Flow invariants for irreducible sofic systems

Søren Eilers
eilers@math.ku.dk
Department of Mathematical Sciences
University of Copenhagen

Dynamical Aspects of Automata and Semigroup Theories, Vienna, 25.11.10
Based on joint work with Béal, Berstel, Perrin; Boyle, Carlsen

Content

(1) Preliminaries
(2) Conjugacy
(3) Flow equivalence
(4) Invariants
(5) Classification

See also

- M.-P. Béal, S. Eilers, J. Berstel, and D. Perrin: Symbolic Dynamics. Chapter for "Handbook in Automata Theory". ArXiV 2010.
- M. Boyle, T.M. Carlsen, and S. Eilers: Flow equivalence of sofic systems. ArXiV 2011 (sorry!).
- D. Lind, B. Marcus: Introduction to symbolic dynamics and coding. Cambridge University Press, 1995.

Outline

(1) Preliminaries

(2) Conjugacy

3 Flow equivalence

4 Invariants
(5) Classification

Baker's map

$101110100101001111100 \cdots$

Irrational rotation

$0001000100100010010001000 \cdots$

Symbolic dynamics

Let \mathfrak{a} be a finite set and equip $\mathfrak{a}^{\mathbb{Z}}$ with the product topology based on the discrete topology on \mathfrak{a}.

Definition

A shift space is a subset X of $\mathfrak{a}^{\mathbb{Z}}$ which is closed and closed under the shift map

$$
\sigma: \mathfrak{a}^{\mathbb{Z}} \rightarrow \mathfrak{a}^{\mathbb{Z}} \quad \sigma\left(\left(x_{i}\right)\right)=\left(x_{i+1}\right)
$$

Definition

A shift space is irreducible if some orbit $\left\{\sigma^{n}(x) \mid n \in \mathbb{N}\right\}$ is dense.

3 constructions

Name	Input	Description	Example
$\mathrm{X}^{(W)}$	List of words W	Sequences not containing words from W	$W=\{11\}$
X_{G}	Graph G	Infinite paths on G	$\mathrm{~L}_{\mathcal{A}}$
Automaton \mathcal{A}	Words recognized by \mathcal{A}	0	

Forbidden word shifts

Let W be a set of finite words on \mathfrak{a}.

Definition

$\mathrm{X}^{(W)}$ is the shift space $\left\{x \in \mathfrak{a}^{\mathbb{Z}} \mid \forall i<j: x_{i} \cdots x_{j} \notin W\right\}$

Example

With $\mathfrak{a}=\{0,1\}$ and $W=\{11\}$ the shift space $X^{(W)}$ contains elements such as

...01000010001000100001010101001001000100010 ...

Lemma

For any shift space $X, X=\mathrm{X}^{(W)}$ where W is chosen as the complement of the language

$$
\mathcal{L}(X)=\left\{x_{i} \cdots x_{j} \mid x \in X, i<j\right\}
$$

Edge shifts

Let a graph $G=(V, E, r, s)$ be given with

- Vertices V
- Edges E enumerated $\left\{e_{1}, \ldots e_{n}\right\}$
- Range and source maps $r, s: E \rightarrow V$.

Definition

X_{G} is the shift space $\mathrm{X}^{(W)}$ with alphabet E and

$$
W=\left\{e_{i} e_{j} \mid r\left(e_{i}\right) \neq s\left(e_{j}\right)\right\}
$$

Example

With $G=e_{1} C \bullet \xrightarrow[e_{3}]{e_{2}} \bullet, \mathrm{X}_{G}$ contains elements such as

Labeled edge shifts

Convention

All automata $\mathcal{A}=(V, E, r, s, \mathfrak{a}, \lambda)$ are finite and all states are both initial and final. Thus, they are given by the underlying graph (V, E, r, s) and a labelling map $\Lambda: E \rightarrow \mathfrak{a}$

Definition

We denote by $\mathrm{X}_{\mathcal{A}}$ the edge shift associated to the underlying graph of \mathcal{A} and by

$$
\lambda: \mathbb{X}_{\mathcal{A}} \rightarrow \mathfrak{a}^{\mathbb{Z}}
$$

the labeling map induced by Λ. The shift recognized by \mathcal{A} is $\mathrm{L}_{\mathcal{A}}=\lambda\left(\mathrm{X}_{\mathcal{A}}\right)$.

Labeled edge shifts

Example

With $\mathcal{A}=0 \underbrace{1}_{0}$ - the shift space $\mathrm{X}_{\mathcal{A}}$ contains elements such as

Outline

(1) Preliminaries

(2) Conjugacy

3 Flow equivalence

4 Invariants
(5) Classification

Definition

Let $X \subseteq \mathfrak{a}^{\mathbb{Z}}$ and $Y \subseteq \mathfrak{b}^{\mathbb{Z}} . \phi: X \rightarrow Y$ is the (m, n) sliding block code given by a map

$$
\Phi: \mathfrak{a}^{n+1+m} \rightarrow \mathfrak{b}
$$

when

$$
\phi(x)_{i}=\Phi\left(x_{i-m} \cdots x_{i+n}\right)
$$

Lemma

The following are equivalent:

- ϕ is continuous and shift-commuting
- ϕ is a sliding block code

Definition

X and Y are conjugate when there is a bijective sliding block code $\phi: X \rightarrow Y$

With \mathcal{A} as above,

becomes a conjugacy. Indeed, the labeling map is always a $(0,0)$ sliding block code induced by Λ. And in this case it has a $(1,0)$ block inverse μ given by

$$
00 \mapsto e_{1} \quad 01 \mapsto e_{2} \quad 10 \mapsto e_{3}
$$

For instance,

$$
\begin{gathered}
\mu \circ \lambda\left(\cdots e_{1} e_{2} e_{3} e_{1} e_{1} e_{1} e_{2} e_{3} e_{1} \cdots\right)= \\
\mu(\cdots 010000100 \ldots)= \\
\cdots e_{2} e_{3} e_{1} e_{1} e_{1} e_{2} e_{3} e_{1} \cdots
\end{gathered}
$$

Multiplicity set

Definition

With a given map $\lambda: \mathrm{X}_{\mathcal{A}} \rightarrow \mathrm{L}_{\mathcal{A}}$ we set

$$
\begin{aligned}
\widetilde{L_{\mathcal{A}}} & =\left\{x \in \mathrm{~L}_{\mathcal{A}}| | \lambda^{-1}(\{x\}) \mid>1\right\} \\
\widetilde{X_{\mathcal{A}}} & =\lambda^{-1}\left(\widetilde{\mathrm{~L}_{\mathcal{A}}}\right)
\end{aligned}
$$

and restrict λ to

$$
\tilde{\lambda}: \widetilde{X_{\mathcal{A}}} \rightarrow \widetilde{\mathrm{L}_{\mathcal{A}}}
$$

Example

 and $\widetilde{L_{\mathcal{B}}}=\left\{0^{\infty}\right\}$.

Shifts of finite type

Definition

A shift space is a shift of finite type (SFT) if is has the form $\mathrm{X}^{(W)}$ with W finite.

Lemma

The following are equivalent:

- X is an SFT
- $X \simeq \mathrm{X}_{G}$ for some graph G

Sofic shifts

Definition

A shift space is sofic if is has the form $\mathbf{X}^{(W)}$ with W recognizable.

Lemma

The following are equivalent:

- X is sofic
- $X \simeq \mathrm{X}_{\mathcal{A}}$ for some automaton \mathcal{A}

Theorem

When X is irreducible and sofic, there is a unique deterministic automaton \mathcal{A} with fewest possible vertices such that $X \simeq X_{\mathcal{A}}$. \mathcal{A} is called the Fischer cover of X.

Near Markov and AFT

Definition

We say that an irreducible sofic shift is (right) near Markov if $\widetilde{X_{\mathcal{A}}}$ is finite for its Fischer cover \mathcal{A}.

Definition

We say that an irreducible sofic shift is AFT when its Fischer cover has finite left delay: There is a constant ℓ such that when

$$
r \xrightarrow{z} q \xrightarrow{a} p
$$

$$
r^{\prime} \xrightarrow{z} q^{\prime} \xrightarrow{a} p
$$

with $|z|>\ell$, then $q=q^{\prime}$.

Near Markov and AFT

Theorem

A near Markov shift is AFT.

Theorem

When $\mathrm{L}_{\mathcal{A}}$ is $A F T, \widetilde{\mathrm{X}_{\mathcal{A}}}$ is closed.

The SFT classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are conjugate.

Theorem (Williams)

Let X_{G} and X_{H} be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.
(i) X_{G} and X_{H} are conjugate.
(ii) There exist nonnegative integral matrices D_{i} and E_{i} with

$$
A=D_{0} E_{0}, E_{0} D_{0}=D_{1} E_{1}, \cdots, E_{n} D_{n}=B
$$

Arsenal of invariants

Real numbers, power series, ordered abelian groups, finitely generated abelian groups, C^{*}-algebras,...

4 examples

A	G	$h\left(\mathrm{X}_{G}\right)$	$B F\left(\mathrm{X}_{G}\right)$
$\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$		4	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}3 & 1 \\ 3 & 1\end{array}\right]$	$\bullet \bullet$	4	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$	\bullet	$\frac{3+\sqrt{13}}{2}$	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$	\bullet	4	$(\mathbb{Z}, 0)$

4 examples

A	G	$h\left(\mathrm{X}_{G}\right)$	$B F\left(\mathrm{X}_{G}\right)$
$\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$		4	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}3 & 1 \\ 3 & 1\end{array}\right]$	\bullet	4	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$	\bullet	$\frac{3+\sqrt{13}}{2}$	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$	\bullet	4	$(\mathbb{Z}, 0)$

Theorem (Hamachi-Nasu)

Let X and Y be two irreducible sofic shifts and let \mathcal{A}, \mathcal{B} be their Fischer automata given by alphabetic adjacency matrices A and B. The following conditions are equivalent.
(i) $X \simeq Y$
(ii) $X_{\mathcal{A}} \xrightarrow{\simeq} X_{\mathcal{B}}$

Corollary
When $\mathrm{L}_{\mathcal{A}} \simeq \mathrm{L}_{\mathcal{B}}$, then $\mathrm{X}_{\mathcal{A}} \simeq \mathrm{X}_{\mathcal{B}}$.

Example

With $\mathcal{A}=0 C \bullet$ • and $\mathcal{B}=1 C$ • we get $\widetilde{L_{\mathcal{A}}}=\emptyset$ and $\widetilde{L_{\mathcal{B}}}=\left\{0^{\infty}\right\}$.

Hence

$$
\begin{aligned}
& X_{\mathcal{A}} \simeq X_{\mathcal{B}} \\
& \lambda_{\mathcal{A}} \\
& \downarrow\left.\right|^{\lambda_{\mathcal{B}}} \\
& L_{\mathcal{A}} \simeq L_{\mathcal{B}}
\end{aligned}
$$

is impossible and $\mathrm{L}_{\mathcal{A}} \not 千 \mathrm{~L}_{\mathcal{B}}$.

Invariant: Fiber product

Definition

The fiber product associated to $\lambda: \mathrm{X}_{\mathcal{A}} \rightarrow \mathrm{L}_{\mathcal{A}}$ is defined as

$$
F\left[\lambda_{\mathcal{A}}\right]=\left\{(x, y) \in \mathrm{X}_{\mathcal{A}}^{2} \mid \lambda(x)=\lambda(y)\right\}
$$

Corollary

When $\mathrm{L}_{\mathcal{A}} \simeq \mathrm{L}_{\mathcal{B}}$, then $F\left[\lambda_{\mathcal{A}}\right] \simeq F\left[\lambda_{\mathcal{B}}\right]$.

Lemma

$F\left[\lambda_{\mathcal{A}}\right]$ is a SFT which is reducible unless $L_{\mathcal{A}}$ is an SFT. The diagonal

$$
\Delta=\left\{(x, x) \mid x \in \mathrm{X}_{\mathcal{A}}\right\}
$$

is an irreducible component of $F\left[\lambda_{\mathcal{A}}\right]$. When $L_{\mathcal{A}}$ is $A F T$ this component communicates with no other irreducible component.

Outline

(1) Preliminaries

(2) Conjugacy
(3) Flow equivalence
(4) Invariants
(5) Classification

Symbol expansion

Fix $a \in \mathfrak{a}$ and $\star \notin \mathfrak{a}$ and define $\eta: \mathfrak{a}^{\mathbb{Z}} \rightarrow(\mathfrak{a} \cup\{\star\})^{\mathbb{Z}}$ as the map inserting a \star after each a :
$\cdots b a b b b a b a \cdots \quad \mapsto b a \star b b b a \star b a \star \cdots$

Definition

The " $a \mapsto a \star$ " symbol expansion of a shift space X is the shift space $X_{a \mapsto a \star}=\eta(X)$.

Flow equivalence

Associated to any shift space there is a suspension flow given by product topology on

$$
S X=\frac{X \times \mathbb{R}}{(x, t) \sim(\sigma(x), t+1)}
$$

Definition

X and Y are flow equivalent (written $X \simeq_{f e} Y$) when $S X$ and $S Y$ are homeomorphic in a way preserving direction in \mathbb{R}.

Theorem (Parry-Sullivan)

Flow equivalence is the coarsest equivalence relation containing conjugacy and $X \sim X_{a \rightarrow a \star}$

Flow classification

Lemma

If $X \simeq_{f e} Y$ and X is SFT, sofic or irreducible, then so is Y.

The SFT flow classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are flow equivalent.

The sofic flow classification problem

Let X and Y be irreducible sofic shifts given by Fischer automata \mathcal{A} and \mathcal{B}, respectively. Determine in terms of \mathcal{A} and \mathcal{B} when X and Y are flow equivalent.

Flow classifcication of SFTs

Theorem (Franks)

Let X_{G} and X_{H} be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.
(i) $\mathrm{X}_{G} \simeq{ }_{f e} \mathrm{X}_{H}$
(ii)

$$
\mathbb{Z}^{m} /(1-A) \mathbb{Z}^{m} \simeq \mathbb{Z}^{n} /(1-B) \mathbb{Z}^{n}
$$

and

$$
\operatorname{sgn} \operatorname{det}(1-A)=\operatorname{sgn} \operatorname{det}(1-B)
$$

4 examples

A	G	$B F\left(\mathrm{X}_{G}\right)$
$\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$		$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}3 & 1 \\ 3 & 1\end{array}\right]$		$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$	C- ${ }^{\circ}$	$\left(\mathbb{Z}_{3},-\right)$
$\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$		$(\mathbb{Z}, 0)$

4 examples

$\left.\begin{array}{|c|c|c|}\hline A & G & B F\left(\mathrm{X}_{G}\right) \\ \hline\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right] & & \left(\mathbb{Z}_{3},-\right) \\ {\left[\begin{array}{ll}3 & 1 \\ 3 & 1\end{array}\right]} & & \left(\mathbb{Z}_{3},-\right) \\ 1 & 1 \\ 3 & 2\end{array}\right]$

Flow classifcication of SFTs

Theorem (Boyle-Huang)

The signed K-web is a complete invariant for reducible SFTs.

Theorem (Boyle-Sullivan)

There is a classification theory for equivariant flow equivalence of irreducible SFTs with actions of a finite group G.

Outline

(1) Preliminaries

(2) Conjugacy

3 Flow equivalence
(4) Invariants

(5) Classification

Flow classification of sofics

Theorem

Let X and Y be two irreducible sofic shifts and let \mathcal{A}, \mathcal{B} be their Fischer automata. The following conditions are equivalent.
(i) $X \simeq_{f e} Y$
(ii) $S X_{\mathcal{A}} \xrightarrow{\sim_{+}} S X_{\mathcal{B}}$

Corollary
If $X \simeq_{f e} Y$ and X is near Markov or AFT, then so is Y.

Flow invariant: n-soficity

Definition

We say that an irreducible sofic shift is n-sofic when for the Fischer cover $\mathcal{A}, \lambda: \mathrm{X}_{\mathcal{A}} \rightarrow \mathrm{L}_{\mathcal{A}}$ satisfies

$$
\max _{x \in \mathrm{~L}_{\mathcal{A}}}\left|\lambda^{-1}(\{x\})\right|=n
$$

Corollary
If $X \simeq_{f e} Y$, and X is n-sofic, then so is Y.

Flow invariant: Fiber product

Corollary

$$
\text { If } \mathrm{L}_{\mathcal{A}} \simeq_{f e} \mathrm{~L}_{\mathcal{B}}, \text { then } F\left[\lambda_{\mathcal{A}}\right] \simeq_{f e} F\left[\lambda_{\mathcal{B}}\right]
$$

Flow invariant: Multiplicity graph

Collect all periodic words in $\widetilde{\mathrm{X}_{\mathcal{A}}}$ into orbits $\left\{o_{i}\right\}_{i \in I}$ and all periodic words in $\widetilde{L_{\mathcal{A}}}$ into orbits $\left\{\omega_{j}\right\}_{j \in J}$. Note that a map $\mu: I \rightarrow J$ is defined by noting that λ sends o_{i} to $\omega_{\mu(i)}$. Note also that $\left|\omega_{\mu(i)}\right|$ divides $\left|o_{i}\right|$ and set

$$
k(i)=\frac{\left|o_{i}\right|}{\left|\omega_{\mu(i)}\right|}
$$

Definition

The multiplicity graph of \mathcal{A} is a bipartite graph $M(\mathcal{A})$ with vertices $I \cup J$ and $k(i)$ edges from i to $\mu(i)$ for each $i \in I$.

Corollary

$$
\text { If } \mathrm{L}_{\mathcal{A}} \simeq_{f e} \mathrm{~L}_{\mathcal{B}}, \text { then } M\left[\lambda_{\mathcal{A}}\right] \simeq M\left[\lambda_{\mathcal{B}}\right]
$$

Outline

(1) Preliminaries

(2) Conjugacy

3 Flow equivalence
(4) Invariants
(5) Classification

Theorem (Boyle-Carlsen-E)

Let X and Y be two irreducible sofic shift spaces with Fischer automata \mathcal{A} and \mathcal{B}, respectively, and assume that $\widetilde{\mathrm{X}_{\mathcal{A}}}$ and $\widetilde{\mathrm{X}_{\mathcal{B}}}$ are both closed. Then X and Y are flow equivalent exactly when the following conditions hold:
(1) $\mathrm{X}_{\mathcal{A}} \simeq{ }_{f e} \mathrm{X}_{\mathcal{B}}$
(2) $S \widetilde{\mathrm{X}_{\mathcal{A}}} \xrightarrow{\sim_{+}} S \widetilde{\mathrm{X}_{\mathcal{B}}}$

Corollary

Near Markov shifts are classified by the Bowen-Franks invariant of $\mathrm{X}_{\mathcal{A}}$ and the multiplicity graph $M(\mathcal{A})$.

$\lambda: \mathrm{X}_{\mathcal{A}} \rightarrow \mathrm{L}_{\mathcal{A}}$	$\lambda: \mathrm{X}_{\mathcal{A}} \rightarrow \mathrm{L}_{\mathcal{A}}$
	$a(\bullet \bullet a$
	$\xrightarrow[b]{\square}$

$\lambda: \mathrm{X}_{\mathcal{A}} \rightarrow \mathrm{L}_{\mathcal{A}}$	$\widetilde{\lambda}: \widetilde{X_{\mathcal{A}}} \rightarrow \widetilde{L_{\mathcal{A}}}$
	$a(\bullet \backsim a$
	$\xrightarrow[b]{b}$

Flow classifcication of SFTs

Classifying 2-sofic AFTs is at least as hard as

Theorem (Boyle-Huang)

The signed K-web is a complete invariant for reducible SFTs.

Theorem (Boyle-Sullivan)

There is a classification theory for equivariant flow equivalence of irreducible SFTs with actions of a finite group G.

