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Two in�uential papers

Cobham wrote two very in�uential papers

I On the Base-Dependence of Sets of Numbers Recognizable by
Finite Automata, Mathematical Systems Theory 3 (1969)
186-192

I Uniform Tag Sequences, Mathematical Systems Theory 6

(1972) 164-192



First Cobham's Theorem

De�nition
Given a base r ≥ 2, a set X ⊆ N is called r -recognizable if X
written in base r is accepted by a �nite automaton
(All possible leading 0 are considered)

Example

X = {2n | n ≥ 0} is 2-recognizable and 4-recognizable

I base 2 : 0∗10∗

I base 4 : 0∗(1 + 2)0∗

I 3-recognizable ? 0∗(1+ 2+ 11+ 22+ 121+ 1012+ 2101+ · · · )

Theorem (Cobham 1969)

A set X ⊆ N is r -recognizable for every base r ≥ 2 i� X is a �nite

union of constants and arithmetic progressions.



More precisely ...

De�nition
Two bases r , s ≥ 2 are multiplicatively dependent if rk = s l for
some k , l ∈ N \ {0}.

Example

Bases 2, 4 are multiplicatively dependent. Bases 2, 3 are not.

Theorem (Cobham 1969)

Let r , s ≥ 2 be two multiplicatively independent bases.

A set X ⊆ N is r - and s-recognizable i� X is a �nite union of

constants and arithmetic progressions.

Example

X = {2n | n ≥ 0} is not 3-recognizable.
(It is exactly 2k -recognizable for every k ≥ 1).



Second Cobham's Theorem

Theorem (Cobham 1972)

A set X ⊆ N is r -recognizable i� its characteristic sequence is

generated by the iteration of a r -uniform morphism, followed by a

coding.

Example

X = {2n | n ≥ 0}

g : a → ab, b → bc , c → cc 2-uniform morphism
f : a → 0, b → 1, c → 0 coding

a

ab

abbc

abbcbccc

abbcbcccbccccccc

abbcbcccbcccccccbccccccccccccccc

01101000100000001000000000000000 · · ·



Picture

Alan Belmont Cobham
Born November 4, 1927, San Francisco
He lives in Middletown, Connecticut

Picture from Je�rey O. Shallit 's blog
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Great impact of the two Cobham's theorems

Basis of hundreds of papers exploring the theory of automatic
sequences and generalizing them.

I J.-P. Allouche, J. Shallit
Automatic Sequences :

Theory, Applications, Generalizations

Cambridge University Press (2003)

First Cobham's theorem

I Simpler proofs and generalizations to various contexts :
multidimensional setting, logical framework, non standard
bases, substitutive systems, fractals and tilings, . . .

I B. Adamczewski, J. Bell, A. Bès, B. Boigelot, J. Brusten,
V. Bruyère, F. Durand, S. Fabre, I. Fagnot, G. Hansel, C.
Michaux, A. Muchnik, D. Perrin, F. Point, M. Rigo, A.
Semenov, R. Villemaire, . . .



Great impact of the two Cobham's theorems

First Cobham's theorem - surveys

I D. Perrin, Finite automata, In Handbook of TCS, Vol B,
Elsevier - MIT Press (1990) 1-57

I V. Bruyère, G. Hansel, C. Michaux and R. Villemaire, Logic
and p-recognizable sets of integers, Bull. Belg. Math. Soc. 1

(1994) 191-238

I M. Rigo, Numeration systems : a link between number theory
and formal language theory, Proc. DLT'10, LNCS 6224

Springer (2010) 33-53

I F. Durand, M. Rigo, On Cobham's theorem, In Handbook of
Automata Theory (AutoMathA project), in preparation, 39 p
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Some known extensions



Logical characterizations

Theorem (Büchi 1960)

X is r -recognizable i� X is �rst-order de�nable in 〈N,+,Vr 〉.

I Vr (x) = y means that y is the largest power of r dividing x .
Vr (0) = 1

I Formulae - (�rst-order) variables x , y , z , . . . over N
equality =, addition +, function Vr

connectives ∧,∨,¬,→,↔
quanti�ers ∃,∀ over variables

Example

I V2(20) = 4, V3(20) = 1

I ≤ is �rst-order de�nable ; any constant is �rst-order de�nable

I X = 2N + 1 is de�nable by the formula ϕ(x) :
(∃y) (x = y + y + 1)

I X = {2n | n ≥ 0} is de�nable by the formula ϕ(x) : V2(x) = x



Logical characterizations

Theorem
X is a �nite union of constants and arithmetic progressions

i� X is ultimately periodic

i� X is �rst-order de�nable in Presburger arithmetic 〈N,+〉.

I X is ultimately periodic i�
(∃l ≥ 0)(∃p ≥ 1)(∀n ≥ l) (n ∈ X ⇔ n + p ∈ X )

Theorem (Cobham's theorem restated)

Let r , s ≥ 2 be two multiplicatively independent bases.

A set X ⊆ N is r - and s-recognizable,

(X is �rst-order de�nable in 〈N,+,Vr 〉 and in 〈N,+,Vs〉)
i� X is a �nite union of constants and arithmetic progressions

(X is �rst-order de�nable in 〈N,+〉)



Extension to Z
Automata

I In base r , a positive (resp. negative) number always begins
with 0 (resp. r − 1).

Example

In base 2, −6 = −8 + 2 is written as 1010 (2's complement),
and 10 as 01010

X = {2n | n ≥ 0} ∪ {−2n | n ≥ 0} is 2-recognizable.
Base 2 : 0+10∗ + 1+10∗

Logical structures

I Structures 〈Z,+,≤〉 and 〈Z,+,≤,Vr 〉
I X is �rst-order de�nable in 〈Z,+,≤〉 i� X is a �nite union of

constants, arithmetic progressions, and opposite of arithmetic
progressions



Extension to Nm

Automata(
3

9

)
is written as

(
0011

1001

)
=

(
0

1

) (
0

0

) (
1

0

) (
1

1

)
in base 2.

Example

X = {(x , y , z) | x + y = z} is 2-recognizable

state a : no carry
state b : carry
state c : error

c

00
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011
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Extension to Nm

Theorem (Büchi 1960)

Let m ≥ 1. A set X ⊆ Nm is r -recognizable i� it is �rst-order

de�nable in 〈N,+,Vr 〉.

Theorem (Semenov 1977)

Let m ≥ 1. Let r , s ≥ 2 be two multiplicatively independent bases.

A set X ⊆ Nm is r - and s-recognizable i� X is �rst-order de�nable

in 〈N,+〉.

I Elegant proof by (Muchnik 1991), by induction on m

Extension of ultimate periodicity

I de�nability in 〈N,+〉
I �nite union of points and cones (semi-linear sets)

I Muchnik's de�nability criterion



Extension to Nm

ϕ(x , y)

(x = 0 ∧ y = 3)
∨ (x = 2 ∧ y = 4)
∨ (x = y)
∨ (∃z)(∃t)(x = z + t + 4) ∧ (y = t + t + 3)

0 1 2 3
0

Two points and two cones :

I cone {(x , y) | (∃z)(∃t) (x , y) = z(1, 0) + t(1, 2) + (4, 3)}
I diagonal



Recent extensions to R and Rm



Recognizability in Rm

De�nition
Given a base r , real numbers are positionally encoded as in�nite
words over {0, 1, . . . , r − 1, ?}

I a positive (resp. negative) number begins with 0 (resp. r − 1)

I all possible encodings ; tuples

I integer numbers : in�nite words u ? 0ω and u ? (r − 1)ω

I rational numbers : in�nite words u ? vwω

Example

3.5 in base 10 : 0+3 ? 50ω ∪ 0+3 ? 4 9ω.

De�nition
Let m ≥ 1. Let r ≥ 2 be a base.
A set X ⊆ Rm is r -recognizable if X written in base r is accepted
by a �nite (non deterministic) Büchi automaton



Example

-4

. . .. . .

-3 -2 -1 0 1 2 3{
2n +

]
0, 4

3

[
| n ∈ Z

}
Base 2 Base 3
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Logical characterization

Theorem (Boigelot-Rassart-Wolper 1998)

A set X ⊆ Rm is r -recognizable i� X is �rst-order de�nable in

〈R,+,≤, Z,Vr 〉.

I Variables x , y , z , . . . over R
I Predicate Z(x) means that x is an integer variable

I Vr (x) = y means y is the largest power of r dividing x as
follows : x = ky with k ∈ Z (if such a power exists)

Example

I V10(3.5) = 1
10
, V10(3.55) = 1

102

I X = {2n | n ∈ Z} is de�nable by : V2(x) = x

I any rational constant is �rst-order de�nable

I X =
{
2n +

]
0, 4

3

[
| n ∈ Z

}
is de�nable by :

(∃y)(∃z) Z(y) ∧ (x = y + y + z) ∧ (0 < z < 4
3
)



Ultimately periodically simple sets

Theorem (Weispfenning 1999)

X ⊆ R is �rst-order de�nable in 〈R,+,≤, Z〉 i� X is ultimately

periodically simple.

I Characterization for dimension 1. Higher dimensions : see later.

De�nition
X is ultimately periodically simple i�

I X is a �nite union of sets of the form Yi + Zi where

I each Yi ⊆ Z is either an integer constant, either an arithmetic
progression, or its opposite

I each Zi ⊆ [0, 1] is an interval with rational endpoints

Example

X =
{
2n +

]
0, 4

3

[
| n ∈ Z

}
is ultimately periodically simple



Cobham's theorem extended to R

Theorem (Boigelot-Brusten-Bruyère 2008)

Let r , s be two bases that do not have the same set of prime

factors. A set X ⊆ R is r - and s-recognizable i� X is ultimately

periodically simple

I If r , s do not have the same set of prime factors, then they are
multiplicatively independent

I The converse is false (ex. r = 6 and s = 12)

I This theorem is false for two multiplicatively independent
bases (see next slides)



Weak automata

De�nition
A deterministic Büchi automaton is weak if each of its strongly
connected components has either only accepting or only non
accepting states.

I Practically as easy to handle as �nite-word automata

I Canonical minimal form (Löding 2001)

Theorem (Boigelot-Brusten 2007)

Let r , s be two independent bases. A set X ⊆ R is r - and

s-recognizable by weak deterministic Büchi automata i� X is

ultimately periodically simple



Weak automata

Example
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Weak automata

The expressiveness of weak deterministic Büchi automata is limited

I level Σ0
2 ∩ Π0

2 in Borel hierarchy

I instead of level Σ0
3 ∩ Π0

3 for Büchi automata

Theorem (Boigelot-Jodogne-Wolper 2001)

Let m ≥ 1. Let r ≥ 2 be a base.

If a set X ⊆ Rm is de�nable in 〈R,+,≤, Z〉, then X written in

base r is recognizable by a weak determinstic Büchi automaton.

I Same result with 〈R,+,≤, Z,Pr 〉, where predicate Pr (x)
means that x is a power of r (Brusten 2006)

I False for 〈R,+,≤, Z,Vr 〉



Cobham's theorem extended to R

Theorem (Boigelot-Brusten-Bruyère 2008)

Let r , s be two bases that do not have the same set of prime

factors. A set X ⊆ R is r - and s-recognizable i� X is ultimately

periodically simple

I In other words, if X is de�nable in 〈R,+,≤, Z,Vr 〉 and
〈R,+,≤, Z,Vs〉, then it is de�nable in 〈R,+,≤, Z〉

I In other words, if a set X is recognizable by a Büchi
automaton independently of the base, then it is recognizable
by a weak deterministic Büchi automaton

I Theoretical justi�cation to the use of weak deterministic
automata as an e�ective symbolic representation of sets in the
context of computer-aided veri�cation (LASH tool)



Cobham's theorem extended to R
Counterexample

r = 6 and s = 12
X = {x ∈ R | x can be encoded in base 6 as u ? v0ω}
X is both 6- and 12-recognizable
X is not ultimately periodically simple

Intuition

I To have an in�nite queue of zeros in base 6 is equivalent to
have an in�nite queue of zeros in base 12.

I X written in base 6 cannot be accepted by a weak Büchi
automaton.

Theorem (Boigelot-Brusten-Bruyère 2009)

For any pair of bases r , s that have the same set of prime factors,

the set X = {x ∈ R | x can be encoded in base r as u ? v0ω}
I is both r- and s-recognizable,

I but is not ultimately periodically simple.



Main steps of the proof

Let r , s that do not have the same set of prime factors
Let X ⊆ R be a r - and s-recognizable set

1. Separate integer parts and fractional parts

We have X =
⋃n

i=1 Yi + Zi with

I Yi ⊆ Z and Zi ⊆ [0, 1]

I Yi is r - and s-recognizable
(�nite-word automata)

I Zi is r - and s-recognizable
(Büchi automata)

By Cobham's theorem, each Yi is �rst-order de�nable in 〈Z,+,≤〉
Thus, it is su�cient to prove each Zi is a �nite union of intervals
with rational endpoints



Main steps of the proof

Let X ⊆ [0, 1] be a r - and s-recognizable set.

2. Product stability

De�nition
X is f -product-stable if for all x : x ∈ X ⇔ f · x ∈ X

I r j -product stability and sk -product stability, for some j , k ≥ 1

I In relation with some cycles in the automata

3. Sum stability

De�nition
X is d -sum-stable if for all x : x ∈ X ⇔ x + d ∈ X

I Second use of Cobham's Theorem

I Very technical proof. Simpler proof ?



Cobham's theorem extended to Rm

Theorem (Boigelot-Brusten-Leroux 2009)

Let m ≥ 1. Let r , s that do not have the same set of prime factors.

A set X ⊆ Rm is r - and s-recognizable i� X is �rst-order de�nable

in 〈R,+,≤, Z〉.

X ⊆ Rm is �rst-order de�nable in 〈R,+,≤, Z〉 i�
I X is a �nite union of sets of the form Yi + Zi where

I each Yi ⊆ Zm is �rst-order de�nable in 〈Z,+,≤〉
I each Zi ⊆ [0, 1]m is �rst-order de�nable in 〈R,+,≤, 1〉, i.e., is

a boolean combination of linear constraints with rational
coe�cients

Boigelot-Brusten-Leroux's de�nability criterion like in
(Muchnik 1991)



Cobham's theorem extended to Rm

Main steps of the proof

I Separation of integer and fractional parts : X =
⋃n

i=1 Yi + Zi

I By Semenov's theorem, each Yi is �rst-order de�nable in
〈Z,+,≤〉

I For each Zi ,

I r j -product stability and sk -product

stability, for some j , k ≥ 1

I Conical structure of Zi

I Each face of Zi ∩ [0, 1]m has dimension

m − 1 and is r -, s-recognizable

I By induction on the dimension, each Zi is �rst-order de�nable
in 〈R,+,≤, 1〉



Conclusion and other related works



Conclusion

In this talk

I Extension of �rst Cobham's theorem to Z, Nm, R and Rm

I Logical approach to �nd the right statements

I Precise description of the structure of automata, when the
recognizability is independent of the base

Morphic approach

I Another extension of �rst's Cobham theorem for sets X ⊆ N
I Orthogonal and beautiful extension

I See next slides



Morphic approach

Theorem (Cobham 1972)

A set X ⊆ N is r -recognizable i� its characteristic sequence is

generated by the iteration of a r -uniform morphism, followed by a

coding.

Example

X = {2n | n ≥ 0}
g : a → ab, b → bc , c → cc 2-uniform morphism
f : a → 0, b → 1, c → 0 coding

a

ab

abbc

abbcbccc

abbcbcccbccccccc

abbcbcccbcccccccbccccccccccccccc

01101000100000001000000000000000 · · ·



Morphic approach

De�nition
A set X ⊆ N is α-recognizable if its characteristic sequence is
generated by the iteration of a morphism g , followed by a coding f ,
such that α > 1 is the dominating eigenvalue of the incidence
matrix of g .

I Example Fibonacci morphism g : a → ab, b → a with

incidence matrix

(
1 1
1 0

)
and dominating eigenvalue 1+

√
5

2

Theorem (Durand 2010)

Let α and β two mutiplicatively independent Perron numbers. A set

X ⊆ N is α- and β-recognizable i� X is a �nite union of constants

and arithmetic progressions.

I See reference �F. Durand, M. Rigo, On Cobham's theorem, In
Handbook of Automata Theory, in preparation, 39 pages�



Thank you . . .


