Approximating lengths of reset words

Mikhail V. Berlinkov

Ural State University, Ekaterinburg, Russia DAAST WIEN 2010

DAAST WIEN 2010

- Denote by S.ν the image of the subset S ⊆ Q under the action of the word v ∈ Σ*.
- A word v is called reset (or synchronizing) word for *A* iff |Q.v| = 1 (equivalently q.v = p.v for all q, p ∈ Q).
- *A* is called synchronizing if it possesses some reset word.
- €(𝒜) denotes the minimum length of reset words for 𝒜 and this function is usually called Cerny function and let us call its value reset length of 𝒜.

- 4 同 ト 4 ヨ ト

- Denote by S.ν the image of the subset S ⊆ Q under the action of the word v ∈ Σ*.
- A word v is called reset (or synchronizing) word for *A* iff |Q.v| = 1 (equivalently q.v = p.v for all q, p ∈ Q).
- *A* is called synchronizing if it possesses some reset word.
- €(𝒜) denotes the minimum length of reset words for 𝒜 and this function is usually called Cerny function and let us call its value reset length of 𝒜.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Denote by S.ν the image of the subset S ⊆ Q under the action of the word ν ∈ Σ*.
- A word v is called reset (or synchronizing) word for *A* iff |Q.v| = 1 (equivalently q.v = p.v for all q, p ∈ Q).
- *A* is called synchronizing if it possesses some reset word.
- €(𝒜) denotes the minimum length of reset words for 𝒜 and this function is usually called Cerny function and let us call its value reset length of 𝒜.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Denote by S.ν the image of the subset S ⊆ Q under the action of the word ν ∈ Σ*.
- A word v is called reset (or synchronizing) word for *A* iff |Q.v| = 1 (equivalently q.v = p.v for all q, p ∈ Q).
- *A* is called synchronizing if it possesses some reset word.
- 𝔅(𝒜) denotes the minimum length of reset words for 𝒜 and this function is usually called Cerny function and let us call its value reset length of 𝒜.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Denote by S.ν the image of the subset S ⊆ Q under the action of the word ν ∈ Σ*.
- A word v is called reset (or synchronizing) word for *A* iff |Q.v| = 1 (equivalently q.v = p.v for all q, p ∈ Q).
- *A* is called synchronizing if it possesses some reset word.
- €(𝒜) denotes the minimum length of reset words for 𝒜 and this
 function is usually called Cerny function and let us call its value
 reset length of 𝒜.

A reset word is v = baababaaab. Q.v =

A reset word is v = baababaaab. Q.v =

A reset word is v = baababaaab. Q. $v = \{1, 2, 3, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 2, 3\}$

A reset word is v = baababaaab. Q. $v = \{1, 2, 3\}$

A reset word is v = baababaaab. Q. $v = \{2, 3, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 3, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 3, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 3\}$

A reset word is v = baababaaab. Q. $v = \{1, 3\}$

A reset word is v = baababaaab. Q. $v = \{2, 4\}$

A reset word is v = baababaaab. Q. $v = \{2, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 2\}$

A reset word is v = baababaaab. Q. $v = \{1, 2\}$

A reset word is v = baababaaab. Q. $v = \{2, 3\}$

A reset word is v = baababaaab. Q. $v = \{3, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 4\}$

A reset word is v = baababaaab. Q. $v = \{1, 4\}$

A reset word is v = baababaaab. Q. $v = \{1\}$

A reset word is v = baababaaab. Q. $v = \{1\}$

• How to find some reset word for \mathscr{A} if it exists?

Given a synchronizing automaton \mathscr{A} ;

How to find "relatively" short reset word for *A* or its length?

• How to find some reset word for *A* if it exists?

Given a synchronizing automaton \mathscr{A} ;

• How to find "relatively" short reset word for *A* or its length?

• How to find some reset word for *A* if it exists?

Given a synchronizing automaton \mathscr{A} ;

• How to find "relatively" short reset word for *A* or its length?

Synchronization Criterion | Černý, 1964

An automaton \mathscr{A} is synchronizing iff each pair of states p, q can be merged by some word v, i.e. p.v = q.v.

Find-Sync-Word | in $O(n^3)$ (Greedy algorithm)

Given An *n*-state automaton *A*; **Return** Some reset word for *A* if it exists.

Check-Sync | in $O(n^2)$

Given An *n*-state automaton *A*; **Return** Yes iff *A* is synchronizing.

< ロ > < 同 > < 三 > < 三

Synchronization Criterion | Černý, 1964

An automaton \mathscr{A} is synchronizing iff each pair of states p, q can be merged by some word v, i.e. p.v = q.v.

Find-Sync-Word | in $O(n^3)$ (Greedy algorithm)

Given An *n*-state automaton \mathscr{A} ; **Return** Some reset word for \mathscr{A} if it exists.

Check-Sync | in $O(n^2)$

Given An *n*-state automaton *A*; **Return** Yes iff *A* is synchronizing.

< ロ > < 同 > < 回 > < 回

Synchronization Criterion | Černý, 1964

An automaton \mathscr{A} is synchronizing iff each pair of states p, q can be merged by some word v, i.e. p.v = q.v.

Find-Sync-Word | in $O(n^3)$ (Greedy algorithm)

Given An *n*-state automaton \mathscr{A} ; **Return** Some reset word for \mathscr{A} if it exists.

Check-Sync | in $O(n^2)$

Given An *n*-state automaton \mathscr{A} ; **Return** Yes iff \mathscr{A} is synchronizing.

- 4 同 🕨 🖌 4 目 🕨 - 4 目

How to find some reset word for *A* if it exists?
 Černý in 1964 proved synchronization criterion which allows to find reset word in O(n³) time.

Given a synchronizing automaton \mathscr{A} ;

 How to find "relatively" short reset word for A or its length? [Unless P = NP], no polynomial time algorithm approximates reset length of A within a constant factor (CSR 2010).

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) = k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) \leq k$?

For each ψ of SAT-problem with *n* variables and *m* clauses he constructed $Epp(\psi)$ such that $\mathfrak{C}(Epp(\psi)) = n$ if ψ is satisfiable, $\mathfrak{C}(Epp(\psi)) = n + 1$ if ψ is not satisfiable.

A (1) > A (2) > A (2)

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) = k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Reset-Length | *NP*-complete (Rystsov, Eppstein and others **Given** A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) \leq k$?

For each ψ of SAT-problem with *n* variables and *m* clauses he constructed $Epp(\psi)$ such that $\mathfrak{C}(Epp(\psi)) = n$ if ψ is satisfiable, $\mathfrak{C}(Epp(\psi)) = n + 1$ if ψ is not satisfiable.

< ロ > < 同 > < 回 > < 回 >

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) = k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) \leq k$?

For each ψ of SAT-problem with *n* variables and *m* clauses he constructed $Epp(\psi)$ such that $\mathfrak{C}(Epp(\psi)) = n$ if ψ is satisfiable, $\mathfrak{C}(Epp(\psi)) = n + 1$ if ψ is not satisfiable.

・ロット (雪) (日) (日) (日)
Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) = k$?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton \mathscr{A} and a positive integer *k*; **Question:** $\mathfrak{C}(\mathscr{A}) \leq k$?

For each ψ of SAT-problem with *n* variables and *m* clauses he constructed $Epp(\psi)$ such that $\mathfrak{C}(Epp(\psi)) = n$ if ψ is satisfiable, $\mathfrak{C}(Epp(\psi)) = n + 1$ if ψ is not satisfiable.

・ロット (四)・ (日)・ (日)・

Examples for two instances

$$\Sigma = \{a, b\}, \qquad Q = \{q_{i,j} \mid i \in [1, n+1], j \in [1, m]\} \cup \{z_0\}$$

$$q_{i,j}.d = egin{cases} z_0 & ext{if } (d = a ext{ and } x_j \in c_i) ext{ or } (d = b ext{ and } \overline{x_j} \in c_i), \ z_0 & ext{if } j = n+1, \ q_{i,j+1} & ext{ otherwise}. \end{cases}$$

$$\begin{aligned} \psi_1 &= \qquad (\mathbf{X}_3 \lor \mathbf{X}_1 \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_1} \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_2} \lor \mathbf{X}_3) \land (\overline{\mathbf{X}_2} \lor \overline{\mathbf{X}_3}), \\ \psi_2 &= \qquad (\mathbf{X}_1 \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_1} \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_2} \lor \mathbf{X}_3) \land (\overline{\mathbf{X}_2} \lor \overline{\mathbf{X}_3}). \end{aligned}$$

It is clear ψ_1 is satisfiable for the truth assignment $\tau : x_1 = x_2 = 0, x_3 = 1$ while ψ_2 is not satisfiable.

The word $v(\tau) = bba$ synchronizes $Epp(\psi_1)$ and the word a^4 is a reset word of minimum length for $Epp(\psi_2)$.

Mikhail V. Berlinkov (Ural State University)

Examples for two instances

$$\Sigma = \{a, b\}, \qquad Q = \{q_{i,j} \mid i \in [1, n+1], j \in [1, m]\} \cup \{z_0\}$$

$$q_{i,j}.d = egin{cases} z_0 & ext{if } (d = a ext{ and } x_j \in c_i) ext{ or } (d = b ext{ and } \overline{x_j} \in c_i), \ z_0 & ext{if } j = n+1, \ q_{i,j+1} & ext{ otherwise.} \end{cases}$$

$$\begin{aligned} \psi_1 &= \qquad (\mathbf{x}_3 \lor \mathbf{x}_1 \lor \mathbf{x}_2) \land (\overline{\mathbf{x}_1} \lor \mathbf{x}_2) \land (\overline{\mathbf{x}_2} \lor \mathbf{x}_3) \land (\overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3}), \\ \psi_2 &= \qquad (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\overline{\mathbf{x}_1} \lor \mathbf{x}_2) \land (\overline{\mathbf{x}_2} \lor \mathbf{x}_3) \land (\overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3}). \end{aligned}$$

It is clear ψ_1 is satisfiable for the truth assignment $\tau : x_1 = x_2 = 0$, $x_3 = 1$ while ψ_2 is not satisfiable.

The word $v(\tau) = bba$ synchronizes $Epp(\psi_1)$ and the word a^4 is a reset word of minimum length for $Epp(\psi_2)$.

Mikhail V. Berlinkov (Ural State University)

Examples for two instances

$$\Sigma = \{a, b\}, \qquad Q = \{q_{i,j} \mid i \in [1, n+1], j \in [1, m]\} \cup \{z_0\}$$

$$q_{i,j}.d = egin{cases} z_0 & ext{if } (d = a ext{ and } x_j \in c_i) ext{ or } (d = b ext{ and } \overline{x_j} \in c_i), \ z_0 & ext{if } j = n+1, \ q_{i,j+1} & ext{ otherwise}. \end{cases}$$

$$\begin{split} \psi_1 &= \qquad (\mathbf{X}_3 \lor \mathbf{X}_1 \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_1} \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_2} \lor \mathbf{X}_3) \land (\overline{\mathbf{X}_2} \lor \overline{\mathbf{X}_3}), \\ \psi_2 &= \qquad (\mathbf{X}_1 \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_1} \lor \mathbf{X}_2) \land (\overline{\mathbf{X}_2} \lor \mathbf{X}_3) \land (\overline{\mathbf{X}_2} \lor \overline{\mathbf{X}_3}). \end{split}$$

It is clear ψ_1 is satisfiable for the truth assignment $\tau : \mathbf{x_1} = \mathbf{x_2} = \mathbf{0}, \ \mathbf{x_3} = \mathbf{1}$ while ψ_2 is not satisfiable.

The word $v(\tau) = bba$ synchronizes $Epp(\psi_1)$ and the word a^4 is a reset word of minimum length for $Epp(\psi_2)$.

$$\begin{split} \psi_1 &= (\textbf{x}_3 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \\ \text{An applied prefix is } v &= 1 \\ (\text{First row}).v &= \{q_{1,1}, q_{2,1}, q_{3,1}, q_{4,1}, z_0\} \end{split}$$

$$\begin{split} \psi_1 &= (x_3 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \\ \text{An applied prefix is } v &= 1 \\ (\text{First row}).v &= \{q_{1,1}, q_{2,1}, q_{3,1}, q_{4,1}, z_0\} \end{split}$$

 $\psi_1 = (x_3 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})$ An applied prefix is v = b. (First row). $v = \{q_{1,2}, q_{3,2}, q_{4,2}, z_0\}$

 $\psi_1 = (x_3 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})$ An applied prefix is v = bb. (First row). $v = \{q_{1,3}, z_0\}$

 $\psi_1 = (x_3 \lor x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})$ An applied prefix is v = bba. (First row). $v = \{z_0\}$

Search-Reset-Length | *FP^{NP[log]}*-complete Given A synchronizing automaton 𝒜; Return 𝔅(𝒜).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton \mathscr{A} ; **Return** Some shortest reset word for \mathscr{A} .

FP^{NP} and *FP^{NP[log]}* are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any *NP*-complete problem by polynomial or logarithmic times respectively. These results were proved by Olschëwski and Ummels in 2010

< D > < P > < E > < E</p>

Search-Reset-Length | *FP^{NP[log]}*-complete **Given** A synchronizing automaton *A*;

Return 𝔅(𝔄).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton \mathscr{A} ; **Return** Some shortest reset word for \mathscr{A} .

FP^{NP} and *FP^{NP[log]}* are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any *NP*-complete problem by polynomial or logarithmic times respectively. These results were proved by Olschëwski and Ummels in 2010

< ロ > < 同 > < 回 > < 回 > < 回 > <

Search-Reset-Length | $FP^{NP[log]}$ -complete Given A synchronizing automaton \mathscr{A} ; Return $\mathfrak{C}(\mathscr{A})$.

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton \mathscr{A} ; **Return** Some shortest reset word for \mathscr{A} .

FP^{*NP*} and *FP*^{*NP*[*log*]} are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any *NP*-complete problem by polynomial or logarithmic times respectively.

These results were proved by Olschëwski and Ummels in 2010

・ロット (雪) (日) (日) (日)

Search-Reset-Length | $FP^{NP[log]}$ -complete Given A synchronizing automaton \mathscr{A} ; Return $\mathfrak{C}(\mathscr{A})$.

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton \mathscr{A} ; **Return** Some shortest reset word for \mathscr{A} .

FP^{NP} and *FP^{NP[log]}* are complexity classes of search problems that can be solved by a deterministic polynomial time algorithm equipped with an ability to use an oracle for any *NP*-complete problem by polynomial or logarithmic times respectively. These results were proved by Olschëwski and Ummels in 2010

・ロット (雪) (日) (日) (日)

Can we approximately find the **reset length** within a constant factor in a polynomial time?

An algorithm *M* **approximates reset length** in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$. sup $\{\frac{M(\mathscr{A})}{\mathfrak{C}(\mathscr{A})} \mid \mathscr{A} \in \mathcal{K}\}$ is an **approximation factor** of *M*.

Is there a polynomial-time approximation algorithm within a constant factor for Search-Reset-Length?

< 同 > < 三 > < 三 >

Can we approximately find the **reset length** within a constant factor in a polynomial time?

An algorithm *M* **approximates reset length** in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$.

 $\sup\{\frac{M(\mathscr{A})}{\mathfrak{C}(\mathscr{A})} \mid \mathscr{A} \in \mathcal{K}\} \text{ is an approximation factor of } M.$

Is there a polynomial-time approximation algorithm within a constant factor for Search-Reset-Length?

・ 同 ト ・ ヨ ト ・ ヨ ト

Can we approximately find the **reset length** within a constant factor in a polynomial time?

An algorithm *M* **approximates reset length** in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$. $\sup\{\frac{M(\mathscr{A})}{\mathfrak{C}(\mathscr{A})} \mid \mathscr{A} \in \mathcal{K}\}$ is an **approximation factor** of *M*.

Is there a polynomial-time approximation algorithm within a constant factor for Search-Reset-Length?

<ロ> <同> <同> <同> < 同> < 同>

Can we approximately find the **reset length** within a constant factor in a polynomial time?

An algorithm *M* **approximates reset length** in \mathcal{K} if for an arbitrary DFA $\mathscr{A} \in \mathcal{K}$, the algorithm calculates a positive integer $M(\mathscr{A})$ such that $M(\mathscr{A}) \geq \mathfrak{C}(\mathscr{A})$. $\sup\{\frac{M(\mathscr{A})}{\mathfrak{C}(\mathscr{A})} \mid \mathscr{A} \in \mathcal{K}\}$ is an **approximation factor** of *M*.

Is there a polynomial-time approximation algorithm within a constant factor for Search-Reset-Length?

- 4 同 6 4 日 6 4 日 6

Theorem 1.

No polynomial-time algorithm approximates the minimum length of reset words within a constant factor.

For every ψ of SAT with *n* variables we construct synchronizing automaton $\mathscr{A}_r(\psi)$ for r = 2, 3, ... such that $\mathfrak{C}(\mathscr{A}_r(\psi)) \leq n + r$ and $c^{r-1} \mathbf{v}(\tau) c$ is reset if ψ is satisfiable on τ , $\mathfrak{C}(\mathscr{A}_r(\psi)) > r(n-1)$ if ψ is not satisfiable.

 $\mathscr{A}_r(\psi)$ is constructed by a "substitution" $\mathscr{A}_{r-1}(\psi)$ instead every state of $\mathscr{A}_2(\psi)$ and some additional modification.

・ 同 ト ・ 三 ト ・ 三

Theorem 1.

No polynomial-time algorithm approximates the minimum length of reset words within a constant factor.

For every ψ of SAT with *n* variables we construct synchronizing automaton $\mathscr{A}_r(\psi)$ for r = 2, 3, ... such that $\mathfrak{C}(\mathscr{A}_r(\psi)) \leq n + r$ and $c^{r-1} v(\tau) c$ is reset if ψ is satisfiable on τ , $\mathfrak{C}(\mathscr{A}_r(\psi)) > r(n-1)$ if ψ is not satisfiable.

 $\mathscr{A}_r(\psi)$ is constructed by a "substitution" $\mathscr{A}_{r-1}(\psi)$ instead every state of $\mathscr{A}_2(\psi)$ and some additional modification.

Theorem 1.

No polynomial-time algorithm approximates the minimum length of reset words within a constant factor.

For every ψ of SAT with *n* variables we construct synchronizing automaton $\mathscr{A}_r(\psi)$ for r = 2, 3, ... such that $\mathfrak{C}(\mathscr{A}_r(\psi)) \leq n + r$ and $c^{r-1} v(\tau) c$ is reset if ψ is satisfiable on τ , $\mathfrak{C}(\mathscr{A}_r(\psi)) > r(n-1)$ if ψ is not satisfiable.

 $\mathscr{A}_r(\psi)$ is constructed by a "substitution" $\mathscr{A}_{r-1}(\psi)$ instead every state of $\mathscr{A}_2(\psi)$ and some additional modification.

An applied prefix is

- (I) ()

э

An applied prefix is

An applied prefix is c.

An applied prefix is cb.

An applied prefix is *cbb*.

3

An applied prefix is $cbba = cv(\tau)$.

An applied prefix is $cbbac = cv(\tau)c$.

э

The 4-state Cerny automaton C_4 with shortest reset word ba^3ba^3b of length 9.

15/32

DAAST WIEN 2010

An underlying graph G_4 of the Cerny automaton C_4 .

DAAST WIEN 2010.

15/32

A synchronizing relabeling of C_4 by a permutation of labels on outgoing arrows (from state 2).

DAAST WIEN 2010.

15/32

A synchronizing relabeling of C_4 by a permutation of labels on outgoing arrows (from state 2).

A synchronizing coloring of G_4 with shortest reset word a^3 of length 3.

An example from the real life!

Given an automaton \mathscr{A} ;

- How to find some reset word for *A* if it exists?
 Černý in 1964 proved synchronization criterion which allows to find reset word in O(n³) time.
- How to relabel *A* to make it synchronizing?

Given a synchronizing automaton *A*;

- How to find "relatively" short reset word for *A* or its length? No polynomial time algorithm approximates reset length of *A* within a constant factor (CSR 2010).
- How to find relabeling of *A* with "relatively" short reset word or find its length?

Given an automaton \mathscr{A} ;

- How to find some reset word for *A* if it exists?
 Černý in 1964 proved synchronization criterion which allows to find reset word in O(n³) time.
- How to relabel *A* to make it synchronizing?

Given a synchronizing automaton *A*;

- How to find "relatively" short reset word for *A* or its length? No polynomial time algorithm approximates reset length of *A* within a constant factor (CSR 2010).
- How to find relabeling of *A* with "relatively" short reset word or find its length?

Given an automaton \mathscr{A} ;

- How to find some reset word for *A* if it exists?
 Černý in 1964 proved synchronization criterion which allows to find reset word in O(n³) time.
- How to relabel *A* to make it synchronizing?

Given a synchronizing automaton *A*;

- How to find "relatively" short reset word for *A* or its length? No polynomial time algorithm approximates reset length of *A* within a constant factor (CSR 2010).
- How to find relabeling of *A* with "relatively" short reset word or find its length?
Given an automaton \mathscr{A} ;

- How to find some reset word for *A* if it exists?
 Černý in 1964 proved synchronization criterion which allows to find reset word in O(n³) time.
- How to relabel *A* to make it synchronizing?

Given a synchronizing automaton *A*;

- How to find "relatively" short reset word for *A* or its length? No polynomial time algorithm approximates reset length of *A* within a constant factor (CSR 2010).
- How to find relabeling of *A* with "relatively" short reset word or find its length?

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O'Brien, 1981; Fridman, 1990; Perrin and Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001, J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in $O(n^3)$ -time and leads to $O(n^2)$ -time algorithm invented by Beal and Perrin in 2008

・ロット (雪) (日) (日) (日)

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O'Brien, 1981; Fridman, 1990; Perrin and Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001, J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in $O(n^3)$ -time and leads to $O(n^2)$ -time algorithm invented by Beal and Perrin in 2008

・ロット (雪) (日) (日) (日)

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O'Brien, 1981; Fridman, 1990; Perrin and Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001, J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in $O(n^3)$ -time and leads to $O(n^2)$ -time algorithm invented by Beal and Perrin in 2008

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Main Questions And Outline of the Talk

Given an automaton \mathscr{A} ;

- How to find some reset word for *A* if it exists?
 Černý in 1964 proved synchronization criterion which allows to find reset word in O(n³) time.
- How to relabel *A* to make it synchronizing? Trahtman in 2008 proved a criterion which allows to find such relabeling in O(n³) time.

Given a synchronizing automaton *A*;

 How to find "relatively" short reset word for *A* or its length? No polynomial time algorithm approximates reset length of *A* within a constant factor (CSR 2010).

 How to find relabeling of *A* with "relatively" short reset word or find its length?
 No polynomial time algorithm approximates optimal coloring [value] within factor 2.

Let OPT(G) denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph *G* and let us call it optimal coloring value.

A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G)) = OPT(G)$ is called optimal.

Opt-Coloring-Value

Given An AGW-graph G; **Return** OPT(G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

Let OPT(G) denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph *G* and let us call it optimal coloring value.

A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G)) = OPT(G)$ is called optimal.

Opt-Coloring-Value

Given An AGW-graph *G*; **Return** *OPT*(*G*).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

Let OPT(G) denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph *G* and let us call it optimal coloring value.

A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G)) = OPT(G)$ is called optimal.

Opt-Coloring-Value

Given An AGW-graph G; **Return** OPT(G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

Let OPT(G) denotes the minimal value of $\mathfrak{C}(\mathscr{A}(G))$ for possible colorings $\mathscr{A}(G)$ of AGW-graph *G* and let us call it optimal coloring value.

A coloring $\mathscr{B}(G)$ with $\mathfrak{C}(\mathscr{B}(G)) = OPT(G)$ is called optimal.

Opt-Coloring-Value

Given An AGW-graph G; **Return** OPT(G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a constant factor in a polynomial time?

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:

For each ψ of SAT with *n* variables we construct $G(\psi)$ such that $OPT(G(\psi)) \le p(m, n)$ if ψ is satisfiable, (call *GOODCASE*) $OPT(G(\psi)) \ge (2 - 0.5\varepsilon)p(m, n)$ if ψ is not satisfiable (call *BADCASE*).

・ロット (四)・ (日)・ (日)・

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:

For each ψ of SAT with *n* variables we construct $G(\psi)$ such that $OPT(G(\psi)) \le p(m, n)$ if ψ is satisfiable, (call *GOODCASE*) $OPT(G(\psi)) \ge (2 - 0.5\varepsilon)p(m, n)$ if ψ is not satisfiable (call *BADCASE*).

・ロット (四)・ (日)・ (日)・

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:

For each ψ of SAT with *n* variables we construct $G(\psi)$ such that $OPT(G(\psi)) \le p(m, n)$ if ψ is satisfiable, (call *GOODCASE*) $OPT(G(\psi)) \ge (2 - 0.5\varepsilon)p(m, n)$ if ψ is not satisfiable (call *BADCASE*).

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant factor 2 in a polynomial time?

Proof sketch:

For each ψ of SAT with *n* variables we construct $G(\psi)$ such that $OPT(G(\psi)) \le p(m, n)$ if ψ is satisfiable, (call *GOODCASE*) $OPT(G(\psi)) \ge (2 - 0.5\varepsilon)p(m, n)$ if ψ is not satisfiable (call *BADCASE*).

・ロット (四)・ (日)・ (日)・

Construction of The Graph $G(\psi)$

Q. u_{init} equals the first row of R_{sat} and state z. The length of u_{init} is $p - p_{small}$.

22/32

Define $u_{sat} = v(\tau)$. Then Q. $u_{init}u_{sat}$ consists of *n* states in the first row of R_{acc} , 3 states in R_{fix} with numbers 1, 3, 4 and state *z*. The length of u_{sat} is n + 1.

 $Q.u_{init}u_{sat}u'_{acc}$ consists of bottom state in R_{acc} and 3 states in R_{fix} with numbers h - 3, h - 1, h and state z. The length of u'_{acc} is $p_{small} - (n + 2) = h$.

$$Q.u_{init}u_{sat}u_{acc} = s$$

Mikhail V. Berlinkov (Ural State University)

3

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

Synchronizing Coloring of *R*_{fix} in GOODCASE.

3

A fixed word $w_n = 1 \dots$

3

< D > < A > < B >

A fixed word $w_n = a \dots$

< D > < P > < P >

A fixed word $w_n = ax \dots$

< 口 > < 同 >

A fixed word $w_n = ax \dots$

< 口 > < 同 >

A fixed word $w_n = aa...$

< 口 > < 同 >

A fixed word $w_n = aa...$

< 口 > < 同 >

A fixed word $w_n = aad_1 \dots$

A fixed word $w_n = aad_1 \dots$

A fixed word $w_n = aad_1a...$

Given An AGW-graph *G*; **Return** Optimal Coloring of *G*.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

Remark 2: If we could approximate $\mathfrak{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Given An AGW-graph *G*; **Return** Optimal Coloring of *G*.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

Remark 2: If we could approximate $\mathfrak{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

< ロ > < 同 > < 回 > < 回

Given An AGW-graph *G*; **Return** Optimal Coloring of *G*.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

Remark 2: If we could approximate $\mathfrak{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

< D > < P > < P > < P > < P</pre>

Given An AGW-graph *G*; **Return** Optimal Coloring of *G*.

Key Question

Can we approximately find the optimal coloring within a constant factor in a polynomial time?

Remark 1: It doesn't follow from Theorem 2, because we should not find $\mathfrak{C}(\mathscr{A}(G))$ for quasi-optimal coloring $\mathscr{A}(G)$.

Remark 2: If we could approximate $\mathfrak{C}(\mathscr{A})$ in a polynomial time then we could make such conclusion. But it is false in view of our first result.

< ロ > < 同 > < 回 > < 回 >
Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

< ロ > < 同 > < 三 > < 三

DAAST WIEN 2010

26/32

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

Mikhail V. Berlinkov (Ural State University)

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

DAAST WIEN 2010

26/32

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

Mikhail V. Berlinkov (Ural State University)

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

• Suppose
$$R_{fix}(1).a = R_{fix}(2).$$

۲

۲

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

- Suppose $R_{fix}(1).a = R_{fix}(2)$.
- For *i* ∈ [1, *n* − 1] calculate path lengths in *D_i* marked by degree of *a* and *d_i* as a right label from *D_i*(1).

DAAST WIEN 2010

26/32

•

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

- Suppose $R_{fix}(1).a = R_{fix}(2).$
- For *i* ∈ [1, *n* − 1] calculate path lengths in *D_i* marked by degree of *a* and *d_i* as a right label from *D_i*(1).
- Renewal set of states S from the first row of Row_{acc} which can be merged by the word w_n(d₁, d₂,..., d_n).

・ロト ・同ト ・ヨト ・ヨト

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

- Suppose $R_{fix}(1).a = R_{fix}(2)$.
- For *i* ∈ [1, *n* − 1] calculate path lengths in *D_i* marked by degree of *a* and *d_i* as a right label from *D_i*(1).
- Renewal set of states S from the first row of Rowacc which can be merged by the word w_n(d₁, d₂,..., d_n).
- Renewal variable values b_1, b_2, \ldots, b_n according to S.

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

• If $\psi(b_1, b_2, \dots, b_n)$ is true then ψ is satisfiable.

٩

٥

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

- If $\psi(b_1, b_2, \dots, b_n)$ is true then ψ is satisfiable.
- In opposite case, it is sufficient to prove 𝔅(B) ≥ (2 − 0.5ε)p.
- ۲
- ٩

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

- If $\psi(b_1, b_2, \dots, b_n)$ is true then ψ is satisfiable.
- In opposite case, it is sufficient to prove $\mathfrak{C}(B) \ge (2 0.5\varepsilon)p$.
- Renewal set of states S from the first row of Rowacc which can be merged by the word w_n(d₁, d₂,..., d_n).

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a constant factor less than 2.

It is sufficient to show how to determine in a polynomial time satisfiability of ψ by coloring of $G(\psi)$ from Theorem 2. Proof Sketch:

- If $\psi(b_1, b_2, \dots, b_n)$ is true then ψ is satisfiable.
- In opposite case, it is sufficient to prove 𝔅(B) ≥ (2 − 0.5ε)p.
- Renewal set of states S from the first row of Rowacc which can be merged by the word w_n(d₁, d₂,..., d_n).
- It can be done as in the BADCASE using that ψ should be true for the collection b₁, b₂,..., b_n.

• We used a 3-letter alphabets in the Theorems.

- By adding letters with action of letter *c*, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.
- The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3\mathfrak{C}(\mathscr{A})$.

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter *c*, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.
- The results can be extended to the case of 2-letter alphabet.
- For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3\mathfrak{C}(\mathscr{A})$.
- For each graph $G(\psi)$ in Theorem 2 we can construct a 2-letter graph $G^2(\psi)$ such that $2p(m, n) \leq OPT(G^2(\psi)) \leq (4 \varepsilon)p(m, n)$.

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter *c*, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3\mathfrak{C}(\mathscr{A})$.

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter *c*, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.
- The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3\mathfrak{C}(\mathscr{A})$.

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter *c*, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.
- The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3\mathfrak{C}(\mathscr{A})$.

- We used a 3-letter alphabets in the Theorems.
- By adding letters with action of letter *c*, the results extend to any class of automata with bigger alphabet.
- All considered problems are trivial for 1-letter automata.
- The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton \mathscr{A} we can construct a 2-letter automaton \mathscr{B} such that $\mathfrak{C}(\mathscr{A}) \leq \mathfrak{C}(\mathscr{B}) \leq 3\mathfrak{C}(\mathscr{A})$.

An Automata Transformation in Theorem 1.

< 口 > < 同

-

Substitutions in Graph $G(\psi)$ in Theorem 2.

The Mortality Problem

 A DFA A is called an automaton with 0 if it has one immoveable state called 0.

- A **partial finite automaton** (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Any PFA \mathscr{B} is a result of removing all incoming aroows to 0 for an appropriate DFA \mathscr{A} with 0 and each killing word for \mathscr{B} is reset for \mathscr{A} .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

- A DFA *A* is called an automaton with 0 if it has one immoveable state called 0.
- A **partial finite automaton** (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

- A DFA *A* is called an automaton with 0 if it has one immoveable state called 0.
- A **partial finite automaton** (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

- A DFA *A* is called an automaton with 0 if it has one immoveable state called 0.
- A **partial finite automaton** (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

- A DFA *A* is called an automaton with 0 if it has one immoveable state called 0.
- A **partial finite automaton** (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

- A DFA *A* is called an automaton with 0 if it has one immoveable state called 0.
- A **partial finite automaton** (PFA) can have some undefined transitions in difference to DFA.
- A killing word for PFA is a word undefined for each state.

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the shortest killing word within a constant factor.

Logarithmic Approximation

 The greedy algorithm (Eppstein 1990) finds a reset word for *n*-state automata in O(n³) time.

• It finds a reset word of length at most $\frac{n^3-n}{6}$ (Pin 1983).

 All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Search-LogApprox-Reset-Length(d)

Given An *n*-state synchronizing automaton \mathscr{A} **Return** A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$.

Is there a polynomial-time algorithm for the above problem?

A (a) > A (b) > A

- The greedy algorithm (Eppstein 1990) finds a reset word for *n*-state automata in O(n³) time.
- It finds a reset word of length at most $\frac{n^3-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Given An *n*-state synchronizing automaton \mathscr{A} **Return** A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$.

Is there a polynomial-time algorithm for the above problem?

A (a) > A (b) > A

- The greedy algorithm (Eppstein 1990) finds a reset word for *n*-state automata in O(n³) time.
- It finds a reset word of length at most $\frac{n^3-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Given An *n*-state synchronizing automaton \mathscr{A} **Return** A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$

Is there a polynomial-time algorithm for the above problem?

A (a) > A (b) > A

- The greedy algorithm (Eppstein 1990) finds a reset word for *n*-state automata in O(n³) time.
- It finds a reset word of length at most $\frac{n^3-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Given An *n*-state synchronizing automaton \mathscr{A} **Return** A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$.

Is there a polynomial-time algorithm for the above problem?

マロト イラト イラ

- The greedy algorithm (Eppstein 1990) finds a reset word for *n*-state automata in O(n³) time.
- It finds a reset word of length at most $\frac{n^3-n}{6}$ (Pin 1983).
- All experiments with series of slowly synchronized automata generated in our scientific group show it has a logarithmic approximation factor.

Given An *n*-state synchronizing automaton \mathscr{A} **Return** A number between $\mathfrak{C}(\mathscr{A})$ and $d \cdot \log n \cdot \mathfrak{C}(\mathscr{A})$.

Is there a polynomial-time algorithm for the above problem?

DAAST WIEN 2010

31/32

Thank you for your attention!

Any questions?

Mikhail V. Berlinkov (Ural State University)