1∑
i=1

(qi+1 − qm+i+1 − qi − qm+i)4 + (qm + q2m)4
)

,

where ω � 1 is a large parameter. Here we assume cubic nonlinear springs,
but the special form of the nonlinearity is not important.

For an illustration we consider m = 3 and choose ω = 30. In Figure 5.7 we
have plotted the following quantities as functions of time: the Hamiltonian
H (actually we plot H − 0.8 for graphical reasons), the oscillatory energy I
defined as

I = I1 + I2 + I3 with Ij = 1

2
p2

m+j + 1

2
ω2q2

m+j ,
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Figure 5.7. Different time scales in a Fermi–Pasta–Ulam problem,
and energy conservation of the Störmer–Verlet method (last picture).

and the kinetic energies of the mass centre motion and of the relative motion
of masses joined by a stiff spring,

T1 = 1

2

(
p2
1 + p2

2 + p2
3

)
, T2 = 1

2

(
p2
4 + p2

5 + p2
6

)
.

The system has different dynamics on several time scales: on the fast scale
ω−1 the motion is nearly harmonic in the stiff springs, on scale ω0 there is
the motion of the soft springs driven by the nonlinearity, and on the slow
scale ω there is an energy exchange between the stiff linear springs. For the
first three pictures the solutions were computed with high accuracy.

In the last picture we show the results obtained by the Störmer–Verlet
method with step size h = 0.5/ω. We note that both H and I are approxi-
mately conserved over long times. For fixed ω the size of the oscillations in
H is proportional to h2. However, the oscillations remain of the same size if
h decreases and ω increases such that hω remains constant. The oscillations
in I are of size O(ω−1) uniformly for h → 0.

The equations of motion for the above example are of the form

q̈ = −Ω2q −∇U(q) with Ω =
(

0 0
0 ωI

)
, (5.12)

with a single high frequency ω � 1 and with a smooth potential U(q) whose
derivatives are bounded independently of ω. In addition to the total energy
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as a conserved quantity,

H(p, q) =
1
2

pT p +
1
2

qT Ω2q + U(q),

the system has an adiabatic invariant: over times exponentially long in ω,
the oscillatory energy

I(p, q) =
1
2

pT

(
0 0
0 I

)
p +

ω2

2
qT

(
0 0
0 I

)
q (5.13)

is preserved up to O(ω−1). This holds uniformly for all initial values for
which the total energy is bounded by a constant independent of ω, i.e., for
bounded (p, q) with (0 I)q = O(ω−1).

Now consider applying the Störmer–Verlet method to such a system. The
step size is then restricted to hω < 2 for linear stability, as Example 3.4
shows. The Hamiltonian H(pn, qn) and the oscillatory energy I(pn, qn) of
(5.13) oscillate rapidly, but stay within an O((hω)2) band over long times.
The oscillations do not become smaller when h is decreased but ω is increased
such that their product hω is kept fixed. Nevertheless, the following result
shows that the time averages of the total and oscillatory energies

Hn =
h

T

∑
|jh|≤T/2

H(pn+j , qn+j),

In =
h

T

∑
|jh|≤T/2

I(pn+j , qn+j),

for an arbitrary fixed T > 0, remain constant up to O(h) over long times
even when hω is bounded away from zero, but within the range of linear
stability.

Theorem 5.10. Let the Störmer–Verlet method be applied to the problem
(5.12) with a step size h for which 0 < c0 ≤ hω ≤ c1 < 2. Let ω̃ be
defined by the relation sin(1

2hω̃) = 1
2hω and suppose | sin(1

2khω̃)| ≥ c
√

h for
k = 1, . . . , N for some N ≥ 2 and c > 0. Suppose further that the total
energy at the initial value (p0, q0) is bounded independently of ω, and that
the numerical solution values qn stay in a region where all derivatives of
the potential U are bounded. Then, the time averages of the total and the
oscillatory energy along the numerical solution satisfy

Hn = H0 + O(h),
In = I0 + O(h),

for 0 ≤ nh ≤ h−N+1.

The constants symbolized by O are independent of n, h, ω with the above
conditions.
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It should, however, be noted that the time averages Hn and In do not, in
general, remain O(h) close to the initial values H(p0, q0) and I(p0, q0).

The estimates of Theorem 5.10 can be improved to O(h2) if a weighted
time average is taken, replacing the characteristic function of the interval
[−T/2, T/2] by a smooth windowing function with bounded support, and
if the oscillatory energy I is replaced by J(p, q) = I(p, q) + qT

(
0 0
0 I

)
∇U(q),

which is preserved up to O(ω−2) over exponentially long time intervals.
For hω → 0, the long-time near-preservation of the adiabatic invariant I

can be shown using backward error analysis (Reich 1999b), but this argu-
ment breaks down for hω bounded away from zero as in Theorem 5.10.

We comment only briefly on the proof of Theorem 5.10; see Hairer et al.
(2002, Chapter XIII) for the full proof. It is based on representing the
numerical solution locally (on bounded intervals) by a modulated Fourier
expansion

qn =
∑
|k|<N

zk(t)eikω̃t + O(hN ) for t = nh,

where the coefficients zk(t) together with all their derivatives (up to some
arbitrarily fixed order) are bounded by O(ω̃−|k|). A similar representation
holds for pn. The expansion coefficients yk(t) = zk(t)eikω̃t satisfy a system
of equations similar in structure to (5.2) (but of higher dimension). This
permits us to use similar arguments to the second proof of Theorem 5.1
to infer the existence of certain modified energies H∗ and I∗, which the
numerical method preserves up to O(h) over times h−N+1. Finally, the time
averages Hn and In can be expressed, up to O(h), in terms of these modified
energies.

6. Constrained Hamiltonian systems

A minimal set of coordinates of a mechanical system is often difficult to
find. The minimal coordinates may be defined only implicitly, or frequent
changes of charts are necessary along a solution of the system. In this
situation it is favourable to formulate the problem as a Hamiltonian system
with constraints.

6.1. Formulation as differential-algebraic equations

We consider a mechanical system with coordinates q ∈ R
d that are subject

to constraints g(q) = 0. The equations of motion are then of the form

ṗ = −∇qH(p, q) −∇qg(q)λ, (6.1)
q̇ = ∇pH(p, q), 0 = g(q),
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where the Hamiltonian H(p, q) is usually given by (2.8). Here, p and q are
vectors in R

d, g(q) =
(
g1(q), . . . , gm(q)

)T is the vector of constraints, and
∇qg =

(
∇qg1, . . . ,∇qgm

)
is the transposed Jacobian matrix of g(q).

To compute the Lagrange multiplier λ, we differentiate the constraint
0 = g

(
q(t)

)
with respect to time. This yields the so-called hidden constraint

0 = ∇qg(q)T∇pH(p, q), (6.2)

which is an invariant of the flow of (6.1). A further differentiation gives

0 =
∂

∂q

(
∇qg(q)T∇pH(p, q)

)
∇pH(p, q)

−∇qg(q)T∇2
pH(p, q)

(
∇qH(p, q) + ∇qg(q)λ

)
, (6.3)

which allows us to express λ in terms of (p, q), if the matrix

∇qg(q)T∇2
pH(p, q)∇qg(q) is invertible (6.4)

(∇2
pH denotes the Hessian matrix of H). Inserting the so-obtained function

λ(p, q) into (6.1) gives the ordinary differential equation

ṗ = −∇qH(p, q) −∇qg(q)λ(p, q),
q̇ = ∇pH(p, q) (6.5)

for (p, q), which is well defined on the domain where H(p, q) and g(q) are
defined, and not only for g(q) = 0. The standard theory for ordinary dif-
ferential equations can be used to deduce existence and uniqueness of the
solution. Important properties of the system (6.1) are the following.

• Whenever the initial values satisfy (p0, q0) ∈ M with

M =
{
(p, q) : g(q) = 0, ∇qg(q)T∇pH(p, q) = 0

}
, (6.6)

the solution stays on the manifold M for all t; hence, the flow of (6.1)
is a mapping ϕt : M → M.

• The flow ϕt is a symplectic transformation on M, which means that

(ϕ′
t(p, q)ξ)T J ϕ′

t(p, q)η = ξT J η for ξ, η ∈ T(p,q)M. (6.7)

Here, T(p,q)M denotes the tangent space of M at (p, q) ∈ M, and the
product ϕ′

t(p, q)ξ has to be interpreted as the directional derivative on
the manifold.

• For Hamiltonians satisfying

H(−p, q) = H(p, q),

the flow ϕt is ρ-reversible for ρ(p, q) = (−p, q) in the sense that (2.5)
holds for (p, q) ∈ M.
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The first of these properties follows from the definition of λ(p, q). For
(p0, q0) ∈ M, a first integration of (6.3) gives (6.2) and a second integration
yields g(q) = 0 along the solution of (6.5).

To prove the symplecticity, we consider the (unconstrained) Hamiltonian
system with K(p, q) = H(p, q) + g(q)T λ(p, q). Its flow is symplectic and
coincides with that of (6.5) on the manifold M.

The reversibility is a consequence of the fact that H(−p, q) = H(p, q)
implies λ(−p, q) = λ(p, q). The flow of (6.5) and hence also its restriction
onto M is thus ρ-reversible.

Example 6.1. (Kepler and two-body problems on the sphere)
Following Kozlov and Harin (1992), we consider a particle moving on the
unit sphere attracted by a fixed point a on the sphere. The potential is given
as a fundamental solution of the Laplace–Beltrami equation on the sphere:

U(q, a) = − cos ϑ

sinϑ
, cos ϑ = 〈q, a〉. (6.8)

The Kepler problem on the sphere is then of the form (6.1) with

H(p, q) = 1

2
pT p + U(q, a), g(q) = qT q − 1.

The left picture of Figure 6.1 shows the solution corresponding to the point
a = (0.3

√
2, 0.3

√
2, 0.8)T and to initial values given in spherical coordinates

by ϕ0 = 1, θ0 = 1.1 and ϕ̇0 = 1.2, θ̇0 = −1.1. The point a and the initial
value are indicated by a larger symbol in Figure 6.1.

Figure 6.1. Solutions of the Kepler problem (left)
and the two-body problem on the sphere (right).
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Whereas in Euclidean space the two-body problem reduces to the Kepler
problem, this is not the case on the sphere. For the two-body problem the
Hamiltonian is

H(p1, p2, q1, q2) = 1

2
pT
1 p1 + 1

2
pT
2 p2 + U(q1, q2)

with U(q1, q2) given by (6.8). The constraints are gi(q1, q2) = qT
i qi − 1 for

i = 1, 2. The solution with initial values ϕ10 = −0.3, θ10 = 1.1, ϕ20 =
−0.8, θ20 = 0.6 and ϕ̇10 = 0.9, θ̇10 = −0.5, ϕ̇20 = 0.3, θ̇20 = −0.1 is plotted
in Figure 6.1 (right).

Example 6.2. (Rigid body) The motion of a rigid body with a fixed
point chosen at the origin can be described by an orthogonal matrix Q(t).
Letting I1, I2, I3 denote the moments of inertia of the body, its kinetic en-
ergy is

T = 1

2

(
I1Ω2

1 + I2Ω2
2 + I3Ω2

3

)
,

where the angular velocity Ω = (Ω1, Ω2, Ω3)T of the body is defined by

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 = QT Q̇,

(Arnold 1989, Chapter 6). In terms of Q, the kinetic energy on the manifold
O(3) = {Q |QT Q = I} becomes

T = 1

2
trace (Ω̂DΩ̂T ) = 1

2
trace (QT Q̇DQ̇T Q) = 1

2
trace (Q̇DQ̇T ),

where D = diag (d1, d2, d3) is given by the relations I1 = d2+d3, I2 = d3+d1,
and I3 = d1 + d2. With P = ∂T/∂Q̇ = Q̇D, we are thus concerned with

H(P, Q) = 1

2
trace (PD−1P T ) + U(Q),

and the constrained Hamiltonian system becomes

Ṗ = −∇QU(Q) − QΛ,

Q̇ = PD−1, 0 = QT Q − I, (6.9)

where Λ is a symmetric matrix consisting of Lagrange multipliers. This is
of the form (6.1) and satisfies the regularity condition (6.4).

6.2. Development of the Rattle algorithm

The most important numerical algorithm for the solution of constrained
Hamiltonian systems is an adaptation of the Störmer–Verlet method. Its
historical development is in three main steps.
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First step. For Hamiltonians H(p, q) = 1
2 pT M−1p + U(q) with constant

mass matrix M (cf. Section 2.2), the problem is a second-order differential
equation Mq̈ = −∇qU(q) − ∇qg(q)λ with constraint g(q) = 0. The most
natural extension of (1.2) is

qn+1 − 2qn + qn−1 = −h2M−1
(
∇qU(qn) + ∇qg(qn)λn

)
,

0 = g(qn+1). (6.10)

This algorithm (called Shake) was originally proposed by Ryckaert, Ciccotti
and Berendsen (1977) for computations in molecular dynamics. The p-
components, not used in the recursion, are approximated by pn = M(qn+1−
qn−1)/2h.

Second step. A one-step formulation of this method, obtained by a formal
analogy to formula (1.5), reads

pn+1/2 = pn − h

2

(
∇qU(qn) + ∇qg(qn)λn

)
,

qn+1 = qn + hM−1pn+1/2, 0 = g(qn+1), (6.11)

pn+1 = pn+1/2 −
h

2

(
∇qU(qn+1) + ∇qg(qn+1)λn+1

)
.

This formula cannot be implemented, because λn+1 is not yet available at
this step (it is computed together with qn+2). As a remedy, Andersen (1983)
suggests replacing the last line in (6.11) with the projection step

pn+1 = pn+1/2 −
h

2

(
∇qU(qn+1) + ∇qg(qn+1)µn

)
,

0 = ∇qg(qn+1)T M−1pn+1. (6.12)

This modification, called Rattle, is motivated by the fact that the numerical
approximation (pn+1, qn+1) lies on the solution manifold M.

Third step. Jay (1994) and Reich (1993) observed independently that the
Rattle method can be interpreted as a partitioned Runge–Kutta method
and thus allows the extension to general Hamiltonians

pn+1/2 = pn − h

2

(
∇qH(pn+1/2, qn) + ∇qg(qn)λn

)
,

qn+1 = qn + h

2

(
∇pH(pn+1/2, qn) + ∇pH(pn+1/2, qn+1)

)
,

0 = g(qn+1), (6.13)

pn+1 = pn+1/2 −
h

2

(
∇qH(pn+1/2, qn+1) + ∇qg(qn+1)µn

)
,

0 = ∇qg(qn+1)T∇pH(pn+1, qn+1)

whenever (pn, qn) ∈ M. The first three equations of (6.13) determine
(pn+1/2, qn+1, λn), whereas the remaining two are equations for (pn+1, µn).
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For a sufficiently small step size, these equations have a locally unique solu-
tion (Hairer et al. 2002, p. 214).

Example 6.3. (Kepler problem on the sphere) We apply the Rattle
method with a large step size h = 0.07 to the problem of Example 6.1.
The numerical solution, plotted in Figure 6.2, shows a precession as it ap-
pears in computations with symplectic integrators for the Kepler problem
in Euclidean space; see Figure 1.5. We remark that the value of the Hamil-
tonian along the numerical solution oscillates around the correct value and
the energy error remains bounded by 0.114 on very long time intervals.

Since the constraint g(q) is quadratic and the Hamiltonian is separable,
the formulae (6.13) are explicit with exception of the computation of λn, for
which a scalar quadratic equation needs to be solved.

Example 6.4. (Rigid body) The Rattle method (6.13) applied to (6.9)
yields

P1/2 = P0 − h

2
∇QV (Q0) − h

2
Q0Λ1,

Q1 = Q0 + hP1/2D
−1, QT

1 Q1 = I, (6.14)

P1 = P1/2 −
h

2
∇QV (Q1) − h

2
Q1Λ2, D−1P T

1 Q1 + QT
1 P1D

−1 = 0,

where both Λ1 and Λ2 are symmetric matrices. For consistent initial values,
Q0 is orthogonal and QT

0 P0D
−1 = Ω̂0 is skew-symmetric. Working with

Ω̂0 = QT
0 Q̇0 = QT

0 P0D
−1, Ω̂1/2 = QT

0 P1/2D
−1, Ω̂1 = QT

1 P1D
−1,

Figure 6.2. Numerical solution of the Kepler
problem on the sphere, obtained with the
Rattle method using step size h = 0.07.
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instead of P0, P1/2, P1, the equations (6.14) become the following integrator
(Q0, Ω̂0) �→ (Q1, Ω̂1) :

• find an orthogonal matrix I + hΩ̂1/2 such that

Ω̂1/2 = Ω̂0 − h

2
QT

0 ∇QV (Q0)D−1 − h

2
Λ1D

−1

holds with a symmetric matrix Λ1;

• compute Q1 = Q0(I + hΩ̂1/2);

• compute a skew-symmetric matrix Ω̂1 such that

Ω̂1 = Ω̂1/2 −
h

2
QT

1 ∇QV (Q1)D−1 − (Ω̂1/2 + Ω̂T
1/2) −

h

2
Λ2D

−1

holds with a symmetric matrix Λ2.

This algorithm for the simulation of the heavy top is proposed in McLachlan
and Scovel (1995). An efficient implementation uses the representation of
the appearing orthogonal matrices by quaternions (Hairer 2003).

6.3. Geometric properties of Rattle

For consistent initial values (pn, qn) ∈ M, the Rattle method (6.13) yields an
approximation (pn+1, qn+1) which is again on M. We thus have a numerical
flow Φh : M → M. The geometric properties of Section 2 for the Störmer–
Verlet method extend to this algorithm.

Theorem 6.5. The Rattle method is symmetric, that is, Φh = Φ−1
−h on M.

For Hamiltonians satisfying H(−p, q) = H(p, q), the method is reversible
with respect to the reflection ρ(p, q) = (−p, q), that is, it satisfies ρ ◦ Φh =
Φ−1

h ◦ ρ on M.

The proof is by straightforward verification, as for the Störmer–Verlet
method.

Theorem 6.6. The Rattle method is symplectic, that is,

(Φ′
h(p, q)ξ)T J Φ′

h(p, q)η = ξT J η for ξ, η ∈ T(p,q)M. (6.15)

This result was first proved by Leimkuhler and Skeel (1994) for the method
(6.11)–(6.12), and by Jay (1994) and Reich (1993) for the general case (6.13).

One proof of Theorem 6.6 is by computing Φ′
h(p, q)ξ using implicit differ-

entiation, and by verifying the identity (6.15). Further proofs are based on
the interpretation as a variational integrator (Marsden and West 2001), and
on explicit formulae of a generating function as in (2.18); see Hairer (2003).
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7. Geometric integration beyond Störmer–Verlet

In this article we deliberately considered only the Störmer–Verlet method
and a few selected geometric properties. Even within the class of ordinary
differential equations, we have not mentioned important topics of geometric
integration, such as

• higher-order methods, for instance, symmetric composition, partitioned
Runge–Kutta, and linear multistep methods,

• the structure-preserving use of variable step sizes,

• differential equations with further geometric properties such as differ-
ential equations on Lie groups, problems with multiple time scales, etc.

The reader will find more on these topics in the monographs by Sanz-
Serna and Calvo (1994) and Hairer et al. (2002), in the special journal issue
Budd and Iserles (1999), and in the survey articles by Iserles, Munthe-Kaas,
Nørsett and Zanna (2000), Marsden and West (2001) and McLachlan and
Quispel (2002).
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Tome I–III, Gauthier-Villars, Paris.

S. Reich (1993), Symplectic integration of constrained Hamiltonian systems by
Runge–Kutta methods, Technical Report 93-13, Department of Computer
Science, University of British Columbia.

S. Reich (1999a), Backward error analysis for numerical integrators, SIAM J. Nu-
mer. Anal. 36, 1549–1570.

S. Reich (1999b), Preservation of adiabatic invariants under symplectic discretiza-
tion, Appl. Numer. Math. 29, 45–56.

R. D. Ruth (1983), A canonical integration technique, IEEE Trans. Nuclear Science
NS-30, 2669–2671.

J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen (1977), Numerical integration
of the cartesian equations of motion of a system with constraints: Molecular
dynamics of n-alkanes, J. Comput. Phys. 23, 327–341.

J. M. Sanz-Serna (1988), Runge–Kutta schemes for Hamiltonian systems, BIT 28,
877–883.

J. M. Sanz-Serna (1992), Symplectic integrators for Hamiltonian problems: An
overview, in Acta Numerica, Vol. 1, Cambridge University Press, pp. 243–
286.

J. M. Sanz-Serna and M. P. Calvo (1994), Numerical Hamiltonian Problems, Chap-
man and Hall, London.

Z. Shang (1999), KAM theorem of symplectic algorithms for Hamiltonian systems,
Numer. Math. 83, 477–496.

Z. Shang (2000), Resonant and diophantine step sizes in computing invariant tori
of Hamiltonian systems, Nonlinearity 13, 299–308.

C. L. Siegel and J. K. Moser (1971), Lectures on Celestial Mechanics, Vol. 187 of
Grundlehren der Mathematischen Wissenschaft, Springer, Heidelberg.

D. Stoffer (1988), On reversible and canonical integration methods, SAM-Report
No. 88-05, ETH Zürich.
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