▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Flow invariants for irreducible sofic systems

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

Dynamical Aspects of Automata and Semigroup Theories, Vienna, 25.11.10 Based on joint work with Béal, Berstel, Perrin; Boyle, Carlsen

- M.-P. Béal, S. Eilers, J. Berstel, and D. Perrin: *Symbolic Dynamics*. Chapter for "Handbook in Automata Theory". ArXiV 2010.
- M. Boyle, T.M. Carlsen, and S. Eilers: *Flow equivalence of sofic systems*. ArXiV 2011 (sorry!).
- D. Lind, B. Marcus: *Introduction to symbolic dynamics and coding*. Cambridge University Press, 1995.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Conjugacy

3 Flow equivalence

Invariants

5 Classification

Baker's map

$101110100101001111100\cdots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Preliminaries

Conjugacy

Flow equivalence

Invariants

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Classification

Irrational rotation

 $000100010010010010001000 \cdots$

Let $\mathfrak a$ be a finite set and equip $\mathfrak a^{\mathbb Z}$ with the product topology based on the discrete topology on $\mathfrak a.$

Definition

A shift space is a subset X of $\mathfrak{a}^{\mathbb{Z}}$ which is closed and closed under the shift map

$$\sigma: \mathfrak{a}^{\mathbb{Z}} \to \mathfrak{a}^{\mathbb{Z}} \qquad \sigma((x_i)) = (x_{i+1})$$

Definition

A shift space is **irreducible** if some orbit $\{\sigma^n(x) \mid n \in \mathbb{N}\}$ is dense.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3 constructions

Name	Input	Description	Example
X ^(W)	List of words W	Sequences not containing words from W	$W = \{11\}$
X_G	$Graph\ G$	Infinite paths on G	$e_1 \bigcirc \bullet \overset{e_2}{\underset{e_3}{\overset{\bullet}{\overbrace{}}} \bullet} \bullet$
L _A	Automaton ${\cal A}$	Words recognized by $\mathcal A$	

Forbidden word shifts

Let W be a set of finite words on \mathfrak{a} .

Definition

$$\mathsf{X}^{(W)}$$
 is the shift space $\{x \in \mathfrak{a}^{\mathbb{Z}} \mid \forall i < j : x_i \cdots x_j \notin W\}$

Example

With $\mathfrak{a}=\{0,1\}$ and $W=\{11\}$ the shift space $\mathsf{X}^{(W)}$ contains elements such as

Lemma

For any shift space X, $X = X^{(W)}$ where W is chosen as the complement of the language

 $\mathcal{L}(X) = \{ x_i \cdots x_j \mid x \in X, i < j \}$

Let a graph ${\boldsymbol{G}}=(V, {\boldsymbol{E}}, r, s)$ be given with

- Vertices V
- Edges E enumerated $\{e_1, \ldots e_n\}$
- Range and source maps $r, s : E \rightarrow V$.

Definition

 X_G is the shift space $X^{(W)}$ with alphabet E and

$$W = \{e_i e_j \mid r(e_i) \neq s(e_j)\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Labeled edge shifts

Convention

All automata $\mathcal{A} = (V, E, r, s, \mathfrak{a}, \lambda)$ are finite and all states are both initial and final. Thus, they are given by the underlying graph (V, E, r, s) and a labelling map $\Lambda : E \to \mathfrak{a}$

Definition

We denote by $X_{\mathcal{A}}$ the edge shift associated to the underlying graph of \mathcal{A} and by

$$\lambda: \mathsf{X}_{\mathcal{A}} \to \mathfrak{a}^{\mathbb{Z}}$$

the labeling map induced by Λ . The shift recognized by \mathcal{A} is $L_{\mathcal{A}} = \lambda(X_{\mathcal{A}}).$

Preliminaries

Conjugacy

Flow equivalence

Invariants

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Classification

Labeled edge shifts

Outline

Flow equivalence

Definition
Let
$$X \subseteq \mathfrak{a}^{\mathbb{Z}}$$
 and $Y \subseteq \mathfrak{b}^{\mathbb{Z}}$. $\phi : X \to Y$ is the (m, n) sliding block
code given by a map
 $\Phi : \mathfrak{a}^{n+1+m} \to \mathfrak{b}$
when
 $\phi(x)_i = \Phi(x_{i-m} \cdots x_{i+n})$
Lemma
The following are equivalent:
• ϕ is continuous and shift-commuting
• ϕ is a sliding block code
Definition
 X and Y are conjugate when there is a bijective sliding block code
 $\phi : X \to Y$

Conjugacy

Preliminaries	Conjugacy	Flow equivalence	Invariants	Classification

With \mathcal{A} as above,

becomes a conjugacy. Indeed, the labeling map is always a (0,0) sliding block code induced by $\Lambda.$ And in this case it has a (1,0) block inverse μ given by

$$00 \mapsto e_1 \qquad 01 \mapsto e_2 \qquad 10 \mapsto e_3$$

For instance,

$$\mu \circ \lambda(\dots e_1 e_2 e_3 e_1 e_1 e_2 e_3 e_1 \dots) = \\ \mu(\dots 010000100\dots) = \\ \dots e_2 e_3 e_1 e_1 e_2 e_3 e_1 \dots$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Multiplicity set

Definition

With a given map $\lambda:\mathsf{X}_{\mathcal{A}}\to\mathsf{L}_{\mathcal{A}}$ we set

$$\begin{split} \widetilde{\mathsf{L}_{\mathcal{A}}} &= \{ x \in \mathsf{L}_{\mathcal{A}} \mid |\lambda^{-1}(\{x\})| > 1 \} \\ \widetilde{\mathsf{X}_{\mathcal{A}}} &= \lambda^{-1}(\widetilde{\mathsf{L}_{\mathcal{A}}}) \end{split}$$

and restrict λ to

$$\widetilde{\lambda}:\widetilde{X_{\mathcal{A}}}\rightarrow\widetilde{L_{\mathcal{A}}}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Shifts of finite type

Definition

A shift space is a *shift of finite type (SFT)* if is has the form $X^{(W)}$ with W finite.

Lemma

The following are equivalent:

- X is an SFT
- $X \simeq X_G$ for some graph G

Definition

A shift space is *sofic* if is has the form $X^{(W)}$ with W recognizable.

Lemma

The following are equivalent:

- X is sofic
- $X \simeq X_{\mathcal{A}}$ for some automaton \mathcal{A}

Theorem

When X is irreducible and sofic, there is a unique deterministic automaton \mathcal{A} with fewest possible vertices such that $X \simeq X_{\mathcal{A}}$. \mathcal{A} is called the Fischer cover of X.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Near Markov and AFT

Definition

We say that an irreducible sofic shift is (right) near Markov if X_A is finite for its Fischer cover A.

Definition

We say that an irreducible sofic shift is AFT when its Fischer cover has finite left delay: There is a constant ℓ such that when

$$r \xrightarrow{z} q \xrightarrow{a} p \qquad r' \xrightarrow{z} q' \xrightarrow{a} p$$

with $|z| > \ell$, then q = q'.

Preliminaries

Conjugacy

Flow equivalence

Invariants

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Classification

Near Markov and AFT

Theorem

A near Markov shift is AFT.

Theorem

When $L_{\mathcal{A}}$ is AFT, $\widetilde{X_{\mathcal{A}}}$ is closed.

The SFT classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are conjugate.

Theorem (Williams)

Let X_G and X_H be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.

- (i) X_G and X_H are conjugate.
- (ii) There exist nonnegative integral matrices D_i and E_i with

$$A = D_0 E_0, E_0 D_0 = D_1 E_1, \cdots, E_n D_n = B$$

Arsenal of invariants

Real numbers, power series, ordered abelian groups, finitely generated abelian groups, C^* -algebras,...

(ロ)、(型)、(E)、(E)、 E、 の(の)

4 examples

A	G	$h(X_G)$	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$		4	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$	$\mathbb{C} \bullet \cong \bullet $	4	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	$\mathbb{C}^{\bullet} \cong \bullet \mathbb{C}$	$\frac{3+\sqrt{13}}{2}$	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	$\mathbb{C} \cdot \mathbb{C} \cdot \mathbb{D}$	4	$(\mathbb{Z},0)$

(ロ)、(型)、(E)、(E)、 E、 の(の)

4 examples

A	G	$h(X_G)$	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$		4	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$	$\mathbb{C} \cdot \mathbb{C} \cdot \mathbb{C}$	4	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	C•=•5	$\frac{3+\sqrt{13}}{2}$	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	$C \bullet = 5$	4	$(\mathbb{Z},0)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Theorem (Hamachi-Nasu)

Let X and Y be two irreducible sofic shifts and let A, B be their Fischer automata given by alphabetic adjacency matrices A and B. The following conditions are equivalent.

(i)
$$X \simeq Y$$

Corollary

When
$$L_{\mathcal{A}} \simeq L_{\mathcal{B}}$$
, then $X_{\mathcal{A}} \simeq X_{\mathcal{B}}$.

Preliminaries	Conjugacy	Flow equivalence	Invariants	Classification

Example

With
$$\mathcal{A} = 0 \bigcap_{0} \bullet_{0} \bullet_{0}^{1} \bullet_{0}^{1}$$
 and $\mathcal{B} = 1 \bigcap_{0} \bullet_{0}^{0} \bullet_{0}^{1}$ we get $\widetilde{\mathsf{L}_{\mathcal{A}}} = \emptyset$
and $\widetilde{\mathsf{L}_{\mathcal{B}}} = \{0^{\infty}\}.$

Hence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

is impossible and $\mathsf{L}_{\mathcal{A}} \not\simeq \mathsf{L}_{\mathcal{B}}.$

Invariant: Fiber product

Definition

The fiber product associated to $\lambda:\mathsf{X}_{\mathcal{A}}\to\mathsf{L}_{\mathcal{A}}$ is defined as

$$F[\lambda_{\mathcal{A}}] = \{(x, y) \in \mathsf{X}^{2}_{\mathcal{A}} \mid \lambda(x) = \lambda(y)\}$$

Corollary

When
$$L_{\mathcal{A}} \simeq L_{\mathcal{B}}$$
, then $F[\lambda_{\mathcal{A}}] \simeq F[\lambda_{\mathcal{B}}]$.

Lemma

 $F[\lambda_{\mathcal{A}}]$ is a SFT which is reducible unless $L_{\mathcal{A}}$ is an SFT. The diagonal

$$\Delta = \{ (x, x) \mid x \in \mathsf{X}_{\mathcal{A}} \}$$

is an irreducible component of $F[\lambda_A]$. When L_A is AFT this component communicates with no other irreducible component.

▲ロ > ▲ 聞 > ▲ 国 > ▲ 国 > 三国 「 のへで

Preliminaries	Conjugacy	Flow equivalence	Invariants	Classification
Outline				

1 Preliminaries

2 Conjugacy

3 Flow equivalence

4 Invariants

5 Classification

Fix $a \in \mathfrak{a}$ and $\star \notin \mathfrak{a}$ and define $\eta : \mathfrak{a}^{\mathbb{Z}} \to (\mathfrak{a} \cup \{\star\})^{\mathbb{Z}}$ as the map inserting a \star after each a:

 $\cdots babbbaba \cdots \mapsto \cdots ba \star bbba \star ba \star \cdots$

Definition

The " $a \mapsto a\star$ " symbol expansion of a shift space X is the shift space $X_{a\mapsto a\star} = \eta(X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Associated to any shift space there is a **suspension flow** given by product topology on

$$SX = \frac{X \times \mathbb{R}}{(x,t) \sim (\sigma(x), t+1)}$$

Definition

X and Y are flow equivalent (written $X \simeq_{fe} Y$) when SX and SY are homeomorphic in a way preserving direction in \mathbb{R} .

Theorem (Parry-Sullivan)

Flow equivalence is the coarsest equivalence relation containing conjugacy and $X \sim X_{a \to a \star}$

Flow classification

Lemma

If $X \simeq_{fe} Y$ and X is SFT, sofic or irreducible, then so is Y.

The SFT flow classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are flow equivalent.

The sofic flow classification problem

Let X and Y be irreducible sofic shifts given by Fischer automata A and B, respectively. Determine in terms of A and B when X and Y are flow equivalent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Flow classificcation of SFTs

Theorem (Franks)

Let X_G and X_H be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.

(i)
$$X_G \simeq_{fe} X_H$$

(ii) $\mathbb{Z}^m/(1-A)\mathbb{Z}^m \simeq \mathbb{Z}^n/(1-B)\mathbb{Z}^n$
and

$$\operatorname{sgn}\det(1-A) = \operatorname{sgn}\det(1-B)$$

4 examples

A	G	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$		$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$	$\mathbb{C} \bullet \cong \bullet \mathfrak{I}$	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	C•=5	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	$\mathbb{C} \bullet \mathbb{T} \bullet \mathbb{T}$	$(\mathbb{Z},0)$

4 examples

A	G	$BF(X_G)$
$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	$C \bullet \bigcirc \bullet \bigcirc$	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$	$\mathbb{C} \bullet \cong \bullet \bigcirc$	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$	$C \bullet \bigcirc \bullet \bigcirc$	$(\mathbb{Z}_3, -)$
$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	0.000	$(\mathbb{Z},0)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Flow classificcation of SFTs

Theorem (Boyle-Huang)

The signed K-web is a complete invariant for reducible SFTs.

Theorem (Boyle-Sullivan)

There is a classification theory for equivariant flow equivalence of irreducible SFTs with actions of a finite group G.

Preliminaries	Conjugacy	Flow equivalence	Invariants	Classification
Outline				

1 Preliminaries

2 Conjugacy

3 Flow equivalence

4 Invariants

5 Classification

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Flow classification of sofics

Theorem

Let X and Y be two irreducible sofic shifts and let A, B be their Fischer automata. The following conditions are equivalent.

Corollary

If $X \simeq_{fe} Y$ and X is near Markov or AFT, then so is Y.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Flow invariant: *n*-soficity

Definition

We say that an irreducible sofic shift is *n*-sofic when for the Fischer cover $\mathcal{A}, \lambda : X_{\mathcal{A}} \to L_{\mathcal{A}}$ satisfies

$$\max_{x \in \mathsf{L}_{\mathcal{A}}} |\lambda^{-1}(\{x\})| = n$$

Corollary

If $X \simeq_{fe} Y$, and X is *n*-sofic, then so is Y.

Preliminaries

Conjugacy

Flow equivalence

Invariants

Classification

Flow invariant: Fiber product

Corollary

If $L_{\mathcal{A}} \simeq_{fe} L_{\mathcal{B}}$, then $F[\lambda_{\mathcal{A}}] \simeq_{fe} F[\lambda_{\mathcal{B}}]$

Flow invariant: Multiplicity graph

Collect all periodic words in $\widetilde{X}_{\mathcal{A}}$ into orbits $\{o_i\}_{i \in I}$ and all periodic words in $\widetilde{L}_{\mathcal{A}}$ into orbits $\{\omega_j\}_{j \in J}$. Note that a map $\mu : I \to J$ is defined by noting that λ sends o_i to $\omega_{\mu(i)}$. Note also that $|\omega_{\mu(i)}|$ divides $|o_i|$ and set

$$k(i) = \frac{|o_i|}{|\omega_{\mu(i)}|}$$

Definition

The *multiplicity graph* of \mathcal{A} is a bipartite graph $M(\mathcal{A})$ with vertices $I \cup J$ and k(i) edges from i to $\mu(i)$ for each $i \in I$.

Corollary

If $L_{\mathcal{A}} \simeq_{fe} L_{\mathcal{B}}$, then $M[\lambda_{\mathcal{A}}] \simeq M[\lambda_{\mathcal{B}}]$

Preliminaries	Conjugacy	Flow equivalence	Invariants	Classification
Outling				

Outline

Preliminaries

2 Conjugacy

3 Flow equivalence

4 Invariants

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 通 - のへで

Theorem (Boyle-Carlsen-E)

Let X and Y be two irreducible sofic shift spaces with Fischer automata \mathcal{A} and \mathcal{B} , respectively, and assume that $\widetilde{X}_{\mathcal{A}}$ and $\widetilde{X}_{\mathcal{B}}$ are both closed. Then X and Y are flow equivalent exactly when the following conditions hold:

(1) $X_{\mathcal{A}} \simeq_{fe} X_{\mathcal{B}}$

Corollary

Near Markov shifts are classified by the Bowen-Franks invariant of X_A and the multiplicity graph M(A).

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Flow classificcation of SFTs

Classifying 2-sofic AFTs is at least as hard as

Theorem (Boyle-Huang)

The signed K-web is a complete invariant for reducible SFTs.

Theorem (Boyle-Sullivan)

There is a classification theory for equivariant flow equivalence of irreducible SFTs with actions of a finite group G.