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Abstract. The aim of this paper is to study discretiza-
tions of convection-diffusion-reaction equations using
splitting methods. Estimates for the physical splitting
errors and the numerical splitting errors are established.
These estimates lead to the selection of optimal sequen-
ces and coupling of physical phenomena and adequate
use of implicitness and explicitness. Numerical simula-
tions of two chemical industry problems are included.

1 Introduction

Numerical simulation of reacting flows is required in all
problems coming from the chemical industry, and also
in the modelling of certain regions of hypersonic aerody-
namics. The added complexity of this kind of problems
comes from the fact that often a wide range of time scales
is present. This leads to numerical difficulties related
to the possible stiffness of reaction terms. Considering
the Partial Differential Equations that describe reacting
flows, we may split them additively into advective trans-
port, diffusive transport and chemical transformations.
We thus obtain submodels corresponding to different
physical phenomena,that are easier to solve separately.
Recent literature ([2], [4], [6]) has provided several ways
of dealing with operator splitting as far as the sequence
of these physical phenomena and also the possible cou-
pling between some of them are concerned. Numerical
simulations in [0, 1] pointed out that the coupling of re-
actions with diffusive transport in a sequence composed
by a convection problem in a certain interval [0,t/2], a
diffusion-reaction problem in [0,t] and a final convection
problem in
[t/2, t] perform notably better than an uncoupled split-
ting. In this paper we present a theoretical justification of
this numerical evidence by studying the splitting errors
and the stability properties of some numerical methods,
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based on different sequences and couplings of physical
phenomena.
The splitting error has two main contributions: a

physical splitting error that would exist even if submod-
els were solved exactly, and a numerical splitting error,
related with the approximation of each submodel and the
way these submodels are linked. In section 2 we establish
the order of the physical splitting error for different se-
quences and couplings of the phenomena. In section 3 we
show how the stability properties of numerical splitting
errors based on the previous sequences and couplings,
depend on the alternating use of implicit and explicit
methods. Numerical simulations of two chemical indus-
try problems will be presented in section 4. Namely we
exhibit results concerning a fixed bed catalytic reactor
and a paper industry digester.

2 Splitting methods and splitting errors

Let us consider convection-diffusion-reaction equations
of type

∂c

∂t
(z, t) = F1(c, z, t) + F2(c, z, t) + F3(c, z, t), (1)

where c denotes a specie concentration and F1(c, z, t),
F2(c, z, t), F3(c, z, t) represent respectively the convec-
tion, the diffusion and the reaction terms.
Let us define in [0, T ] the splitting grid {ts} with

ts = s∆t and ts+1/2 = ts +∆t/2 where ∆t denotes the
splitting step size. We suppose that the concentration c
at t = ts is known (at least approximately). The com-
putation of an approximation of c at time level ts+1 can
be obtained using several splitting algorithms. In this
paper we analyse from a theoretical viewpoint two func-
tional splitting procedures, suggested in [6], to study an
atmospheric pollution problem.

Functional splitting I Problem (1) is decomposed in
five subproblems respectively (Convection, Diffusion,
Reaction, Diffusion, Convection) as follows:






∂u

∂t
(z, t) = F1(u, z, t), t ∈ [ts, ts+1/2],

u(ts) = c(ts),
(2)
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





∂v

∂t
(z, t) = F2(v, z, t), t ∈ [ts, ts+1/2],

v(ts) = u(ts+1/2),
(3)







∂w

∂t
(z, t) = F3(w, z, t), t ∈ [ts, ts+1],

w(ts) = v(ts+1/2),
(4)







∂v∗

∂t
(z, t) = F2(v

∗, z, t), t ∈ [ts+1/2, ts+1],

v∗(ts+1/2) = w(ts+1),
(5)







∂u∗

∂t
(z, t) = F1(u

∗, z, t), t ∈ [ts+1/2, ts+1],

u∗(ts+1/2) = v∗(ts+1).
(6)

The splitting solution I at ts+1 is u
∗(ts+1) – the exact

solution of (2)-(6) – which represents an approxima-
tion of c(ts+1).

Functional splitting II Problem (1) is decomposed in
three subproblems (Convection, Diffusion+Reaction,
Convection) as described below






∂u

∂t
(z, t) = F1(u, z, t), t ∈ [ts, ts+1/2],

u(ts) = c(ts),
(7)







∂v

∂t
(z, t) = F2(v, z, t) + F3(v, z, t), t ∈ [ts, ts+1],

v(ts) = u(ts+1/2),
(8)







∂u∗

∂t
(z, t) = F1(u

∗, z, t), t ∈ [ts+1/2, ts+1],

u∗(ts+1/2) = v(ts+1).
(9)

The splitting solution II at ts+1 is u
∗(ts+1) – the ex-

act solution of (7)-(9) – which stands for an approx-
imation of c(ts+1).

Let us represent by cI and cII respectively the split-
ting solutions I and II. In the case operators F1, F2 are
linear and F3 depends only on z we can estimate the
splitting errors ‖c− cI‖∞ and ‖c− cII‖∞.

Proposition 2.1. Let F1(c, z, t) = −α
∂c

∂z
(z, t),

F2(c, z, t) = β
∂2c

∂z2
(z, t), and F3(c, z, t) = F3(z), with

|F ′3| ≤ q, c(z, 0) = c0(z) and lim
z→±∞

c(z, t) = 0, for all t.

Then ‖c− cI‖∞ = O(∆t3/2) and ‖c− cII‖∞ = O(∆t2)

Proof: Using Fourier transforms we have for the exact
solution of (1)

c(z, t) =
1√
π

∫ t

0

∫

IR

F3(z − αξ + 2
√

βξy)e−y2

dy dξ

+
1√
π

∫

IR

c0(z − αt+ 2
√

βtξ)e−ξ2

dξ. (10)

It is a tedious but straightforward task to establish that
the splitting solutions cI and cII are given respectively
by

cI(z, t) =
1√
π

∫

IR

tF3(z −
αt

2
+ 2

√

βt

2
y)e−y2

dy

+
1√
π

∫

IR

c0(z − αt+ 2
√

βtξ)e−ξ2

dξ, (11)

cII(z, t) =
1√
π

∫ t

0

∫

IR

F3(z −
αt

2
+ 2

√

βξy)e−y2

dy dξ

+
1√
π

∫

IR

c0(z − αt+ 2
√

βtξ)e−ξ2

dξ. (12)

From (10) and (11) we have

|c(z, t)− cI(z, t)|

≤ q√
π

∣

∣

∣

∣

∣

∫

IR

∫ t

0

(αξ − αk

2
+ 2

√

βξ −
√

βt

2
y)e−y2

dy dξ

∣

∣

∣

∣

∣

and considering
∫

IR
e−y2

dy =
√
π,
∫

IR
e−y2 |y| dy = 1 we

may easily conclude that ‖c− cI‖∞ = O(∆t
√
∆t).

From (10) and (12) we conclude

|c(z, t)− cII(z, t)| ≤
q√
π

∣

∣

∣

∣

∫

IR

∫ t

0

(αξ − αt

2
y)e−y2

dy dξ

∣

∣

∣

∣

and consequently ‖c− cII‖∞ = O(∆t2).

We note that the integral terms in (11) and (12),
concerning the initial conditions c0(z), introduce no error
in cI and cII . Also if F3 is a linear function of z then
cI = cII .
In [6], the authors, while studying an atmospheric

problem, point out that splitting II lead to more accurate
numerical results. The estimates of Proposition 2.1 can
justify from a theoretical point of view this numerical
evidence.
The following example illustrates the estimates of

Proposition 2.1. Let us consider the initial-boundary va-
lue problem

∂c

∂t
(z, t) = γ1

∂c

∂z
(z, t) + γ2

∂2c

∂z2
(z, t)

+γ3(c(z, t)− cw(t)) + γ4r(c) (13)

with initial-boundary conditions






































c(z, 0) = f(z), z ∈ (0, 1),

c(0, 0) = cF (0),

γ2
∂c

∂z
(0, t) = [c(0, t)− cF (t)]γ1, t > 0,

∂c

∂z
(1, t) = 0, t ≥ 0.

(14)

In (13), γi, i = 1, . . . , 5, are positive constants, r(c)
and cw(t) represent known functions. In (14), f and cF
are also assumed to be known.
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Fig. 1. Numerical solutions (split I: green; split II: blue) and
exact solution (red) for (13)-(14).

We took in (14), r(c) = c2, γ1 = −1, γ2 = 10−3,
γ3 = −0.5, γ4 = 0.5, cw(t) = 0.8 and f(z) = 1.11067 +
0.359664z + 0.325977z2.

In Fig. 1 are plotted the exact and numerical splitting
solutions for t = 0.5 and t = 1. We note that splitting II
solution is much more accurate than splitting I solution.

In Proposition 2.1 we consider a convection-diffusion-
reaction problem in an unbounded domain. In the case
of convection-reaction equations estimates have been es-
tablished under a boundary condition along z = 0.

Proposition 2.2. Let F2 = 0 and F3(c, z, t) = F3(c),
with |F ′3| ≤ q.

(i) If c(z, 0) = c0(z) for z ∈ (0,+∞) and c(0, t) = g(t)
with c0 and g enough smooth functions, then:

(a) if F1(c) = α(z, t)
∂c

∂z
we have cII = c for z > αt

and ‖c− cII‖∞ = O(∆t) for z ≤ αt;

(b) if F1(c) =
∂

∂z
f(c) we have ‖c− cII‖∞ = O(∆t).

(ii) If c(z, 0) = c0(z), z ∈ IR, then the splitting solution
is the exact solution.

Proof: We just present the proof of 1(a). The exact
solution satisfies



















∫ c(z,t)

g(αt−z
α

)

d c

F3(c)
=

z

α
, z ≤ αt,

∫ c(z,t)

c0(z−αt)

d c

F3(c)
= t, z > αt .

(15)

The solution cII of (7)-(9) verifies



































c(z, t) = g(
αt− z

α
), 0 ≤ z ≤ αt

2
,

∫ c(z,t)

g(αt−z
α

)

d c

F3(c)
=

z

α
, αt

2 < z ≤ αt,

∫ c(z,t)

c0(z−αt)

d c

F3(c)
= t, z > αt.

(16)

From (15) and (16) the result follows.

We observe that if no boundary conditions are con-
sidered in the convection-reaction problem, as in 2. of
Proposition 2.2, the exact solution is obtained. When a
boundary condition is considered, as in 1. of Proposi-
tion 2.1, an error of order ∆t propagates in the domain
defined by z ≤ αt.

3 Numerical splitting methods

3.1 General description of the family of methods

We consider, in what follows, numerical methods ob-
tained by discretizing (7)-(9). In the interval [0, T ] we
consider the splitting grid {ts} and in the space domain
we define the grid {zj} with zj − zj−1 = h. Let Us

h, V
s
h

and Us∗
h be numerical approximations at ts of u(ts), v(ts)

and u∗(ts), respectively defined by

{

U
s+1/2
h = F1,h(U

s
h),

Us
h = csh,

(17)

{

F ∗3,h(V
s+1
h ) = F2,h(V

s
h ) + F3,h(V

s
h ),

V s
h = U

s+1/2
h ,

(18)

{

Us+1∗
h = F1,h(U

s+1/2∗
h ),

U
s+1/2∗
h = V s+1

h ,
(19)

where Us+1∗
h represents a numerical approximation of

cII(ts+1) and consequently of c(ts+1). In this algorithm
F1,h is a linear operator resulting from the discretiza-
tion of the convection equation (7). Equation (18) repre-
sents a discretization of (8), where we assume that F2,h

is linear and F3,h, F
∗
3,h are nonlinear operators. These

operators take into account of the boundary conditions
prescribed for (7)-(9).
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3.2 Stability

We establish in what follows the stability of the methods
described by algorithm (17)-(19). Let cs+1

h and c̃s+1
h be

two solutions computed using this splitting algorithm.
The difference cs+1

h −c̃s+1
h satisfies the following equation:

cs+1
h − c̃s+1

h

= F1,h(JF
∗
3,h)

−1 (F2,h + JF3,h)F1,h(c
s
h − c̃sh)| (20)

where JF ∗3,h is the Jacobian matrix of F
∗
3,h computed

in σV n+1
h + (1 − σ)Ṽ n+1

h for some σ ∈ [0, 1]. The Jaco-
bian matrix JF3,h is defined analogously. The following
proposition can be easily established:

Proposition 3.1. If there exists SC ∈ (0, 1) such that

‖F1,h(JF
∗
3,h)

−1 (F2,h + JF3,h)F1,h‖ ≤ SC (21)

then the splitting method (17)-(19) is stable.

Let us suppose now that in each step of (17)-(19) we
introduce a perturbation εi, that is
{

Ũ
s+1/2
h = F1,h(Ũ

s
h) + ε1,

Us
h = csh,

(22)

{

F ∗3,h(Ṽ
s+1
h ) = F2,h(Ṽ

s
h ) + F3,h(Ṽ

s
h ) + ε2,

Ṽ s
h = Ũ

s+1/2
h ,

(23)

{

Ũs+1∗
h = F1,h(Ũ

s+1/2∗
h ) + ε3,

Ũ
s+1/2∗
h = Ũs+1

h ,
(24)

Then we can study how these perturbations propa-
gate from time level ts to time level ts+1. Considering
that

cs+1
h − c̃s+1

h = F1,h(JF
∗
3,h)

−1 ((F2,h + JF3,h)

(F1,h(c
s
h − c̃sh) + ε1) + ε2) + ε3

we obtain the internal stability factor

ρs = F1,h(JF
∗
3,h)

−1 ((F2,h + JF3,h) ε1 + ε2) + ε3

which satisfies

‖ρs‖ ≤ ‖F1,h(JF
∗
3,h)

−1 (F2,h + JF3,h) ‖‖ε1‖
+‖F1,h(JF

∗
3,h)

−1‖‖ε2‖+ ‖ε3‖.

Attending to the last inequality we have the following
proposition.

Proposition 3.2. If there exists IC ∈ (0, 1) such that

‖F1,h(JF
∗
3,h)

−1 (F2,h + JF3,h) ‖ ≤ IC , (25)

‖F1,h(JF
∗
3,h)

−1‖ ≤ IC (26)

then the splitting method is internally stable.

3.3 Discretization errors

We recall that c(ts) represents the solution of the convec-
tion-diffusion-reaction equation at t = ts, c

s
h a numerical

approximation computed using splitting method (17)-
(19) and cII(ts) the solution computed using the func-
tional splitting (7)-(9). We have

‖c(ts)− csh‖∞ ≤ ‖c(ts)− cII(ts)‖∞ + ‖cII(ts)− csh‖∞.
The first norm in the right hand side has been estimated
in Proposition 2.1. We compute in what follows

‖cII(ts)− csh‖∞.

Let T s+1
i,h , i = 1, 2, 3 be the truncation errors at t = ts+1

associated with the discretizations (17), (18) and (19)
respectively. By es+1

i,h , i = 1, 2, 3, we denote the global

errors defined by es+1
1,h = u(ts+1)−Us+1

h , es+1
2,h = v(ts+1)−

V s+1
h and es+1

3,h = u∗(ts+1)− Us+1∗
h . These errors satisfy

(22), (23) and (24) with εi = T s
i,h. Then

cII(ts+1)− cs+1
h

= F1,h(JF
∗
3,h)

−1 (F2,h + JF3,h)F1,h(c
s
h − c̃sh)

+F1,h(JF
∗
3,h)

−1
(

(F2,h + JF3,h)T
s
1,h + T s

2,h

)

+ T s
3,h.

Therefore, we obtain for the truncation error of the split-
ting method, T s

h , the following equation

T s
h = F1,h(JF

∗
3,h)

−1
(

(F2,h + JF3,h)T
s
1,h + T s

2,h

)

+ T s
3,h.

From the previous results and stability Propositions
3.1 and 3.2 we may easily establish the next convergence
estimate for the discretization error.

Proposition 3.3. If (21), (25) and (26) are satisfied
then

cII(ts + 1)− cs+1
h

≤ 1− Ss+1
C

1− SC
(IC + 1) max

i=1,2,3
max

`=1,...,s+1
‖T `

i,h‖∞.

3.4 Special families of methods

Let us consider equation (1) with z ∈ [0, 1],

F1(c) = −α
∂c

∂z
, F2(c) = β

∂2c

∂z2
, F3(c) = f(c).

We discretize (7)-(9) using backward and second or-
der centered differences respectively for first and second
order space derivatives. The time derivative is discretized
using the θ-method which is defined by

ys+1/2 = ys +
∆t

2

(

(1− θ)G(ys+1/2) + θG(ys)
)

,

when y′ = G(y) is to be solved.
In this case we have,

[F1,h(U
s
h)]1 =

1− aθ̂

1 + a
(Us

h)1,



The use of splitting methods in the numerical simulation of reacting flows 5

and, for i = 2, . . . , N ,

[F1,h(U
s
h)]i =

1 + θ̂

1 + a

i−1
∑

j=1

(

a

1 + a

)i−j

(Us
h)j

+
1− aθ̂

1 + a
(Us

h)i.

For F2,h we have

[F2,h(V
s
h )]1 = (1− 2β

∆t

h2
)(V s

h )1 + β
∆t

h2
(V s

h )2;

for i = 2, . . . , N − 1,

[F2,h(V
s
h )]i = β

∆t

h2
(V s

h )i−1

+(1− 2β∆t
h2
)(V s

h )i + β
∆t

h2
(V s

h )i+1;

and

[F2,h(V
s
h )]N = β

∆t

h2
(V s

h )N−1 + (1− 2β
∆t

h2
)(V s

h )N .

Finally, for σ ∈ [0, 1], F3,h is defined, for i = 1, . . . , N ,
by

[F3,h(V
s
h )]i = ∆tσf((V s

h )i),

and F ∗3,h is defined, for i = 1, . . . , N , by

[F ∗3,h(V
s+1
h )]i = (1−∆t(1− σ))f((V s+1

h )i).

Let us denote by M[θ, σ] the splitting method just
described.
It is a simple but tedious task to establish the ex-

pressions of IC and SC for M[θ, σ]. Let ∆t0 be an upper
bound for the time step size. Assuming that |F ′3| ≤ q we
have:

(i) For θ = 0 then, for γ ∈ (0, 1) and for ∆t small
enough, we have

SC := γ2 1 +∆t0σq

1− (1− σ)∆t0q
,

IS := γ
1 +∆t0σq

1− (1− σ)∆t0q
;

(ii) For θ ∈ (0, 1), there exists K(θ) < 1 such that, for
∆t small enough,

SC := K(θ)2
1 +∆t0σq

1− (1− σ)∆t0q
,

IS := K(θ)
1 +∆t0σq

1− (1− σ)∆t0q
;

(iii) If θ = 1 then IC and SC are greater or equal to one.

Attending to the values of SC and IC we conclude
that M[0,1] and M[0,0] are stable and internally stable.
Nevertheless the stability constant of M[0,1] is bounded
by γ2(1 + ∆t0q) while M[0,0] has a stability constant
bounded by γ/(1−∆t0q).
As far as the spatial truncation error is concerned we

have, for j = 1, 3, w = u, u∗,

T s+1
j,h =

∂2w

∂t2
∆t

2

(

1

2
− (1− θ)

)

+ α
h

2

∂2w

∂x2
+O(h2,∆t2),

and

T s+1
2,h =

∆t

2

(

∂2w

∂t2
− (1− σ)f ′(v(xi, ts+1))

∂v

∂t

)

+O(h2,∆t2),

where the partial derivatives are evaluated at some points
in (xi−1, xi)× (ts, ts+1).
From Proposition 3.3, if M[θ, σ] is stable and inter-

nally stable – with stability constants SC , IS less than
one – then the discretization error cII(ts)− csh satisfies

‖cII(ts+1)− cs+1
h ‖∞ ≤

1− Ss+1
C

1− SC
(IS + 1)O(h,∆t).

4 Numerical examples

4.1 A fixed bed cathalitic reactor

This section is concerned with the nonlinear initial boun-
dary value problem (13)-(14) which assumes importance
in chemical engineering, for instance in the modeling
of fixed bed cathalitic reactors ([5]). In this model is
assumed that for a given axial point, the temperature
values at a characteristic position of the tube radius
are representative of the whole cross section. In (13),
γi, i = 1, ..., 4, are real constants, representing the inten-
sity of some mechanisms occurring in the system. The
wall temperature cw(t) reflects the distributed nature of
the interaction between the process and its environment
and the term r(c) is a nonlinear known function stand-
ing for a chemical reaction rate. In the initial-boundary
condition (14), f and cF are assumed to be known func-
tions.
Computations have been carried with parameters:























γ1 = −1, γ2 = 10
−3, γ3 = −0.5, γ4 = 0.5,

cF (0) = 1.1, cF (t) = 1, t > 0,

r(c) = c2,

f(z) = 1.11067 + 0.359664z + 0.325977z2, z ∈ (0, 1),
cw(t) = 0.8, t ≥ 0.
In Fig. 2 we plot the numerical solution computed

with M[1,1] and M[0,1] with h = 10−2 and ∆t =
h

2
.

The behaviour of the numerical approximation ob-
tained using M[0,0] is analogous to the one presented
by the numerical approximation obtained using M[0,1].
However the computational cost of M[0,0] is greater than
the computational cost of M[0,1].

4.2 A moving bed reactor used in the paper industry

In this section we consider the system of hyperbolic par-
tial differential equations that describes the behaviour of
a moving bed reactor – the digester – used in the paper
and pulp industry ([1]).
The digester is an heterogeneous reactor with an al-

most cylindrical shape, where wood chips – solid phase
– react with an aqueous solution – free liquid phase –
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Fig. 2. Numerical approximations (M[1,1]: green; M[0,1]:
blue) and exact solution (red) for (13)-(14).

of sodium hydroxide and sodium sulfide, to remove the
lignin from the cellulose fibers (Fig. 3). As the wood
chips are porous a third phase – entrapped liquid phase
– is also considered.
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Fig. 3. In the first part of the digester the phases flow concur-
rently while in the second part the flows are countercurrently.

From the physical point of view we can describe the
behaviour of a digester as follows: (i) In its upper part
the solid and the liquid phase flow downwards concur-
rently and at z = EXT the liquid phase is completely ex-
tracted; (ii) In its lower part a free liquid flows upwards
countercurrently with the solid phase; (iii) At several
levels of the digester’s height – the circulations C1 and
C2 – the free liquid is extracted, enriched and heated
before being reinjected. From an industrial point of view
it is important to know the temperature and the con-
centration of several chemical species – lignin, cellulose,
hemicellulose – in the solid phase, free liquid phase and
entrapped liquid phase. If yi denotes the concentration
of some chemical product then yFi , y

E
i and y

S
i denote its

concentration in the liquid, entrapped and solid phases
respectively. For ` = F,E, S, y`i , i = 1, 2, 3, represents
the concentration of cellulose, hemicellulose and lignin
respectively. For ` = F,E, i = 4, 5, y`i represents the
concentration respectively of solid hydroxide and solid
sulfide. Finally yF6 , y

E
6 stand for the temperature of the

free and the entrapped liquid. The behaviour of the di-
gester is described in a simplified way by the system of
PDE’s


















































































ξ1
∂yFi
∂t

= −uF
∂yFi
∂z

+ ρ1(y
E
i − yFi ), i = 1, . . . , 5,

ξ1
∂yF6
∂t

= −uF
∂yF6
∂z

+ ρ2(y
E
6 − yF6 ),

ξ2
∂yEi
∂t

= −uS
∂yEi
∂z

−Ri

−ρ3(y
E
i − yFi ), i = 1, . . . , 5,

ξ2
∂yE6
∂t

= −uS
∂yE6
∂z

− ρ4(y
E
6 − yF6 ),

ξ3
∂ySi
∂t

= −uS
∂ySi
∂z

+Ri, i = 1, . . . , 3,

(27)

where ξi, i = 1, 2, 3, ρi, i = 1, . . . , 4, represent physical
constants.
In system (27), the velocity uF is positive for i =

1, 2, 3 – the liquid phase flows downwards – and is nega-
tive for i = 4, 5, and z ≥ EXT – because the liquid phase
flows upwards countercurrently. The reaction terms Ri

are represented by exponential functions depending on
y`i and are experimentally established in [1]. The bound-
ary and initial conditions as well as the values of the
parameters used in the model were obtained experimen-
tally and are established in [1].
The evolution in time of the concentration of solid

cellulose, solid lignin and entrapped alkali are plotted
respectively in Fig. 4, Fig. 5 and Fig. 6. In Fig. 7 the time
evolution of the temperature of the free liquid is plotted.
The stationary concentrations of cellulose, lignin, alkali
and the temperature are plotted respectively in Fig. 8,
Fig. 9, Fig. 10 and Fig. 11.
The computations have been made using M[0,1] with

constant step-size and local refinement near the circula-
tion points. The results obtained for the evolution prob-
lem present physical evidence. The stationary results
agree with the numerical results in [1].
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Fig. 4. The evolution in time of the concentration of solid
cellulose.
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Fig. 5. The evolution in time of the concentration of solid
lignin.
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Fig. 8. Numerical stationary cellulose solution for (27).

0

0.1

0.2

0.3

0.4

0.5
Lignin

free     
entrapped
solid    

 
Top                               C1           C2                   EXT                                                                     Base

Fig. 9. Numerical stationary lignin solution for (27).
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Fig. 10. Numerical stationary alkali solution for (27).

340

360

380

400

420
Temperature

free     
entrapped

 
Top                               C1           C2                   EXT                                                                     Base

Fig. 11. Numerical stationary temperature solution for (27).


