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Synchronizing Automata

Let A be a complete deterministic finite automaton whose input
alphabet is Σ and whose state set is Q.

Denote by S.v the image of the subset S ⊆ Q under the action of
the word v ∈ Σ∗.

A word v is called reset (or synchronizing) word for A iff |Q.v | = 1
(equivalently q.v = p.v for all q,p ∈ Q).

A is called synchronizing if it possesses some reset word.

C(A ) denotes the minimum length of reset words for A and this
function is usually called Cerny function and let us call its value
reset length of A .
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Synchronizing Automaton A by "greedy" algorithm
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A reset word is v =baababaaab.
Q.v =

Since |Q.v | = 1 the word v is a reset word for A whence
C(A ) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A ) = 9 < |v |.
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Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
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Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton A is synchronizing iff each pair of states p,q can be
merged by some word v , i.e. p.v = q.v .

Find-Sync-Word | in O(n3) (Greedy algorithm)

Given An n-state automaton A ;
Return Some reset word for A if it exists.

Check-Sync | in O(n2)

Given An n-state automaton A ;
Return Yes iff A is synchronizing.
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Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
[Unless P = NP], no polynomial time algorithm approximates
reset length of A within a constant factor (CSR 2010).
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Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton A and a positive integer k ;
Question: C(A ) = k?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms
cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton A and a positive integer k ;
Question: C(A ) ≤ k?

For each ψ of SAT-problem with n variables and m clauses he
constructed Epp(ψ) such that
C(Epp(ψ)) = n if ψ is satisfiable,
C(Epp(ψ)) = n + 1 if ψ is not satisfiable.
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Examples for two instances

Σ = {a,b}, Q = {qi,j | i ∈ [1,n + 1], j ∈ [1,m]} ∪ {z0}

qi,j .d =











z0 if (d = a and xj ∈ ci) or (d = b and xj ∈ ci),

z0 if j = n + 1,

qi,j+1 otherwise.

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3),

ψ2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3).

It is clear ψ1 is satisfiable for the truth assignment
τ : x1 = x2 = 0, x3 = 1 while ψ2 is not satisfiable.

The word v(τ) = bba synchronizes Epp(ψ1) and the word a4 is a reset
word of minimum length for Epp(ψ2).
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The automata Epp(ψ1) and Epp(ψ2)

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
An applied prefix is v = 1
(First row).v = {q1,1,q2,1,q3,1,q4,1, z0}

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

b

b

a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b
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a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b
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Exact Search Variants of The Problem

Search-Reset-Length | FPNP[log]-complete

Given A synchronizing automaton A ;
Return C(A ).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton A ;
Return Some shortest reset word for A .

FPNP and FPNP[log] are complexity classes of search problems that
can be solved by a deterministic polynomial time algorithm equipped
with an ability to use an oracle for any NP-complete problem by
polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010
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Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in
a polynomial time?

An algorithm M approximates reset length in K if for an arbitrary DFA
A ∈ K, the algorithm calculates a positive integer M(A ) such that
M(A ) ≥ C(A ).

sup{
M(A )

C(A )
| A ∈ K} is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-Length?
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The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of re-
set words within a constant factor.

For every ψ of SAT with n variables we construct synchronizing
automaton Ar (ψ) for r = 2,3, . . . such that
C(Ar (ψ)) ≤ n + r and cr−1v(τ)c is reset if ψ is satisfiable on τ ,
C(Ar (ψ)) > r(n − 1) if ψ is not satisfiable.

Ar (ψ) is constructed by a "substitution" Ar−1(ψ) instead every state of
A2(ψ) and some additional modification.
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The automata A (ψ1) and A (ψ2)

An applied prefix is

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b
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The automata A (ψ1) and A (ψ2)

An applied prefix is
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The automata A (ψ1) and A (ψ2)

An applied prefix is c.
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The automata A (ψ1) and A (ψ2)

An applied prefix is cb.
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c c c c
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The automata A (ψ1) and A (ψ2)

An applied prefix is cbb.
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c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32



The automata A (ψ1) and A (ψ2)

An applied prefix is cbba = cv(τ).
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c c c c
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The automata A (ψ1) and A (ψ2)

An applied prefix is cbbac = cv(τ)c.
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c c c c
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Relabeling of Automata and Coloring of Graphs

1 2

34

b b

b

a

a

a

b a

The 4-state Cerny automaton C4 with shortest reset word ba3ba3b of
length 9.
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Relabeling of Automata and Coloring of Graphs

1 2

34

An underlying graph G4 of the Cerny automaton C4.
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Relabeling of Automata and Coloring of Graphs

1 2

34

b b

b

a

a

a

b a

A synchronizing relabeling of C4 by a permutation of labels on
outgoing arrows (from state 2).
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Relabeling of Automata and Coloring of Graphs

1 2

34

b a

b

a

b

a

b a

A synchronizing coloring of G4 with shortest reset word a3 of length 3.
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Relabeling of Automata and Coloring of Graphs

An example from the real life!
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Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

How to relabel A to make it synchronizing?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).

How to find relabeling of A with "relatively" short reset word or
find its length?
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Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with
g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O’Brien, 1981; Fridman, 1990; Perrin and
Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001,
J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in O(n3)-time
and leads to O(n2)-time algorithm invented by Beal and Perrin in 2008
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Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.
How to relabel A to make it synchronizing?
Trahtman in 2008 proved a criterion which allows to find such
relabeling in O(n3) time.

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).
How to find relabeling of A with "relatively" short reset word or
find its length?
No polynomial time algorithm approximates optimal coloring
[value] within factor 2.
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Approximate Optimal Coloring Value

Let OPT (G) denotes the minimal value of C(A (G)) for possible
colorings A (G) of AGW-graph G and let us call it optimal coloring
value.
A coloring B(G) with C(B(G)) = OPT (G) is called optimal.

Opt-Coloring-Value

Given An AGW-graph G;
Return OPT (G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a
constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant
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The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value
within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant
factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct G(ψ) such that
OPT (G(ψ)) ≤ p(m,n) if ψ is satisfiable, (call GOODCASE)
OPT (G(ψ)) ≥ (2− 0.5ε)p(m,n) if ψ is not satisfiable (call BADCASE).
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Synchronizing Coloring in GOODCASE

Construction of The Graph G(ψ)
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Synchronizing Coloring in GOODCASE

Q.uinit equals the first row of Rsat and state z. The length of uinit is
p − psmall .
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Synchronizing Coloring in GOODCASE

Define usat = v(τ). Then Q.uinitusat consists of n states in the first row
of Racc , 3 states in Rfix with numbers 1,3,4 and state z. The length of
usat is n + 1.
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Synchronizing Coloring in GOODCASE

Q.uinitusatu′

acc consists of bottom state in Racc and 3 states in Rfix with
numbers h − 3,h − 1,h and state z. The length of u′

acc is
psmall − (n + 2) = h.
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Synchronizing Coloring in GOODCASE

Q.uinitusatuacc = s
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Counting States in The First Row of Racc

Let E = {a,b} and apply a word . . .ba13 . . . to the green states.

q−6 q−4 q−2 Di(1)

E2 E2 E2

Di(35)

a b

E E

E2

E2

E8

E4

E − e1(i) e1(i)

E − e2(i) e2(i)

E

E − e1(i)

E E

E

E2

E6

E2
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Fixing The Word wn(. . . ) Using Component Rfix

Synchronizing Coloring of Rfix in GOODCASE.

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

ab

ab

ab

a

a

a
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Fixing The Word wn(. . . ) Using Component Rfix

A fixed word wn = 1 . . .

1

2

3

4

5

6

7

8

9

10

11

a
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Fixing The Word wn(. . . ) Using Component Rfix

A fixed word wn = a . . .
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Fixing The Word wn(. . . ) Using Component Rfix

A fixed word wn = ax . . .
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Fixing The Word wn(. . . ) Using Component Rfix

A fixed word wn = aa . . .
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Fixing The Word wn(. . . ) Using Component Rfix

A fixed word wn = aad1 . . .
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Fixing The Word wn(. . . ) Using Component Rfix

A fixed word wn = aad1a . . .
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Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G;
Return Optimal Coloring of G.

Key Question
Can we approximately find the optimal coloring within a constant factor
in a polynomial time?

Remark 1: It doesn’t follow from Theorem 2, because we should not
find C(A (G)) for quasi-optimal coloring A (G).

Remark 2: If we could approximate C(A ) in a polynomial time then we
could make such conclusion. But it is false in view of our first result.
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Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:
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satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Suppose Rfix(1).a = Rfix(2).

For i ∈ [1,n − 1] calculate path lengths in Di marked by degree of
a and di as a right label from Di(1).
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For i ∈ [1,n − 1] calculate path lengths in Di marked by degree of
a and di as a right label from Di(1).

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).
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satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Suppose Rfix(1).a = Rfix(2).

For i ∈ [1,n − 1] calculate path lengths in Di marked by degree of
a and di as a right label from Di(1).

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).
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Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

If ψ(b1,b2, . . . ,bn) is true then ψ is satisfiable.
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Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

If ψ(b1,b2, . . . ,bn) is true then ψ is satisfiable.

In opposite case, it is sufficient to prove C(B) ≥ (2 − 0.5ε)p.

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).

It can be done as in the BADCASE using that ψ should be true for
the collection b1,b2, . . . ,bn.
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2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A ) ≤ C(B) ≤ 3C(A ).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).
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An Automata Transformation in Theorem 1.

1

2

3

a3

a1

a1, a2

1, 3 2, 3 3, 3

1, 2

1, 1

2, 2

2, 1

3, 2

3, 1

a

a

a

a

a

a

b

b

a2 a3

a a a

b
b

b

b

b

b
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Substitutions in Graph G(ψ) in Theorem 2.

q.ctop

q.ca
q.cb

a b

qtop

qa
qb

a b

a a

q.atop

q.aa
q.ab

a b

q.btop

q.ba
q.bb

a b

b b

s
top
0

sbot
0

gtop

a

b

a, b
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The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.
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appropriate DFA A with 0 and each killing word for B is reset for A .
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Logarithmic Approximation

The greedy algorithm (Eppstein 1990) finds a reset word for
n-state automata in O(n3) time.

It finds a reset word of length at most n3
−n
6 (Pin 1983).

All experiments with series of slowly synchronized automata
generated in our scientific group show it has a logarithmic
approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton A

Return A number between C(A ) and d · log n · C(A ).

Is there a polynomial-time algorithm for the above problem?
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Thank you for your attention!

Any questions?
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