
Approximating lengths of reset words

Mikhail V. Berlinkov

Ural State University, Ekaterinburg, Russia
DAAST WIEN 2010

DAAST WIEN 2010

Supported by AuthoMathA, CMUC, ESF, TUWIEN and

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 1 / 32

Synchronizing Automata

Let A be a complete deterministic finite automaton whose input
alphabet is Σ and whose state set is Q.

Denote by S.v the image of the subset S ⊆ Q under the action of
the word v ∈ Σ∗.

A word v is called reset (or synchronizing) word for A iff |Q.v | = 1
(equivalently q.v = p.v for all q,p ∈ Q).

A is called synchronizing if it possesses some reset word.

C(A) denotes the minimum length of reset words for A and this
function is usually called Cerny function and let us call its value
reset length of A .

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 2 / 32

Synchronizing Automata

Let A be a complete deterministic finite automaton whose input
alphabet is Σ and whose state set is Q.

Denote by S.v the image of the subset S ⊆ Q under the action of
the word v ∈ Σ∗.

A word v is called reset (or synchronizing) word for A iff |Q.v | = 1
(equivalently q.v = p.v for all q,p ∈ Q).

A is called synchronizing if it possesses some reset word.

C(A) denotes the minimum length of reset words for A and this
function is usually called Cerny function and let us call its value
reset length of A .

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 2 / 32

Synchronizing Automata

Let A be a complete deterministic finite automaton whose input
alphabet is Σ and whose state set is Q.

Denote by S.v the image of the subset S ⊆ Q under the action of
the word v ∈ Σ∗.

A word v is called reset (or synchronizing) word for A iff |Q.v | = 1
(equivalently q.v = p.v for all q,p ∈ Q).

A is called synchronizing if it possesses some reset word.

C(A) denotes the minimum length of reset words for A and this
function is usually called Cerny function and let us call its value
reset length of A .

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 2 / 32

Synchronizing Automata

Let A be a complete deterministic finite automaton whose input
alphabet is Σ and whose state set is Q.

Denote by S.v the image of the subset S ⊆ Q under the action of
the word v ∈ Σ∗.

A word v is called reset (or synchronizing) word for A iff |Q.v | = 1
(equivalently q.v = p.v for all q,p ∈ Q).

A is called synchronizing if it possesses some reset word.

C(A) denotes the minimum length of reset words for A and this
function is usually called Cerny function and let us call its value
reset length of A .

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 2 / 32

Synchronizing Automata

Let A be a complete deterministic finite automaton whose input
alphabet is Σ and whose state set is Q.

Denote by S.v the image of the subset S ⊆ Q under the action of
the word v ∈ Σ∗.

A word v is called reset (or synchronizing) word for A iff |Q.v | = 1
(equivalently q.v = p.v for all q,p ∈ Q).

A is called synchronizing if it possesses some reset word.

C(A) denotes the minimum length of reset words for A and this
function is usually called Cerny function and let us call its value
reset length of A .

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 2 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v =

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v =

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v ={1,2,3,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v ={1,2,3}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v ={1,2,3}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {2,3,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,3,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,3,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,3}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,3}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {2,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {2,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,2}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,2}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {2,3}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {3,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1,4}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Synchronizing Automaton A by "greedy" algorithm

1 2

34

b b

b

a

a

a

b a

A reset word is v =baababaaab.
Q.v = {1}

Since |Q.v | = 1 the word v is a reset word for A whence
C(A) ≤ |v | = 10.
In fact the shortest reset word for A is ba3ba3b of length 9 and thus
C(A) = 9 < |v |.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 3 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 4 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 4 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 5 / 32

Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton A is synchronizing iff each pair of states p,q can be
merged by some word v , i.e. p.v = q.v .

Find-Sync-Word | in O(n3) (Greedy algorithm)

Given An n-state automaton A ;
Return Some reset word for A if it exists.

Check-Sync | in O(n2)

Given An n-state automaton A ;
Return Yes iff A is synchronizing.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 6 / 32

Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton A is synchronizing iff each pair of states p,q can be
merged by some word v , i.e. p.v = q.v .

Find-Sync-Word | in O(n3) (Greedy algorithm)

Given An n-state automaton A ;
Return Some reset word for A if it exists.

Check-Sync | in O(n2)

Given An n-state automaton A ;
Return Yes iff A is synchronizing.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 6 / 32

Search For Some Reset Word

Synchronization Criterion | Černý, 1964

An automaton A is synchronizing iff each pair of states p,q can be
merged by some word v , i.e. p.v = q.v .

Find-Sync-Word | in O(n3) (Greedy algorithm)

Given An n-state automaton A ;
Return Some reset word for A if it exists.

Check-Sync | in O(n2)

Given An n-state automaton A ;
Return Yes iff A is synchronizing.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 6 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
[Unless P = NP], no polynomial time algorithm approximates
reset length of A within a constant factor (CSR 2010).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 7 / 32

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) = k?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms
cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) ≤ k?

For each ψ of SAT-problem with n variables and m clauses he
constructed Epp(ψ) such that
C(Epp(ψ)) = n if ψ is satisfiable,
C(Epp(ψ)) = n + 1 if ψ is not satisfiable.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 8 / 32

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) = k?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms
cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) ≤ k?

For each ψ of SAT-problem with n variables and m clauses he
constructed Epp(ψ) such that
C(Epp(ψ)) = n if ψ is satisfiable,
C(Epp(ψ)) = n + 1 if ψ is not satisfiable.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 8 / 32

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) = k?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms
cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) ≤ k?

For each ψ of SAT-problem with n variables and m clauses he
constructed Epp(ψ) such that
C(Epp(ψ)) = n if ψ is satisfiable,
C(Epp(ψ)) = n + 1 if ψ is not satisfiable.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 8 / 32

Exact Decision Variants of The Problem

Check-Eq-Reset-Length | NP and co-NP hard

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) = k?

Unless NP = co-NP, even non-deterministic polynomial-time algorithms
cannot solve the above problem.

Check-Reset-Length | NP-complete (Rystsov, Eppstein and others)

Given A synchronizing automaton A and a positive integer k ;
Question: C(A) ≤ k?

For each ψ of SAT-problem with n variables and m clauses he
constructed Epp(ψ) such that
C(Epp(ψ)) = n if ψ is satisfiable,
C(Epp(ψ)) = n + 1 if ψ is not satisfiable.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 8 / 32

Examples for two instances

Σ = {a,b}, Q = {qi,j | i ∈ [1,n + 1], j ∈ [1,m]} ∪ {z0}

qi,j .d =

z0 if (d = a and xj ∈ ci) or (d = b and xj ∈ ci),

z0 if j = n + 1,

qi,j+1 otherwise.

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3),

ψ2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3).

It is clear ψ1 is satisfiable for the truth assignment
τ : x1 = x2 = 0, x3 = 1 while ψ2 is not satisfiable.

The word v(τ) = bba synchronizes Epp(ψ1) and the word a4 is a reset
word of minimum length for Epp(ψ2).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 9 / 32

Examples for two instances

Σ = {a,b}, Q = {qi,j | i ∈ [1,n + 1], j ∈ [1,m]} ∪ {z0}

qi,j .d =

z0 if (d = a and xj ∈ ci) or (d = b and xj ∈ ci),

z0 if j = n + 1,

qi,j+1 otherwise.

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3),

ψ2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3).

It is clear ψ1 is satisfiable for the truth assignment
τ : x1 = x2 = 0, x3 = 1 while ψ2 is not satisfiable.

The word v(τ) = bba synchronizes Epp(ψ1) and the word a4 is a reset
word of minimum length for Epp(ψ2).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 9 / 32

Examples for two instances

Σ = {a,b}, Q = {qi,j | i ∈ [1,n + 1], j ∈ [1,m]} ∪ {z0}

qi,j .d =

z0 if (d = a and xj ∈ ci) or (d = b and xj ∈ ci),

z0 if j = n + 1,

qi,j+1 otherwise.

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3),

ψ2 = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3).

It is clear ψ1 is satisfiable for the truth assignment
τ : x1 = x2 = 0, x3 = 1 while ψ2 is not satisfiable.

The word v(τ) = bba synchronizes Epp(ψ1) and the word a4 is a reset
word of minimum length for Epp(ψ2).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 9 / 32

The automata Epp(ψ1) and Epp(ψ2)

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
An applied prefix is v = 1
(First row).v = {q1,1,q2,1,q3,1,q4,1, z0}

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

b

b

a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 10 / 32

The automata Epp(ψ1) and Epp(ψ2)

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
An applied prefix is v = 1
(First row).v = {q1,1,q2,1,q3,1,q4,1, z0}

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

b

b

a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 10 / 32

The automata Epp(ψ1) and Epp(ψ2)

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
An applied prefix is v = b.
(First row).v = {q1,2,q3,2,q4,2, z0}

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

b

b

a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 10 / 32

The automata Epp(ψ1) and Epp(ψ2)

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
An applied prefix is v = bb.
(First row).v = {q1,3, z0}

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

b

b

a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 10 / 32

The automata Epp(ψ1) and Epp(ψ2)

ψ1 = (x3 ∨ x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
An applied prefix is v = bba.
(First row).v = {z0}

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

b

b

a, b b

a, b

a

a

a

b

a, b

a

x1

x2

x3

c1 c2 c3 c4

4 z0

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 10 / 32

Exact Search Variants of The Problem

Search-Reset-Length | FPNP[log]-complete

Given A synchronizing automaton A ;
Return C(A).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton A ;
Return Some shortest reset word for A .

FPNP and FPNP[log] are complexity classes of search problems that
can be solved by a deterministic polynomial time algorithm equipped
with an ability to use an oracle for any NP-complete problem by
polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 11 / 32

Exact Search Variants of The Problem

Search-Reset-Length | FPNP[log]-complete

Given A synchronizing automaton A ;
Return C(A).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton A ;
Return Some shortest reset word for A .

FPNP and FPNP[log] are complexity classes of search problems that
can be solved by a deterministic polynomial time algorithm equipped
with an ability to use an oracle for any NP-complete problem by
polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 11 / 32

Exact Search Variants of The Problem

Search-Reset-Length | FPNP[log]-complete

Given A synchronizing automaton A ;
Return C(A).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton A ;
Return Some shortest reset word for A .

FPNP and FPNP[log] are complexity classes of search problems that
can be solved by a deterministic polynomial time algorithm equipped
with an ability to use an oracle for any NP-complete problem by
polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 11 / 32

Exact Search Variants of The Problem

Search-Reset-Length | FPNP[log]-complete

Given A synchronizing automaton A ;
Return C(A).

Search-Shortest-Reset-Word | in FPNP and FPNP[log]-hard

Given A synchronizing automaton A ;
Return Some shortest reset word for A .

FPNP and FPNP[log] are complexity classes of search problems that
can be solved by a deterministic polynomial time algorithm equipped
with an ability to use an oracle for any NP-complete problem by
polynomial or logarithmic times respectively.
These results were proved by Olschëwski and Ummels in 2010

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 11 / 32

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in
a polynomial time?

An algorithm M approximates reset length in K if for an arbitrary DFA
A ∈ K, the algorithm calculates a positive integer M(A) such that
M(A) ≥ C(A).

sup{
M(A)

C(A)
| A ∈ K} is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-Length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 12 / 32

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in
a polynomial time?

An algorithm M approximates reset length in K if for an arbitrary DFA
A ∈ K, the algorithm calculates a positive integer M(A) such that
M(A) ≥ C(A).

sup{
M(A)

C(A)
| A ∈ K} is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-Length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 12 / 32

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in
a polynomial time?

An algorithm M approximates reset length in K if for an arbitrary DFA
A ∈ K, the algorithm calculates a positive integer M(A) such that
M(A) ≥ C(A).

sup{
M(A)

C(A)
| A ∈ K} is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-Length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 12 / 32

Approximation Variant of The Problem

Key Question | Volkov 2008

Can we approximately find the reset length within a constant factor in
a polynomial time?

An algorithm M approximates reset length in K if for an arbitrary DFA
A ∈ K, the algorithm calculates a positive integer M(A) such that
M(A) ≥ C(A).

sup{
M(A)

C(A)
| A ∈ K} is an approximation factor of M.

Is there a polynomial-time approximation algorithm within a constant
factor for Search-Reset-Length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 12 / 32

The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of re-
set words within a constant factor.

For every ψ of SAT with n variables we construct synchronizing
automaton Ar (ψ) for r = 2,3, . . . such that
C(Ar (ψ)) ≤ n + r and cr−1v(τ)c is reset if ψ is satisfiable on τ ,
C(Ar (ψ)) > r(n − 1) if ψ is not satisfiable.

Ar (ψ) is constructed by a "substitution" Ar−1(ψ) instead every state of
A2(ψ) and some additional modification.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 13 / 32

The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of re-
set words within a constant factor.

For every ψ of SAT with n variables we construct synchronizing
automaton Ar (ψ) for r = 2,3, . . . such that
C(Ar (ψ)) ≤ n + r and cr−1v(τ)c is reset if ψ is satisfiable on τ ,
C(Ar (ψ)) > r(n − 1) if ψ is not satisfiable.

Ar (ψ) is constructed by a "substitution" Ar−1(ψ) instead every state of
A2(ψ) and some additional modification.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 13 / 32

The First Result

Theorem 1.

No polynomial-time algorithm approximates the minimum length of re-
set words within a constant factor.

For every ψ of SAT with n variables we construct synchronizing
automaton Ar (ψ) for r = 2,3, . . . such that
C(Ar (ψ)) ≤ n + r and cr−1v(τ)c is reset if ψ is satisfiable on τ ,
C(Ar (ψ)) > r(n − 1) if ψ is not satisfiable.

Ar (ψ) is constructed by a "substitution" Ar−1(ψ) instead every state of
A2(ψ) and some additional modification.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 13 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is c.

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is cb.

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is cbb.

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is cbba = cv(τ).

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

The automata A (ψ1) and A (ψ2)

An applied prefix is cbbac = cv(τ)c.

q1,1

q1,2

q1,3

q1,4

q2,1

q2,2

q2,3

q2,4

q3,1

q3,2

q3,3

q3,4

q4,1

q4,2

q4,3

q4,4

q5,1

q5,2

q5,3

z1

b

b

a, b b

a, b

a

a

a, b

a, b

a, b

a, b

a

b

a, b

a

c

c

c

c

c

c

c

c

c

c

c c c c
c

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

p3,1

p3,2

p3,3

p3,4

p4,1

p4,2

p4,3

p4,4

p5,1

p5,2

p5,3

p5,4

a, b, c

a, b, c

a, b, c a, b, c a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

c c c c c

x1

x2

x3

c1 c2 c3 c4 5

4 z0

c c c
c

Rinit

Rsat

a in A(ψ2) b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 14 / 32

Relabeling of Automata and Coloring of Graphs

1 2

34

b b

b

a

a

a

b a

The 4-state Cerny automaton C4 with shortest reset word ba3ba3b of
length 9.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 15 / 32

Relabeling of Automata and Coloring of Graphs

1 2

34

An underlying graph G4 of the Cerny automaton C4.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 15 / 32

Relabeling of Automata and Coloring of Graphs

1 2

34

b b

b

a

a

a

b a

A synchronizing relabeling of C4 by a permutation of labels on
outgoing arrows (from state 2).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 15 / 32

Relabeling of Automata and Coloring of Graphs

1 2

34

b a

b

a

b

a

b a

A synchronizing relabeling of C4 by a permutation of labels on
outgoing arrows (from state 2).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 15 / 32

Relabeling of Automata and Coloring of Graphs

1 2

34

b a

b

a

b

a

b a

A synchronizing coloring of G4 with shortest reset word a3 of length 3.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 15 / 32

Relabeling of Automata and Coloring of Graphs

An example from the real life!

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 15 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

How to relabel A to make it synchronizing?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).

How to find relabeling of A with "relatively" short reset word or
find its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 16 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

How to relabel A to make it synchronizing?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).

How to find relabeling of A with "relatively" short reset word or
find its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 16 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

How to relabel A to make it synchronizing?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).

How to find relabeling of A with "relatively" short reset word or
find its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 16 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.

How to relabel A to make it synchronizing?

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).

How to find relabeling of A with "relatively" short reset word or
find its length?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 17 / 32

Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with
g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O’Brien, 1981; Fridman, 1990; Perrin and
Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001,
J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in O(n3)-time
and leads to O(n2)-time algorithm invented by Beal and Perrin in 2008

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 18 / 32

Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with
g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O’Brien, 1981; Fridman, 1990; Perrin and
Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001,
J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in O(n3)-time
and leads to O(n2)-time algorithm invented by Beal and Perrin in 2008

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 18 / 32

Search For Some Synchronizing Coloring

Road Coloring Problem | Adler, Goodwyn, Weiss 1970,77

Does each AGW-graph (strongly connected admissible graph with
g.c.d. of cycles length equals one) has a synchronizing coloring?

Particular cases [O’Brien, 1981; Fridman, 1990; Perrin and
Schützenberger, 1985; Jonoska N., Suen S., 1995, Carbone A., 2001,
J. Kari 2003...]

RCP Solution! | A. Trahtman 2008

Each AGW-graph has a synchronizing coloring.

This result allows to find some synchronizing coloring in O(n3)-time
and leads to O(n2)-time algorithm invented by Beal and Perrin in 2008

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 18 / 32

Main Questions And Outline of the Talk

Given an automaton A ;

How to find some reset word for A if it exists?
Černý in 1964 proved synchronization criterion which allows to
find reset word in O(n3) time.
How to relabel A to make it synchronizing?
Trahtman in 2008 proved a criterion which allows to find such
relabeling in O(n3) time.

Given a synchronizing automaton A ;

How to find "relatively" short reset word for A or its length?
No polynomial time algorithm approximates reset length of A

within a constant factor (CSR 2010).
How to find relabeling of A with "relatively" short reset word or
find its length?
No polynomial time algorithm approximates optimal coloring
[value] within factor 2.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 19 / 32

Approximate Optimal Coloring Value

Let OPT (G) denotes the minimal value of C(A (G)) for possible
colorings A (G) of AGW-graph G and let us call it optimal coloring
value.
A coloring B(G) with C(B(G)) = OPT (G) is called optimal.

Opt-Coloring-Value

Given An AGW-graph G;
Return OPT (G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a
constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant
factor for Opt-Coloring-Value?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 20 / 32

Approximate Optimal Coloring Value

Let OPT (G) denotes the minimal value of C(A (G)) for possible
colorings A (G) of AGW-graph G and let us call it optimal coloring
value.
A coloring B(G) with C(B(G)) = OPT (G) is called optimal.

Opt-Coloring-Value

Given An AGW-graph G;
Return OPT (G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a
constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant
factor for Opt-Coloring-Value?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 20 / 32

Approximate Optimal Coloring Value

Let OPT (G) denotes the minimal value of C(A (G)) for possible
colorings A (G) of AGW-graph G and let us call it optimal coloring
value.
A coloring B(G) with C(B(G)) = OPT (G) is called optimal.

Opt-Coloring-Value

Given An AGW-graph G;
Return OPT (G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a
constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant
factor for Opt-Coloring-Value?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 20 / 32

Approximate Optimal Coloring Value

Let OPT (G) denotes the minimal value of C(A (G)) for possible
colorings A (G) of AGW-graph G and let us call it optimal coloring
value.
A coloring B(G) with C(B(G)) = OPT (G) is called optimal.

Opt-Coloring-Value

Given An AGW-graph G;
Return OPT (G).

Key Question | Volkov 2008

Can we approximately find the optimal coloring [value] within a
constant factor in a polynomial time?

Is there a polynomial-time [approximation] algorithm within a constant
factor for Opt-Coloring-Value?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 20 / 32

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value
within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant
factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct G(ψ) such that
OPT (G(ψ)) ≤ p(m,n) if ψ is satisfiable, (call GOODCASE)
OPT (G(ψ)) ≥ (2− 0.5ε)p(m,n) if ψ is not satisfiable (call BADCASE).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 21 / 32

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value
within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant
factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct G(ψ) such that
OPT (G(ψ)) ≤ p(m,n) if ψ is satisfiable, (call GOODCASE)
OPT (G(ψ)) ≥ (2− 0.5ε)p(m,n) if ψ is not satisfiable (call BADCASE).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 21 / 32

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value
within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant
factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct G(ψ) such that
OPT (G(ψ)) ≤ p(m,n) if ψ is satisfiable, (call GOODCASE)
OPT (G(ψ)) ≥ (2− 0.5ε)p(m,n) if ψ is not satisfiable (call BADCASE).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 21 / 32

The Second Result

Theorem | Roman 2010

No polynomial-time algorithm exactly finds optimal coloring value.

Theorem 2. | Izvestiya Vuzov (submitted 07.2009)

No polynomial-time algorithm approximates optimal coloring value
within a constant factor less than 2.

Can we approximately find the optimal coloring value within a constant
factor 2 in a polynomial time?

Proof sketch:
For each ψ of SAT with n variables we construct G(ψ) such that
OPT (G(ψ)) ≤ p(m,n) if ψ is satisfiable, (call GOODCASE)
OPT (G(ψ)) ≥ (2− 0.5ε)p(m,n) if ψ is not satisfiable (call BADCASE).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 21 / 32

Synchronizing Coloring in GOODCASE

Construction of The Graph G(ψ)

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 22 / 32

Synchronizing Coloring in GOODCASE

Q.uinit equals the first row of Rsat and state z. The length of uinit is
p − psmall .

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 22 / 32

Synchronizing Coloring in GOODCASE

Define usat = v(τ). Then Q.uinitusat consists of n states in the first row
of Racc , 3 states in Rfix with numbers 1,3,4 and state z. The length of
usat is n + 1.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 22 / 32

Synchronizing Coloring in GOODCASE

Q.uinitusatu′

acc consists of bottom state in Racc and 3 states in Rfix with
numbers h − 3,h − 1,h and state z. The length of u′

acc is
psmall − (n + 2) = h.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 22 / 32

Synchronizing Coloring in GOODCASE

Q.uinitusatuacc = s

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 22 / 32

Counting States in The First Row of Racc

Let E = {a,b} and apply a word . . .ba13 . . . to the green states.

q−6 q−4 q−2 Di(1)

E2 E2 E2

Di(35)

a b

E E

E2

E2

E8

E4

E − e1(i) e1(i)

E − e2(i) e2(i)

E

E − e1(i)

E E

E

E2

E6

E2

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 23 / 32

Counting States in The First Row of Racc

Let E = {a,b} and apply a word . . .ba13 . . . to the green states.

q−6 q−4 q−2q−2 Di(1)Di(1)

E2 E2 E2

Di(35)

a b

a E

E2

E2

E8

E4

b a

b a

E

b

E E

E

E2

E6

E2

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 23 / 32

Counting States in The First Row of Racc

Let E = {a,b} and apply a word . . .ba13 . . . to the green states.

q−6 q−4q−4 q−2 Di(1)Di(1)

E2 E2 E2

Di(35)

a b

a E

E2

E2

E8

E4

a b

b a

E

a

E E

E

E2

E6

E2

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 23 / 32

Counting States in The First Row of Racc

Let E = {a,b} and apply a word . . .ba13 . . . to the green states.

q−6q−6 q−4 q−2 Di(1)Di(1)

E2 E2 E2

Di(35)

a b

a E

E2

E2

E8

E4

a b

a b

E

a

E E

E

E2

E6

E2

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 23 / 32

Fixing The Word wn(. . .) Using Component Rfix

Synchronizing Coloring of Rfix in GOODCASE.

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

ab

ab

ab

a

a

a

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = 1 . . .

1

2

3

4

5

6

7

8

9

10

11

a

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = a . . .

1

2

3

4

5

6

7

8

9

10

11

a

a

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = ax . . .

1

2

3

4

5

6

7

8

9

10

11

a

x

a

x

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = ax . . .

1

2

3

4

5

6

7

8

9

10

11

a

x

a

x

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = aa . . .

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = aa . . .

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = aad1 . . .

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

d1

d1

d1

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = aad1 . . .

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

d1

d1

d1

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Fixing The Word wn(. . .) Using Component Rfix

A fixed word wn = aad1a . . .

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

d1

d1

d1

a

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 24 / 32

Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G;
Return Optimal Coloring of G.

Key Question
Can we approximately find the optimal coloring within a constant factor
in a polynomial time?

Remark 1: It doesn’t follow from Theorem 2, because we should not
find C(A (G)) for quasi-optimal coloring A (G).

Remark 2: If we could approximate C(A) in a polynomial time then we
could make such conclusion. But it is false in view of our first result.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 25 / 32

Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G;
Return Optimal Coloring of G.

Key Question
Can we approximately find the optimal coloring within a constant factor
in a polynomial time?

Remark 1: It doesn’t follow from Theorem 2, because we should not
find C(A (G)) for quasi-optimal coloring A (G).

Remark 2: If we could approximate C(A) in a polynomial time then we
could make such conclusion. But it is false in view of our first result.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 25 / 32

Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G;
Return Optimal Coloring of G.

Key Question
Can we approximately find the optimal coloring within a constant factor
in a polynomial time?

Remark 1: It doesn’t follow from Theorem 2, because we should not
find C(A (G)) for quasi-optimal coloring A (G).

Remark 2: If we could approximate C(A) in a polynomial time then we
could make such conclusion. But it is false in view of our first result.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 25 / 32

Approximate Optimal Coloring

Opt-Coloring

Given An AGW-graph G;
Return Optimal Coloring of G.

Key Question
Can we approximately find the optimal coloring within a constant factor
in a polynomial time?

Remark 1: It doesn’t follow from Theorem 2, because we should not
find C(A (G)) for quasi-optimal coloring A (G).

Remark 2: If we could approximate C(A) in a polynomial time then we
could make such conclusion. But it is false in view of our first result.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 25 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Suppose Rfix(1).a = Rfix(2).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Suppose Rfix(1).a = Rfix(2).

For i ∈ [1,n − 1] calculate path lengths in Di marked by degree of
a and di as a right label from Di(1).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Suppose Rfix(1).a = Rfix(2).

For i ∈ [1,n − 1] calculate path lengths in Di marked by degree of
a and di as a right label from Di(1).

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

Suppose Rfix(1).a = Rfix(2).

For i ∈ [1,n − 1] calculate path lengths in Di marked by degree of
a and di as a right label from Di(1).

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).

Renewal variable values b1,b2, . . . ,bn according to S.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

If ψ(b1,b2, . . . ,bn) is true then ψ is satisfiable.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

If ψ(b1,b2, . . . ,bn) is true then ψ is satisfiable.

In opposite case, it is sufficient to prove C(B) ≥ (2 − 0.5ε)p.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

If ψ(b1,b2, . . . ,bn) is true then ψ is satisfiable.

In opposite case, it is sufficient to prove C(B) ≥ (2 − 0.5ε)p.

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

Corollary For Searching Optimal Coloring

Corollary 1.

No polynomial-time algorithm approximates optimal coloring within a
constant factor less than 2.

It is sufficient to show how to determine in a polynomial time
satisfiability of ψ by coloring of G(ψ) from Theorem 2.
Proof Sketch:

If ψ(b1,b2, . . . ,bn) is true then ψ is satisfiable.

In opposite case, it is sufficient to prove C(B) ≥ (2 − 0.5ε)p.

Renewal set of states S from the first row of Rowacc which can be
merged by the word wn(d1,d2, . . . ,dn).

It can be done as in the BADCASE using that ψ should be true for
the collection b1,b2, . . . ,bn.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 26 / 32

2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A) ≤ C(B) ≤ 3C(A).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 27 / 32

2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A) ≤ C(B) ≤ 3C(A).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 27 / 32

2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A) ≤ C(B) ≤ 3C(A).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 27 / 32

2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A) ≤ C(B) ≤ 3C(A).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 27 / 32

2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A) ≤ C(B) ≤ 3C(A).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 27 / 32

2-letter alphabet case

We used a 3-letter alphabets in the Theorems.

By adding letters with action of letter c, the results extend to any
class of automata with bigger alphabet.

All considered problems are trivial for 1-letter automata.

The results can be extended to the case of 2-letter alphabet.

For each 3-letter automaton A we can construct a 2-letter automaton
B such that C(A) ≤ C(B) ≤ 3C(A).

For each graph G(ψ) in Theorem 2 we can construct a 2-letter graph
G2(ψ) such that 2p(m,n) ≤ OPT (G2(ψ)) ≤ (4 − ε)p(m,n).

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 27 / 32

An Automata Transformation in Theorem 1.

1

2

3

a3

a1

a1, a2

1, 3 2, 3 3, 3

1, 2

1, 1

2, 2

2, 1

3, 2

3, 1

a

a

a

a

a

a

b

b

a2 a3

a a a

b
b

b

b

b

b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 28 / 32

Substitutions in Graph G(ψ) in Theorem 2.

q.ctop

q.ca
q.cb

a b

qtop

qa
qb

a b

a a

q.atop

q.aa
q.ab

a b

q.btop

q.ba
q.bb

a b

b b

s
top
0

sbot
0

gtop

a

b

a, b

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 29 / 32

The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 30 / 32

The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 30 / 32

The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 30 / 32

The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 30 / 32

The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 30 / 32

The Mortality Problem

A DFA A is called an automaton with 0 if it has one immoveable
state called 0.

A partial finite automaton (PFA) can have some undefined
transitions in difference to DFA.

A killing word for PFA is a word undefined for each state.

Any PFA B is a result of removing all incoming aroows to 0 for an
appropriate DFA A with 0 and each killing word for B is reset for A .

Corollary (The Mortality Problem)

No polynomial-time algorithm can approximate the length of the short-
est killing word within a constant factor.

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 30 / 32

Logarithmic Approximation

The greedy algorithm (Eppstein 1990) finds a reset word for
n-state automata in O(n3) time.

It finds a reset word of length at most n3
−n
6 (Pin 1983).

All experiments with series of slowly synchronized automata
generated in our scientific group show it has a logarithmic
approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton A

Return A number between C(A) and d · log n · C(A).

Is there a polynomial-time algorithm for the above problem?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 31 / 32

Logarithmic Approximation

The greedy algorithm (Eppstein 1990) finds a reset word for
n-state automata in O(n3) time.

It finds a reset word of length at most n3
−n
6 (Pin 1983).

All experiments with series of slowly synchronized automata
generated in our scientific group show it has a logarithmic
approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton A

Return A number between C(A) and d · log n · C(A).

Is there a polynomial-time algorithm for the above problem?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 31 / 32

Logarithmic Approximation

The greedy algorithm (Eppstein 1990) finds a reset word for
n-state automata in O(n3) time.

It finds a reset word of length at most n3
−n
6 (Pin 1983).

All experiments with series of slowly synchronized automata
generated in our scientific group show it has a logarithmic
approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton A

Return A number between C(A) and d · log n · C(A).

Is there a polynomial-time algorithm for the above problem?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 31 / 32

Logarithmic Approximation

The greedy algorithm (Eppstein 1990) finds a reset word for
n-state automata in O(n3) time.

It finds a reset word of length at most n3
−n
6 (Pin 1983).

All experiments with series of slowly synchronized automata
generated in our scientific group show it has a logarithmic
approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton A

Return A number between C(A) and d · log n · C(A).

Is there a polynomial-time algorithm for the above problem?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 31 / 32

Logarithmic Approximation

The greedy algorithm (Eppstein 1990) finds a reset word for
n-state automata in O(n3) time.

It finds a reset word of length at most n3
−n
6 (Pin 1983).

All experiments with series of slowly synchronized automata
generated in our scientific group show it has a logarithmic
approximation factor.

Search-LogApprox-Reset-Length(d)

Given An n-state synchronizing automaton A

Return A number between C(A) and d · log n · C(A).

Is there a polynomial-time algorithm for the above problem?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 31 / 32

Thank you for your attention!

Any questions?

Mikhail V. Berlinkov (Ural State University) DAAST WIEN 2010 32 / 32

