Approximating lengths of reset words

Mikhail V. Berlinkov

Ural State University, Ekaterinburg, Russia

DAAST WIEN 2010

DAAST WIEN 2010

Supported by AuthoMathA, CMUC, ESF, TUWIEN and

Synchronizing Automata

Let \mathscr{A} be a complete deterministic finite automaton whose input alphabet is Σ and whose state set is Q.

- Denote by S.v the image of the subset $S \subseteq Q$ under the action of the word $v \in \Sigma^{*}$
- A word v is called reset (or synchronizing) word for \mathscr{A} iff $|Q . v|=1$ (equivalently $q . v=p . v$ for all $q, p \in Q$).
- \mathscr{A} is called synchronizing if it possesses some reset word.
- $\mathfrak{C}(\mathscr{A})$ denotes the minimum length of reset words for A and this function is usually called Cerny function and let us call its value reset length of

Synchronizing Automata

Let \mathscr{A} be a complete deterministic finite automaton whose input alphabet is Σ and whose state set is Q.

- Denote by $S . v$ the image of the subset $S \subseteq Q$ under the action of the word $v \in \Sigma^{*}$.
- A word v is called reset (or synchronizing) word for \mathscr{A} iff $|Q . v|=1$ (equivalently $q . v=p . v$ for all $q, p \in Q$).
- \mathcal{A} is called synchronizing if it possesses some reset word.
- $\mathfrak{C}(\mathscr{A})$ denotes the minimum length of reset words for \mathscr{A} and this function is usually called Cerny function and let us call its value reset length of

Synchronizing Automata

Let \mathscr{A} be a complete deterministic finite automaton whose input alphabet is Σ and whose state set is Q.

- Denote by $S . v$ the image of the subset $S \subseteq Q$ under the action of the word $v \in \Sigma^{*}$.
- A word v is called reset (or synchronizing) word for \mathscr{A} iff $|Q . v|=1$ (equivalently $q . v=p . v$ for all $q, p \in Q$).
- \mathscr{A} is called synchronizing if it possesses some reset word.
- $\mathfrak{C}(\mathscr{A})$ denotes the minimum length of reset words for \mathscr{A} and this function is usually called Cerny function and let us call its value reset length of

Synchronizing Automata

Let \mathscr{A} be a complete deterministic finite automaton whose input alphabet is Σ and whose state set is Q.

- Denote by $S . v$ the image of the subset $S \subseteq Q$ under the action of the word $v \in \Sigma^{*}$.
- A word v is called reset (or synchronizing) word for \mathscr{A} iff $|Q . v|=1$ (equivalently $q . v=p . v$ for all $q, p \in Q$).
- \mathscr{A} is called synchronizing if it possesses some reset word.
- $\mathbb{C}(\mathscr{A})$ denotes the minimum length of reset words for \mathscr{A} and this function is usually called Cerny function and let us call its value reset length of

Synchronizing Automata

Let \mathscr{A} be a complete deterministic finite automaton whose input alphabet is Σ and whose state set is Q.

- Denote by $S . v$ the image of the subset $S \subseteq Q$ under the action of the word $v \in \Sigma^{*}$.
- A word v is called reset (or synchronizing) word for \mathscr{A} iff $|Q . v|=1$ (equivalently $q . v=p . v$ for all $q, p \in Q$).
- \mathscr{A} is called synchronizing if it possesses some reset word.
- $\mathfrak{C}(\mathscr{A})$ denotes the minimum length of reset words for \mathscr{A} and this function is usually called Cerny function and let us call its value reset length of \mathscr{A}.

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
Q. $v=$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence $\mathscr{C}(\mathscr{A}) \leq|V|=10$.

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
Q. $v=$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence $\mathscr{C}(\mathscr{A}) \leq|V|=10$.

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
Q.v $=\{1,2,3,4\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence
$\mathfrak{C}(\mathscr{A}) \leq|v|=10$.

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
$Q . v=\{1,2,3\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence
$\mathfrak{C}(\mathscr{A}) \leq|v|=10$.

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a a a b$.
$Q . v=\{1,2,3\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
$Q . v=\{2,3,4\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
Q. $v=\{1,3,4\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
Q. $v=\{1,3,4\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b$
Q.v $=\{1,3\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b$
Q.v $=\{1,3\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a$
$Q . v=\{2,4\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a$
$Q . v=\{2,4\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
$Q . v=\{1,2\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=$ baababaaab.
$Q . v=\{1,2\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a$
$Q . v=\{2,3\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a a$
$Q . v=\{3,4\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a a a$
$Q . v=\{1,4\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a a a$
$Q . v=\{1,4\}$
Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a a a b$.
Q.v $=\{1\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence $\mathfrak{C}(\mathscr{A}) \leq|v|=10$.
In fact the shortest reset word for \mathscr{A} is $b a^{3} b a^{3} b$ of length 9 and thus

Synchronizing Automaton \mathscr{A} by "greedy" algorithm

A reset word is $v=b a a b a b a a a b$.
Q.v $=\{1\}$

Since $|Q . v|=1$ the word v is a reset word for \mathscr{A} whence
$\mathfrak{C}(\mathscr{A}) \leq|v|=10$.
In fact the shortest reset word for \mathscr{A} is $b a^{3} b a^{3} b$ of length 9 and thus $\mathfrak{C}(\mathscr{A})=9<|v|$.

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Given a synchronizing automaton \mathscr{A};

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length?

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length?

Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton \mathscr{A} is synchronizing iff each pair of states p, q can be merged by some word v, i.e. p. $v=q . v$.

Find-Sync-Word | in $O\left(n^{3}\right)$ (Greedy algorithm)
Given An n-state automaton
Return Some reset word for \mathscr{A} if it exists.
Check-Sync |in $O\left(n^{2}\right)$
Given An n-state automaton \mathscr{A}
Return Yes iff \mathscr{A} is synchronizing.

Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton \mathscr{A} is synchronizing iff each pair of states p, q can be merged by some word v, i.e. p. $v=q . v$.

Find-Sync-Word | in $O\left(n^{3}\right)$ (Greedy algorithm)
Given An n-state automaton \mathscr{A};
Return Some reset word for \mathscr{A} if it exists.
Check-Sync |in $O\left(n^{2}\right)$
Given An n-state automaton \mathscr{A}
Return Yes iff \mathscr{A} is synchronizing.

Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton \mathscr{A} is synchronizing iff each pair of states p, q can be merged by some word v, i.e. p. $v=q . v$.

Find-Sync-Word |in $O\left(n^{3}\right)$ (Greedy algorithm)
Given An n-state automaton \mathscr{A};
Return Some reset word for \mathscr{A} if it exists.
Check-Sync |in $O\left(n^{2}\right)$
Given An n-state automaton \mathscr{A};
Return Yes iff \mathscr{A} is synchronizing.

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Černý in 1964 proved synchronization criterion which allows to find reset word in $O\left(n^{3}\right)$ time.

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length? [Unless $P=N P$], no polynomial time algorithm approximates reset length of \mathscr{A} within a constant factor (CSR 2010).

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard
Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A})=k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Peset-Length | NP-complete (Rystsov, Eppstein and others) Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A}) \leq k$?

For each ψ of SAT-problem with n variables and m clauses he constructed Epp (ψ) such that
$\mathfrak{C}(E p p(\psi))=n \quad$ if ψ is satisfiable,
$\mathfrak{C}(\operatorname{Epp}(\psi))=n+1$ if ψ is not satisfiable.

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A})=k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard
Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A})=k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)
Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A}) \leq k$?

```
For each }\psi\mathrm{ of SAT-problem with }n\mathrm{ variables and }m\mathrm{ clauses he
constructed Epp(\psi) such that
C}(Epp(\psi))=n\quad\mathrm{ if }\psi\mathrm{ is satisfiable,
C}(\operatorname{Epp}(\psi))=n+1 if \psi is not satisfiable.
```


Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A})=k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)
Given A synchronizing automaton \mathscr{A} and a positive integer k; Question: $\mathfrak{C}(\mathscr{A}) \leq k$?

For each ψ of SAT-problem with n variables and m clauses he constructed $\operatorname{Epp}(\psi)$ such that $\mathfrak{C}(E p p(\psi))=n \quad$ if ψ is satisfiable, $\mathfrak{C}(E p p(\psi))=n+1$ if ψ is not satisfiable.

Examples for two instances

$$
\begin{aligned}
& \Sigma=\{a, b\}, \quad Q=\left\{q_{i, j} \mid i \in[1, n+1], j \in[1, m]\right\} \cup\left\{z_{0}\right\} \\
& q_{i, j} \cdot d= \begin{cases}z_{0} & \text { if }\left(d=a \text { and } x_{j} \in c_{i}\right) \text { or }\left(d=b \text { and } \overline{x_{j}} \in c_{i}\right), \\
z_{0} & \text { if } j=n+1, \\
q_{i, j+1} & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear ψ_{1} is satisfiable for the truth assignment $\tau: x_{1}=x_{2}=0, x_{3}=1$ while ψ_{2} is not satisfiable.

The word $v(\tau)=$ bba synchronizes $\operatorname{Epp}\left(\psi_{1}\right)$ and the word a^{4} is a reset word of minimum length for $\operatorname{Epp}\left(\psi_{2}\right)$.

Examples for two instances

$$
\Sigma=\{a, b\}, \quad Q=\left\{q_{i, j} \mid i \in[1, n+1], j \in[1, m]\right\} \cup\left\{z_{0}\right\}
$$

$$
q_{i, j} \cdot d= \begin{cases}z_{0} & \text { if }\left(d=a \text { and } x_{j} \in c_{i}\right) \text { or }\left(d=b \text { and } \overline{x_{j}} \in c_{i}\right) \\ z_{0} & \text { if } j=n+1, \\ q_{i, j+1} & \text { otherwise }\end{cases}
$$

$$
\begin{array}{lrl}
\psi_{1}= & \left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right), \\
\psi_{2}= & \left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) .
\end{array}
$$

It is clear ψ_{1} is satisfiable for the truth assignment $\tau: x_{1}=x_{2}=0, x_{3}=1$ while ψ_{2} is not satisfiable.

Examples for two instances

$$
\Sigma=\{a, b\}, \quad Q=\left\{q_{i, j} \mid i \in[1, n+1], j \in[1, m]\right\} \cup\left\{z_{0}\right\}
$$

$$
q_{i, j} \cdot d= \begin{cases}z_{0} & \text { if }\left(d=a \text { and } x_{j} \in c_{i}\right) \text { or }\left(d=b \text { and } \overline{x_{j}} \in c_{i}\right) \\ z_{0} & \text { if } j=n+1 \\ q_{i, j+1} & \text { otherwise }\end{cases}
$$

$$
\begin{array}{lrl}
\psi_{1}= & \left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \\
\psi_{2}= & \left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)
\end{array}
$$

It is clear ψ_{1} is satisfiable for the truth assignment $\tau: x_{1}=x_{2}=0, x_{3}=1$ while ψ_{2} is not satisfiable.
The word $v(\tau)=$ bba synchronizes $\operatorname{Epp}\left(\psi_{1}\right)$ and the word a^{4} is a reset word of minimum length for $\operatorname{Epp}\left(\psi_{2}\right)$.

The automata $\operatorname{Epp}\left(\psi_{1}\right)$ and $\operatorname{Epp}\left(\psi_{2}\right)$

$\psi_{1}=\left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
An applied prefix is $v=1$
(First row). $v=\left\{q_{1,1}, q_{2,1}, q_{3,1}, q_{4,1}, z_{0}\right\}$

The automata $\operatorname{Epp}\left(\psi_{1}\right)$ and $\operatorname{Epp}\left(\psi_{2}\right)$

$\psi_{1}=\left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
An applied prefix is $v=1$
(First row). $v=\left\{q_{1,1}, q_{2,1}, q_{3,1}, q_{4,1}, z_{0}\right\}$

The automata $\operatorname{Epp}\left(\psi_{1}\right)$ and $\operatorname{Epp}\left(\psi_{2}\right)$

$\psi_{1}=\left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
An applied prefix is $v=b$.
(First row). $v=\left\{q_{1,2}, q_{3,2}, q_{4,2}, z_{0}\right\}$

The automata $\operatorname{Epp}\left(\psi_{1}\right)$ and $\operatorname{Epp}\left(\psi_{2}\right)$

$\psi_{1}=\left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
An applied prefix is $v=b b$.
(First row). $v=\left\{q_{1,3}, z_{0}\right\}$

The automata $\operatorname{Epp}\left(\psi_{1}\right)$ and $\operatorname{Epp}\left(\psi_{2}\right)$

$\psi_{1}=\left(x_{3} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)$
An applied prefix is $v=b b a$.
(First row). $v=\left\{z_{0}\right\}$

Exact Search Variants of The Problem

Search-Reset-Length $\mid F P^{N P[l o g]}$-complete

Given A synchronizing automaton \mathscr{A};
Return $\mathfrak{C}(\mathscr{A})$.

Search-Shortest-Reset-Word |in FPNP and FPNP[log]-hard
 Given A synchronizing automaton
 Return Some shortest reset word for

$F P^{N P}$ and $F P^{N P[l o g]}$ are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any NP-complete problem by polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010

Exact Search Variants of The Problem

Search-Reset-Length $\mid F P^{N P[l o g]}$-complete

Given A synchronizing automaton \mathscr{A};
Return $\mathfrak{C}(\mathscr{A})$.
Search-Shortest-Reset-Word |in $F P^{N P}$ and $F P^{N P[l o g]-h a r d ~}$
Given A synchronizing automaton \mathscr{A};
Return Some shortest reset word for \mathscr{A}.
> $F P^{N P}$ and $F P^{N P[l o g]}$ are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any NP-complete problem by polynomial or logarithmic times respectively. These results were proved by Olschëwski and Ummels in 2010

Exact Search Variants of The Problem

Search-Reset-Length $\mid F P^{N P[l o g]}$-complete

Given A synchronizing automaton \mathscr{A};
Return $\mathfrak{C}(\mathscr{A})$.
Search-Shortest-Reset-Word |in FP ${ }^{N P}$ and $F P^{N P[l o g]-h a r d ~}$
Given A synchronizing automaton \mathscr{A};
Return Some shortest reset word for \mathscr{A}.
$F P^{N P}$ and $F P^{N P[/ o g]}$ are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any NP-complete problem by polynomial or logarithmic times respectively. These results were proved by Olschëwski and Ummels in 2010

Exact Search Variants of The Problem

Search-Reset-Length $\mid F P^{N P[l o g]}$-complete
Given A synchronizing automaton \mathscr{A};
Return $\mathfrak{C}(\mathscr{A})$.
Search-Shortest-Reset-Word |in $F P^{N P}$ and $F P^{N P[l o g]}$-hard
Given A synchronizing automaton \mathscr{A};
Return Some shortest reset word for \mathscr{A}.
$F P^{N P}$ and $F P^{N P[l o g]}$ are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any NP-complete problem by polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in a polynomial time?

An algorithm M approximates reset length in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that

$\mathscr{A} \in \mathcal{K}\}$ is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-Length?

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in a polynomial time?

An algorithm M approximates reset length in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$.
$\sup \left\{\left.\frac{M(\mathscr{A})}{\mathcal{C}(\mathscr{A})} \right\rvert\, \mathscr{A} \in \mathcal{K}\right\}$ is an approximation factor of M

Is there a polynomial-time approximation algorithm within a constant factor for Search-Reset-I enath?

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in a polynomial time?

An algorithm M approximates reset length in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$.
$\sup \left\{\left.\frac{M(\mathscr{A})}{\mathfrak{C}(\mathscr{A})} \right\rvert\, \mathscr{A} \in \mathcal{K}\right\}$ is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-I enath?

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in a polynomial time?

An algorithm M approximates reset length in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$.
$\sup \left\{\left.\frac{M(\mathscr{A})}{\mathfrak{C}(\mathscr{A})} \right\rvert\, \mathscr{A} \in \mathcal{K}\right\}$ is an approximation factor of M.
Is there a polynomial-time approximation algorithm within a constant factor for Search-Reset-Length?

The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of reset words within a constant factor.

```
For every \psi of SAT with n variables we construct synchronizing
automaton }\mp@subsup{\mathscr{A}}{r}{}(\psi)\mathrm{ for r=2,3,_. such that
C}(\mathscr{A}r(\psi))\leqn+r\mathrm{ and }\mp@subsup{c}{}{r-1}v(\tau)c\mathrm{ is reset if }\psi\mathrm{ is satisfiable on }\tau\mathrm{ ,
C}(\mathscr{A}r(\psi))>r(n-1) if \psi is not satisfiable.
\mathscr{A}
\mathscr{L}}2(\psi)\mathrm{ and some additional modification.
```


The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of reset words within a constant factor.

For every ψ of SAT with n variables we construct synchronizing automaton $\mathscr{A}_{r}(\psi)$ for $r=2,3, \ldots$ such that $\mathfrak{C}\left(\mathscr{A}_{r}(\psi)\right) \leq n+r$ and $c^{r-1} v(\tau) c$ is reset if ψ is satisfiable on τ, $\mathfrak{C}\left(\mathscr{A}_{r}(\psi)\right)>r(n-1)$ if ψ is not satisfiable.

The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of reset words within a constant factor.

For every ψ of SAT with n variables we construct synchronizing automaton $\mathscr{A}_{r}(\psi)$ for $r=2,3, \ldots$ such that $\mathfrak{C}\left(\mathscr{A}_{r}(\psi)\right) \leq n+r$ and $c^{r-1} v(\tau) c$ is reset if ψ is satisfiable on τ, $\mathfrak{C}\left(\mathscr{A}_{r}(\psi)\right)>r(n-1)$ if ψ is not satisfiable.
$\mathscr{A}_{r}(\psi)$ is constructed by a "substitution" $\mathscr{A}_{r-1}(\psi)$ instead every state of $\mathscr{A}_{2}(\psi)$ and some additional modification.

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is c.

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is $c b$.

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is cbb.

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is $c b b a=c v(\tau)$.

The automata $\mathscr{A}\left(\psi_{1}\right)$ and $\mathscr{A}\left(\psi_{2}\right)$

An applied prefix is $c b b a c=c v(\tau) c$.

Relabeling of Automata and Coloring of Graphs

The 4-state Cerny automaton C_{4} with shortest reset word $b a^{3} b a^{3} b$ of length 9.

Relabeling of Automata and Coloring of Graphs

An underlying graph G_{4} of the Cerny automaton C_{4}.

Relabeling of Automata and Coloring of Graphs

A synchronizing relabeling of C_{4} by a permutation of labels on outgoing arrows (from state 2).

Relabeling of Automata and Coloring of Graphs

A synchronizing relabeling of C_{4} by a permutation of labels on outgoing arrows (from state 2).

Relabeling of Automata and Coloring of Graphs

A synchronizing coloring of G_{4} with shortest reset word a^{3} of length 3.

Relabeling of Automata and Coloring of Graphs

An example from the real life!

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists? Černý in 1964 proved synchronization criterion which allows to find reset word in $O\left(n^{3}\right)$ time.
- How to relabel

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length? No polynomial time algorithm approximates reset length of \mathscr{A} within a constant factor (CSR 2010).
- How to find relabeling of
with "relatively" short reset word or find its length?

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists? Černý in 1964 proved synchronization criterion which allows to find reset word in $O\left(n^{3}\right)$ time.
- How to relabel \mathscr{A} to make it synchronizing?

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length? No polynomial time algorithm approximates reset length of \mathscr{A} within a constant factor (CSR 2010).
- How to find relabeling of \mathscr{A} with "relatively" short reset word or find its length?

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Černý in 1964 proved synchronization criterion which allows to find reset word in $O\left(n^{3}\right)$ time.

- How to relabel \mathscr{A} to make it synchronizing?

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length? No polynomial time algorithm approximates reset length of \mathscr{A} within a constant factor (CSR 2010).
- How to find relabeling of \mathscr{A} with "relatively" short reset word or find its length?

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Černý in 1964 proved synchronization criterion which allows to find reset word in $O\left(n^{3}\right)$ time.

- How to relabel \mathscr{A} to make it synchronizing?

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length? No polynomial time algorithm approximates reset length of \mathscr{A} within a constant factor (CSR 2010).
- How to find relabeling of \mathscr{A} with "relatively" short reset word or find its length?

Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O'Brien, 1981; Fridman, 1990; Perrin and Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001, J. Kari 2003...]

Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O'Brien, 1981; Fridman, 1990; Perrin and Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001, J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.
This result allows to find some synchronizing coloring in $O\left(n^{3}\right)$-time and leads to $O\left(n^{2}\right)$-time algorithm invented by Beal and Perrin in 2008

Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O'Brien, 1981; Fridman, 1990; Perrin and Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001, J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.
This result allows to find some synchronizing coloring in $O\left(n^{3}\right)$-time and leads to $O\left(n^{2}\right)$-time algorithm invented by Beal and Perrin in 2008

Main Questions And Outline of the Talk

Given an automaton \mathscr{A};

- How to find some reset word for \mathscr{A} if it exists?

Černý in 1964 proved synchronization criterion which allows to find reset word in $O\left(n^{3}\right)$ time.

- How to relabel \mathscr{A} to make it synchronizing?

Trahtman in 2008 proved a criterion which allows to find such relabeling in $O\left(n^{3}\right)$ time.

Given a synchronizing automaton \mathscr{A};

- How to find "relatively" short reset word for \mathscr{A} or its length? No polynomial time algorithm approximates reset length of \mathscr{A} within a constant factor (CSR 2010).
- How to find relabeling of \mathscr{A} with "relatively" short reset word or find its length?
No polynomial time algorithm approximates optimal coloring [value] within factor 2.

Approximate Optimal Coloring Value

Let $\operatorname{OPT}(G)$ denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph G and let us call it optimal coloring value.

```
A coloring \mathscr{B}(G)\mathrm{ with CC(BP}(G))=OPT(G) is called optimal
```

Opt-Coloring-Value
Given An AGW-grap
Return OPT(G)

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant

Approximate Optimal Coloring Value

Let $\operatorname{OPT}(G)$ denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph G and let us call it optimal coloring value.
A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G))=\operatorname{OPT}(G)$ is called optimal.
Opt-Coloring-Value
Given An AGW-graph G;
Return $\operatorname{OPT}(G)$.

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?
\qquad

Approximate Optimal Coloring Value

Let $\operatorname{OPT}(G)$ denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph G and let us call it optimal coloring value.
A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G))=\operatorname{OPT}(G)$ is called optimal.
Opt-Coloring-Value
Given An AGW-graph G;
Return $\operatorname{OPT}(G)$.

Key Question | Volkov 2008
 Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

Approximate Optimal Coloring Value

Let $\operatorname{OPT}(G)$ denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph G and let us call it optimal coloring value.
A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G))=\operatorname{OPT}(G)$ is called optimal.
Opt-Coloring-Value
Given An AGW-graph G;
Return $\operatorname{OPT}(G)$.

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant factor for Opt-Coloring-Value?

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. |Izvestiya Vuzov (submitted 07.2009)
 No polynomial-time algorithm approximates optimal coloring value

 within a constant factor less than 2.Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct $G(\psi)$ such that OPT $(G(\psi)) \leq p(m, n)$ if ψ is satisfiable, (call GOODCASE) OPT $(G(\psi)) \geq(2-0.5 \varepsilon) p(m, n)$ if ψ is not satisfiable (call BADCASE).

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.
Theorem 2. | Izvestiya Vuzov (submitted 07.2009)
No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

```
Can we approximately find the optimal coloring value within a constant
factor 2 in a polynomial time?
Proof sketch:
For each }\psi\mathrm{ of SAT with n variables we construct G( }\psi)\mathrm{ such that
OPT (G(\psi)) \leqp(m,n) if \psi is satisfiable, (call GOODCASE)
OPT}(G(\psi))\geq(2-0.5\varepsilon)p(m,n)\mathrm{ if }\psi\mathrm{ is not satisfiable (call BADCASE)
```


The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.
Theorem 2. | Izvestiya Vuzov (submitted 07.2009)
No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct $G(\psi)$ such that
OPT $(G(\psi)) \leq p(m, n)$ if ψ is satisfiable, (call GOODCASE)
$\operatorname{OPT}(G(\psi)) \geq(2-0.5 \varepsilon) p(m, n)$ if ψ is not satisfiable (call BADCASE).

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct $\boldsymbol{G}(\psi)$ such that OPT $(G(\psi)) \leq p(m, n)$ if ψ is satisfiable, (call GOODCASE) $\operatorname{OPT}(G(\psi)) \geq(2-0.5 \varepsilon) p(m, n)$ if ψ is not satisfiable (call BADCASE).

Synchronizing Coloring in GOODCASE

Construction of The Graph $\boldsymbol{G}(\psi)$

Synchronizing Coloring in GOODCASE

$Q . u_{\text {init }}$ equals the first row of $R_{\text {sat }}$ and state z. The length of $u_{\text {init }}$ is $p-p_{\text {small }}$.

Synchronizing Coloring in GOODCASE

Define $u_{\text {sat }}=v(\tau)$. Then $Q . u_{\text {init }} u_{\text {sat }}$ consists of n states in the first row of $R_{a c c}, 3$ states in $R_{f i x}$ with numbers 1,3,4 and state z. The length of $u_{\text {sat }}$ is $n+1$.

Synchronizing Coloring in GOODCASE

Q. $u_{\text {init }} u_{\text {sat }} u_{a c c}^{\prime}$ consists of bottom state in $R_{\text {acc }}$ and 3 states in $R_{f i x}$ with numbers $h-3, h-1, h$ and state z. The length of $u_{a c c}^{\prime}$ is
$p_{\text {small }}-(n+2)=h$.

Synchronizing Coloring in GOODCASE

$Q . u_{\text {init }} u_{s a t} u_{a c c}=s$

Counting States in The First Row of $R_{a c c}$

Let $E=\{a, b\}$ and apply a word $\ldots b a^{13} \ldots$ to the green states.

Counting States in The First Row of $R_{a c c}$

Let $E=\{a, b\}$ and apply a word $\ldots b a^{13} \ldots$ to the green states.

Counting States in The First Row of $R_{a c c}$

Let $E=\{a, b\}$ and apply a word $\ldots b a^{13} \ldots$ to the green states.

Counting States in The First Row of $R_{a c c}$

Let $E=\{a, b\}$ and apply a word $\ldots b a^{13} \ldots$ to the green states.

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

Synchronizing Coloring of $R_{f i x}$ in GOODCASE.

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=1 \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=a \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=a x \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=a x \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=a a \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=a a \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=\operatorname{aad}_{1} \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=\operatorname{aad}_{1} \ldots$

Fixing The Word $w_{n}(\ldots)$ Using Component $R_{f i x}$

A fixed word $w_{n}=\operatorname{aad}_{1} a \ldots$

Approximate Optimal Coloring

Opt-Coloring
 Given An AGW-graph G; Return Optimal Coloring of G.

Key Question
 Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

Remark 2: If we could approximate $\mathfrak{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G; Return Optimal Coloring of G.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

```
Remark 1: It doesn't follow from Theorem 2, because we should not
find}\mathfrak{C}(\mathscr{A}(G))\mathrm{ for quasi-optimal coloring }\mathscr{A}(G
Remark 2: If we could approximate }\mathbb{C}(\mathscr{A})\mathrm{ in a polynomial time then we
could make such conclusion. But it is false in view of our first result.
```


Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G; Return Optimal Coloring of G.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

> Remark 2: If we could approximate $\mathbb{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G;
Return Optimal Coloring of G.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

Remark 2: If we could approximate $\mathfrak{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2.
Proof Sketch:

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2.

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2. Proof Sketch:

- Suppose $R_{f i x}(1) \cdot a=R_{f i x}(2)$.
-

$-$
-

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2. Proof Sketch:

- Suppose $R_{f i x}(1) \cdot a=R_{f i x}(2)$.
- For $i \in[1, n-1]$ calculate path lengths in D_{i} marked by degree of a and d_{i} as a right label from $D_{i}(1)$.

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2. Proof Sketch:

- Suppose $R_{f i x}(1) \cdot a=R_{f i x}(2)$.
- For $i \in[1, n-1]$ calculate path lengths in D_{i} marked by degree of a and d_{i} as a right label from $D_{i}(1)$.
- Renewal set of states S from the first row of Row acc which can be merged by the word $w_{n}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2.
Proof Sketch:

- Suppose $R_{f i x}(1) . a=R_{f i x}(2)$.
- For $i \in[1, n-1]$ calculate path lengths in D_{i} marked by degree of a and d_{i} as a right label from $D_{i}(1)$.
- Renewal set of states S from the first row of Row ${ }_{a c c}$ which can be merged by the word $w_{n}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
- Renewal variable values $b_{1}, b_{2}, \ldots, b_{n}$ according to S.

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2. Proof Sketch:

- If $\psi\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is true then ψ is satisfiable.
-
-
-

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2. Proof Sketch:

- If $\psi\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is true then ψ is satisfiable.
- In opposite case, it is sufficient to prove $\mathfrak{C}(B) \geq(2-0.5 \varepsilon) p$.
-
-

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2.
Proof Sketch:

- If $\psi\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is true then ψ is satisfiable.
- In opposite case, it is sufficient to prove $\mathfrak{C}(B) \geq(2-0.5 \varepsilon) p$.
- Renewal set of states S from the first row of Rowacc which can be merged by the word $w_{n}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $\boldsymbol{G}(\psi)$ from Theorem 2 . Proof Sketch:

- If $\psi\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is true then ψ is satisfiable.
- In opposite case, it is sufficient to prove $\mathfrak{C}(B) \geq(2-0.5 \varepsilon) p$.
- Renewal set of states S from the first row of Rowacc which can be merged by the word $w_{n}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
- It can be done as in the BADCASE using that ψ should be true for the collection $b_{1}, b_{2}, \ldots, b_{n}$.

2-letter alphabet case

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter c, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3 \mathfrak{C}(\mathscr{A})$.

For each graph $\mathcal{G}(\psi)$ in Theorem 2 we can construct a 2-letter graph $G^{2}(\psi)$ such that $2 p(m, n) \leq O P T\left(G^{2}(\psi)\right) \leq(4-\varepsilon) p(m, n)$.

2-letter alphabet case

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter c, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3 \mathfrak{C}(\mathscr{A})$.

For each graph $\mathcal{G}(\psi)$ in Theorem 2 we can construct a 2-letter graph $G^{2}(\psi)$ such that $2 p(m, n) \leq O P T\left(G^{2}(\psi)\right) \leq(4-\varepsilon) p(m, n)$.

2-letter alphabet case

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter c, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

$$
\begin{aligned}
& \text { For each 3-letter automaton } \mathscr{A} \text { we can construct a } 2 \text {-letter automaton } \\
& \mathscr{B} \text { such that } \mathfrak{C}(\mathscr{A}) \leq \mathscr{C}(\mathscr{B}) \leq 3 \mathscr{C}(\mathscr{A}) \text {. } \\
& \text { For each graph } G(\psi) \text { in Theorem } 2 \text { we can construct a 2-letter graph } \\
& G^{2}(\psi) \text { such that } 2 p(m, n) \leq O P T\left(G^{2}(\psi)\right) \leq(4-\varepsilon) p(m, n) \text {. }
\end{aligned}
$$

2-letter alphabet case

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter c, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.
For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton
\mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3 \mathfrak{C}(\mathscr{A})$.
For each graph $\mathbf{G}(\psi)$ in Theorem 2 we can construct a 2-letter graph
$G^{2}(\psi)$ such that $2 p(m, n) \leq O P T\left(G^{2}(\psi)\right) \leq(4-\varepsilon) p(m, n)$.

2-letter alphabet case

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter c, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.
For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3 \mathfrak{C}(\mathscr{A})$.

For each graph $G(\psi)$ in Theorem 2 we can construct a 2-letter graph $G^{2}(\psi)$ such that $2 p(m, n) \leq \operatorname{OPT}\left(G^{2}(\psi)\right) \leq(4-\varepsilon) p(m, n)$.

2-letter alphabet case

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter c, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.
For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3 \mathfrak{C}(\mathscr{A})$.
For each graph $\boldsymbol{G}(\psi)$ in Theorem 2 we can construct a 2-letter graph $G^{2}(\psi)$ such that $2 p(m, n) \leq O P T\left(G^{2}(\psi)\right) \leq(4-\varepsilon) p(m, n)$.

An Automata Transformation in Theorem 1.

Substitutions in Graph $\boldsymbol{G}(\psi)$ in Theorem 2.

The Mortality Problem

- A DFA \mathscr{A} is called an automaton with 0 if it has one immoveable state called 0.
- A partial finite automaton (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

> Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A}.

> Corollary (The Mortality Problem)
> No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

The Mortality Problem

- A DFA \mathscr{A} is called an automaton with 0 if it has one immoveable state called 0.
- A partial finite automaton (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A}

Corollary (The Mortality Problem)
No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

The Mortality Problem

- A DFA \mathscr{A} is called an automaton with 0 if it has one immoveable state called 0.
- A partial finite automaton (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A}

Corollamy (The Mortality Droblam)
No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

The Mortality Problem

- A DFA \mathscr{A} is called an automaton with 0 if it has one immoveable state called 0.
- A partial finite automaton (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A}.

Corollary (The Mortality Problem)
No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

The Mortality Problem

- A DFA \mathscr{A} is called an automaton with 0 if it has one immoveable state called 0.
- A partial finite automaton (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A}.

Corollary (The Mortality Problem)
No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

The Mortality Problem

- A DFA \mathscr{A} is called an automaton with 0 if it has one immoveable state called 0.
- A partial finite automaton (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A}.

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

Logarithmic Approximation

- The greedy algorithm (Eppstein 1990) finds a reset word for n-state automata in $O\left(n^{3}\right)$ time.
- It finds a reset word of length at most $\frac{n^{3}-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Search-LogApprox-Reset-Length(d)
Given An n-state synchronizing autornaton \mathscr{A}
Return A number between $\mathbb{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathbb{C}(\mathscr{A})$.
Is there a polynomial-time algorithm for the above problem?

Logarithmic Approximation

- The greedy algorithm (Eppstein 1990) finds a reset word for n-state automata in $O\left(n^{3}\right)$ time.
- It finds a reset word of length at most $\frac{n^{3}-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Search-LogApprox-Reset-Length(d)
Given An n-state synchronizing automaton \mathscr{A}
Return A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathbb{C}(\mathscr{A})$.
Is there a polynomial-time algorithm for the above problem?

Logarithmic Approximation

- The greedy algorithm (Eppstein 1990) finds a reset word for n-state automata in $O\left(n^{3}\right)$ time.
- It finds a reset word of length at most $\frac{n^{3}-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Search-LogApprox-Reset-Length(d)
Given An n-state synchronizing automaton
Return A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathbb{C}(\mathscr{A})$
Is there a polynomial-time algorithm for the above problem?

Logarithmic Approximation

- The greedy algorithm (Eppstein 1990) finds a reset word for n-state automata in $O\left(n^{3}\right)$ time.
- It finds a reset word of length at most $\frac{n^{3}-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton \mathscr{A}
Return A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$.
Is there a polynomial-time algorithm for the above problem?

Logarithmic Approximation

- The greedy algorithm (Eppstein 1990) finds a reset word for n-state automata in $O\left(n^{3}\right)$ time.
- It finds a reset word of length at most $\frac{n^{3}-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton \mathscr{A}
Return A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$.
Is there a polynomial-time algorithm for the above problem?

Thank you for your attention!

Any questions?

