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Sofic shifts and presentations

E = (E 0,E 1, r , s) is a finite directed graph.
a is a finite set (alphabet).
L : E 1 → a labels the edges.

The labelled graph (E ,L) defines a sofic shift:

X(E ,L) =
{

(L(xi ))i ∈ aZ | xi ∈ E 1, r(xi ) = s(xi+1)
}
.

Example: The even shift
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A nice presentation: The Krieger cover

X sofic shift.

X+ = {x0x1x2 . . . | x ∈ X}

x−3x−2x−1

(right rays)
X− = {. . . x−3x−2x−1 | x ∈ X}

x0x1x2

(left rays)

For x+ ∈ X+, define the predecessor set of x+ to be
P∞(x+) = {y− ∈ X− | y−x+ ∈ X}.

The left Krieger cover of X is a labelled graph (EK ,LK )

Vertices: E 0
K = {P∞(x+) | x+ ∈ X+},

Edges: Draw an edge labelled a ∈ a from P ∈ E 0
K to

P ′ ∈ E 0
K if and only if there exists x+ ∈ X+

such that P = P∞(ax+) and P ′ = P∞(x+).

Past set cover: Use predecessor sets of words (finite
factors) instead of predecessor sets of rays.
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Example: Krieger cover of the even shift

P1 =

P∞(02n1x+) = {y−102k ∈ X− | k ∈ N0} ∪ {0∞}

P2 = P∞(02n+11x+) = {y−102k+1 ∈ X− | k ∈ N0} ∪ {0∞}
P3 = P∞(0∞) = X−

P1 P2

P3

0

0

1

1

0

Edge:
P∞(10∞) = P1 P∞(010∞) = P2
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Irred. sofic shifts and the Fischer cover

For now:
Assume that X is irreducible, i.e. there exists an irreducible
(transitive, strongly connected) presentation of X.

A presentation (E ,L) of X is left-resolving if no vertex in
E 0 receives two edges with the same label.

Theorem (Fischer)

There is a unique minimal left-resolving presentation
(EK ,LK ) of X when X is irreducible.

This presentation is the left Fischer cover of X.
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Layers in the Krieger cover

For v ∈ E 0
F define P∞(v) to be the set of left rays which

have a presentation terminating at v .

For x+ ∈ X+ define S(x+) to be the set of vertices in E 0
F

that are sources of presentations of x+.

Note: P∞(x+) = ∪v∈S(x+)P∞(v)

A vertex P∞(x+) ∈ E 0
K is in the nth layer of the left Krieger

cover if n is the smallest number such that there exist
v1, . . . , vn ∈ E 0

F with P∞(x+) = P∞(v1) ∪ · · · ∪ P∞(vn).

x+ is said to be 1/n-synchronizing.

Same definition can be used for the past set cover.
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Example: The even shift

P1 = {y−102k ∈ X− | k ∈ N0} ∪ {0∞} = P∞(u)
P2 = {y−102k+1 ∈ X− | k ∈ N0} ∪ {0∞} = P∞(v)
P3 = X− = P∞(u) ∪ P∞(v)

Left Fischer cover and left Krieger cover:

u v P1 P2

P3

P∞(u) P∞(v)

P∞(u) ∪ P∞(v)

(EF ,LF ) (EK ,LK )
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Theorem (Krieger)

The left Fischer cover is (isomorphic as a labelled graph to)
the first layer of the left Krieger cover.

Proof.
Identify u ∈ E 0

F with P∞(u) ∈ E 0
K .

Example: The even shift

u v P1 P2

P3

(EF ,LF ) (EK ,LK )
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Structure of the layers

Proposition

If there is an edge in EK which starts at a vertex in the mth
layer and ends at a vertex in the nth layer then m ≤ n.

1

2 2 3

Proof.
Blackboard.
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Flow equivalence

Conjugacy: Shift commuting homeomorphism Φ: X1 → X2.

Symbol expansion: Given a ∈ a and � /∈ a replace every
occurrence of a by a� in each x ∈ X.

Flow equivalence: Equivalence relation generated by
I Conjugacy
I Symbol expansion
I Symbol contraction
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A flow invariant

Proper communicating graph:

P1 P2

P3

 

0

01

1

1

Theorem (Bates, Eilers, Pask)

The proper communicating graph of the left Krieger cover of
a sofic shift is a flow invariant.
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Range

Proposition

A directed graph E is the proper communicating graph of the
left Krieger cover of an irreducible sofic shift if and only if it
is finite, contains no closed walk, and has maximal vertex.

"⇒": Clear.
"⇐": By construction.
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Genereral sofic shifts

X arbitrary (possibly reducible) sofic shift.
(EK ,LK ) left Krieger cover of X.

Jonoska: No minimal left resolving presentation.

No canonical presentation to use as a base presentation in
the definition of layers.

Goal:
I Find generalization of the left Fischer cover
I Use generalized left Fischer cover to define layers
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Generalizing the left Fischer cover

Idea: Find a suitable subgraph of the left Krieger cover.

P ∈ E 0
K is said to be decomposable if there exist n > 1 and

P1, . . . ,Pn ∈ E 0
K \ {P} such that P1 ∪ · · · ∪ Pn = P .

Lemma
If P is non-decomposable then the subgraph of (EK ,LK )
induced by E 0

K \ {P} is not a presentation of X.

Generalized left Fischer cover
E 0

G = {P ∈ E 0
K | Path in EK from P to non-decomp. P ′}.

(EG ,LG ) the labelled subgraph of (EK ,LK ) induced by E 0
G .
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Properties of the generalized left Fischer cover
1. (EG ,LG ) is an essential, left-resolving, and

predecessor-separated presentation of X.
2. If X is irreducible then (EG ,LG ) = (EF ,LF ).
3. When X1,X2 have disjoint alphabets then the

generalized left Fischer cover of X1 ∪ X2 is obtained as
the disjoint union of the generalized left Ficher covers of
X1 and X2.

Proof.

1. Given y− ∈ X− choose x+ ∈ X+ such that
y− ∈ P∞(x+). Choose non-decomp. P1, . . . ,Pn ∈ E 0

K
such that P∞(x+) = ∪n

i=1Pi , and i such that y− ∈ Pi .
Now there is a path in (EK ,LK ) labelled y− terminating
at Pi . This is also a path in (EG ,LG ).
Inherited: Left-resolving and predecessor-separated.

2. P ∈ E 0
K non-decomposable ⇔ P ∈ E 0

F .
3. Inherited from the left Krieger cover.
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Canonical

Theorem
The generalized left Fischer cover is canonical, i.e. if
Φ: X1 → X2 is a conjugacy and πi : XEGi

→ X(EGi ,LGi )
= Xi

is the covering map of the generalized left Fischer cover of Xi
then there is a conjugacy φ : XEG1

→ XEG2
such that

Φ ◦ π1 = π2 ◦ φ.

Proof uses strategy and techniques used by Nasu to prove an
analogous result for the Krieger cover.
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Bipartite codes

Φ: X1 → X2 is a bipartite code if there exist injective maps
f1 : a1 → cd and f2 : a2 → dc such that

x ∈ X1, y = Φ(x), f1(xi ) = cidi ⇒
f2(yi ) = dici+1 for all i

or f2(yi ) = di−1ci for all i

Recoding:
Replace X1 by X̂1 = {((f1(xi ))i | x ∈ X1} ⊆ (cd)Z.
Replace X2 by X̂2 = {((f2(yi ))i | y ∈ X2} ⊆ (dc)Z.
Replace Φ by Φ̂ : X̂1 → X̂2, Φ̂((cidi )i ) = (dici+1)i .

Theorem (Nasu)

Any conjugacy is a product of bipartite codes.
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Φ: X1 → X2 is a bipartite code if there exist injective maps
f1 : a1 → cd and f2 : a2 → dc such that

x ∈ X1, y = Φ(x), f1(xi ) = cidi ⇒
f2(yi ) = dici+1 for all i or f2(yi ) = di−1ci for all i

Recoding:
Replace X1 by X̂1 = {((f1(xi ))i | x ∈ X1} ⊆ (cd)Z.
Replace X2 by X̂2 = {((f2(yi ))i | y ∈ X2} ⊆ (dc)Z.
Replace Φ by Φ̂ : X̂1 → X̂2, Φ̂((cidi )i ) = (dici+1)i .

Theorem (Nasu)

Any conjugacy is a product of bipartite codes.



Φ: X1 → X2 recoded bipartite code.
(EKi ,LKi ) left Krieger cover of the recoded shift Xi .
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P2

(EK1 ,LK1)

Q1

Q2

(EK2 ,LK2)

(EK ,LK )

ci

didi

ci+1

Φ: X1 → X2
Φ((cidi )i ) = (dici+1)i

φ : XEK1
→ XEK2

φ((ei fi )i ) = (fiei+1)i

πi : XEKi
→ Xi

Φ ◦ π1 = π2 ◦ φ

Nasu: (EK ,LK ) left Krieger cover of a sofic shift X.
EK bipartite graph with induced graphs EK1 , EK2 .
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(EGi ,LEGi
) generalized left Fischer cover of Xi , (EG ,LEG )

generalized left Fischer cover of X.

Lemma: EG bipartite, induced subgraphs EG1 and EG2 .

Corollary: Path in EG1 ↔ path in EG2 , so GLFC is canonical.

Proof of lemma.
Note: P decomposable in EKi ⇔ P decomposable in EK .

Given P ∈ E 0
Gi

there is a path in EKi from P to a
non-decomposable P ′ ∈ E 0

Ki
. This is also a path in EK , so

P ∈ E 0
G .

Given P1 ∈ E 0
G there is a path in EK from P1 to a

non-decomposable P2 ∈ E 0
K . We are done if P1,P2 are in the

same E 0
Ki
, so assume P1 ∈ E 0

K1
, P2 ∈ E 0

K2
. EK is essential, so

there must be an edge from P2 to a vertex P ′ ∈ E 0
K1
. If P ′ is

decomposable in EK then there must be an edge with the
same label from P2 to a non-decomposable P ′′ ∈ E 0

K . This
gives a path from P1 to P ′′ in EK1 , so P1 ∈ E 0

G1
.
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Layers

A vertex P ∈ E 0
K is in the nth layer of the left Krieger cover

if n is the smallest number such that there exist
v1, . . . , vn ∈ E 0

G with P = P∞(v1) ∪ · · · ∪ P∞(vn).

The first layer is the generalized left Fischer cover.

Proposition

If there is an edge in EK which starts at a vertex in the mth
layer and ends at a vertex in the nth layer then m ≤ n.

1

2 2 3
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