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Shift spaces

A shift space on the alphabet A is a shift-invariant subset of AZ

which is closed in the topology. The set AZ itself is a shift space
called the full shift.
For a set W ⊂ A∗ of words (whose elements are called the
forbidden factors), we denote by X (W ) the set of x ∈ AZ such that
no w ∈ W is a factor of x .

Proposition

The shift spaces on the alphabet A are the sets X (W ), for W ⊂ A∗.
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A shift space X is of finite type if there is a finite set W ⊂ A∗ such
that X = X (W ).

Example

Let A = {a, b}, and let W = {bb}. The shift X (W ) is composed of
the sequences without two consecutive b’s. It is a shift of finite
type, called the golden mean shift.

A shift space X is said to be sofic if there is a recognizable set W
such that X = X (W ). Since a finite set is recognizable, any shift of
finite type is sofic.

Example

Let A = {a, b}, and let W = a(bb)∗ba. The shift X (W ) is
composed of the sequences where two consecutive occurrences of
the symbol a are separated by an even number of b’s. It is a sofic
shift called the even shift. It is not a shift of finite type.
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Edge shifts

The edge shift on the graph G is the set of biinfinite paths in G . It
is denoted by XG and is a shift of finite type on the alphabet of
edges. Indeed, it can be defined by taking the set of
non-consecutive edges for the set of forbidden factors. The
converse does not hold, since the golden mean shift is not an edge
shift.
However, every shift of finite type is conjugate to an edge shift.
A graph is essential if every state has at least one incoming and
one outgoing edge. This implies that every edge is on a biinfinite
path. The essential part of a graph G is the subgraph obtained by
restricting to the set of vertices and edges which are on a biinfinite
path.
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Morphisms

Let X be a shift space on an alphabet A, and let Y be a shift
space on an alphabet B .
A morphism ϕ from X into Y is a continuous map from X into Y
which commutes with the shift. This means that ϕ ◦ σA = σB ◦ ϕ.
Let k be a positive integer. We denote by Bk(X ) the set of
k-blocks of X . A function f : Bk(X ) → B is called a k-block
substitution Let now m, n be fixed nonnegative integers with
k = m + 1 + n. Then the function f defines a map ϕ called sliding
block map with memory m and anticipation n as follows. The
image of x ∈ X is the element y = ϕ(x) ∈ BZ given by

yi = f (xi−m · · · xi · · · xi+n) .

We denote ϕ = f
[m,n]
∞ .
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Theorem (Curtis–Lyndon–Hedlund)

A map from a shift space X into a shift space Y is a morphism if
and only if it is a sliding block map.
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Conjugacies of shifts

A morphism from a shift X onto a shift Y is called a conjugacy if
it is one-to-one from X onto Y . The inverse mapping is also a
morphism, and thus a conjugacy.
The n-th higher block shift X [n] of a shift X has alphabet the set
B = Bn(X ) of blocks of length n of X .

Proposition

The shifts X and X [n] for n ≥ 1 are conjugate.

For G = (Q, E) and an integer n ≥ 1, G [n] denotes the n-th higher
edge graph of G . The set of states of G [n] is the set of paths of
length n− 1 in G . The edges of G [n] are the paths of length n of G .
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The following result shows that the higher block shifts of an edge
shift are again edge shifts.

Proposition

Let G be a graph. For n ≥ 1, one has X
[n]
G = XG [n] .

A shift of finite type need not be an edge shift. For example the
golden mean shift is not an edge shift. However, any shift of finite
type comes from an edge shift in the following sense.

Proposition

Every shift of finite type is conjugate to an edge shift.

Proposition

A shift space that is conjugate to a shift of finite type is itself of
finite type.
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Conjugacy invariants

Several quantities are known to be invariant under conjugacy.
The entropy of a shift space X is defined by

h(X ) = lim
n→∞

1

n
log Card(Bn(X )) .

Theorem

If X ,Y are conjugate shift spaces, then h(X ) = h(Y ).

Example

Let X be the golden mean shift. Then a block of length n + 1 is
either a block of length n − 1 followed by ab or a block of length n
followed by a. Thus sn+1 = sn + sn−1. As a classical result,
h(X ) = log λ where λ = (1 +

√
5)/2 is the golden mean.
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An element x of a shift space X over the alphabet A has period n
if σn

A(x) = x . If ϕ : X → Y is a conjugacy, then an element x of X
has period n if and only if ϕ(x) has period n.
The zeta function of a shift space X is the power series

ζX (z) = exp
∑

n≥0

pn

n
zn ,

where pn is the number of elements x of X of period n.
It follows from the definition that the sequence (pn)n∈N is invariant
under conjugacy, and thus the zeta function of a shift space is
invariant under conjugacy.

Example

Let X = AZ. Then ζX (z) = 1
1−kz

, where k = Card(A). Indeed, one

has pn = kn, since an element x of AZ has period n if and only if it
is a biinfinite repetition of a word of length n over A.
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State splitting

Let G = (Q, E) and H = (R ,F) be graphs. A pair (h, k) of
surjective maps k : R → Q and h : F → E is called a graph
morphism from H onto G if the two diagrams below are
commutative.

F E

R Q

h

i i

k

F E

R Q

h

t t

k

A graph morphism (h, k) from H onto G is an in-merge from H
onto G if for each p, q ∈ Q there is a partition (Eq

p (t))t∈k−1(q) of

the set Eq
p such that for each r ∈ k−1(p) and t ∈ k−1(q), the map

h is a bijection from F t
r onto Eq

p (t). If this holds, then G is called
an in-merge of H, and H is an in-split of G .
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Thus an in-split H is obtained from a graph G as follows : each
state q ∈ Q is split into copies which are the states of H in the set
k−1(q). Each of these states t receives a copy of Eq

p (t) starting in
r and ending in t for each r in k−1(p).
Each r in k−1(p) has the same number of edges going out of r and
coming in s, for any s ∈ R .
Moreover, for any p, q ∈ Q and e ∈ Eq

p , all edges in h−1(e) have
the same terminal vertex, namely the state t such that e ∈ Eq

p (t).

1 2

3

5

4
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The following result is well-known. It shows that if H is an in-split
of a graph G , then XG and XH are conjugate.

Proposition

If (h, k) is an in-merge of a graph H onto a graph G, then h∞ is a
1-block conjugacy from XH onto XG and its inverse is 2-block.

The map h∞ from XH to XG is called an edge in-merging map and
its inverse an edge in-splitting map.
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Division matrices

A column division matrix over two sets R ,Q is an R × Q-matrix D
with elements in {0, 1} such that each column has at least one 1
and each row has exactly one 1. Thus, the columns of such a
matrix represent a partition of R into Card(Q) sets.

Proposition

Let G and H be essential graphs. The graph H is an in-split of the
graph G if and only if there is an R × Q-column division matrix D
and a Q × R-matrix E with nonnegative integer entries such that

M(G ) = ED, M(H) = DE . (1)
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In the previous example :

E =

[

2 0 1
1 1 0

]

, D =





1 0
1 0
0 1



 .

1 2

3

5

4
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The Decomposition Theorem

Theorem

Every conjugacy from an edge shift onto another is the
composition of a sequence of edge splitting maps followed by a
sequence of edge merging maps.
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The proof relies on the following statement.

Lemma

Let G ,H be graphs and let ϕ : XG → XH be a 1-block conjugacy
whose inverse has memory m ≥ 1 and anticipation n ≥ 0. There
are in-splittings G ,H of the graphs G ,H and a 1-block conjugacy
with memory m − 1 and anticipation n ϕ : XG → XH such that the
following diagram commutes.

XG XG

XH XH

ϕ ϕ

The horizontal edges in the above diagram represent the edge
in-splitting maps from XG to XG and from XH to XH respectively.
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The Classification Theorem

Two nonnegative integral square matrices M,N are elementary
equivalent if there exists a pair R ,S of nonnegative integral
matrices such that

M = RS , N = SR .

The matrices M and N are strong shift equivalent if there is a
sequence (M0,M1, . . . ,Mn) of nonnegative integral matrices such
that Mi and Mi+1 are elementary equivalent for 0 ≤ i < n with
M0 = M and Mn = N.

Theorem (Williams, 1973)

Let G and H be two graphs. The edge shifts XG and XH are
conjugate if and only if the matrices M(G ) and M(H) are strong
shift equivalent.
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Flow equivalence

Set B = A∪ ω. The symbol expansion of a set W ⊂ A+ relative to
a ∈ A is the image of W by the semigroup morphism
ϕ : A+ → B+ such that ϕ(a) = aω and ϕ(b) = b for all b ∈ A \ a.
Let X be a shift space on the alphabet A. The symbol expansion
of X relative to a is the least shift space X ′ on the alphabet
B = A ∪ ω which contains the symbol expansion of B(X ).
Two shift spaces X ,Y are said to be flow equivalent if there is a
sequence X0, . . . ,Xn of shift spaces such that X0 = X , Yn = Y
and for 0 ≤ i ≤ n − 1, either Xi+1 is the image of Xi by a
conjugacy, a symbol expansion or a symbol contraction.

Example

Let A = {a, b}. The symbol expansion of the full shift AZ relative
to b is conjugate to the golden mean shift.
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For edge shifts, symbol expansion can be replaced by another
operation. Let G be a graph and let p be a vertex of G . The graph
expansion of G relative to p is the graph G ′ obtained by replacing
p by an edge from a new vertex p′ to p to and replacing all edges
coming in p by edges coming in p′. The inverse of a graph
expansion is called a graph contraction.

p p′ p

Fig.: Graph expansion
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The Bowen-Franks group

The Bowen-Franks group of a square n × n-matrix M with integer
elements is the Abelian group

BF (M) = Z
n/Zn(I − M).

In other terms, Z
n(I − M) is the Abelian group generated by the

rows of the matrix I −M. This notion is due to Bowen and Franks,
who have shown that it is an invariant for flow equivalence. We say
that a graph is trivial if it is reduced to one cycle.

Theorem (Franks, 1984)

Let G ,G ′ be two strongly connected nontrivial graphs and let
M,M ′ be their adjacency matrices. The edge shifts XG ,XG ′ are
flow equivalent if and only if det(I − M) = det(I − M ′) and the
groups BF (M), BF (M ′) are isomorphic.
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Example

Let

M =

[

4 1
1 0

]

, M ′ =

[

3 2
1 0

]

.

One has det(I − M) = det(I − M ′) = −4. Moreover
BF (M) ∼ Z/4Z. Indeed, the rows of the matrix I − M are
[

−3 −1
]

and
[

−1 1
]

. They generate the same group as
[

4 0
]

and
[

−1 1
]

. Thus BF (M) ∼ Z/4Z. In the same way,
BF (M ′) ∼ Z/4Z. Thus, the edge shifts XG and XG ′ are flow
equivalent.
Actually XG and XG ′ are both flow equivalent to the full shift on 5
symbols.
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Automata and sofic shifts

An automaton is denoted by A = (Q,E ) where Q is the finite set
of states and E ⊂ Q × A × Q is the set of edges. The edge
(p, a, q) has initial state p, label a and terminal state q. The
underlying graph of A is the same as A except that the labels of
the edges are not used.
An automaton is essential if its underlying graph is essential. The
essential part of an automaton is its restriction to the essential part
of its underlying graph.
We denote by XA the set of biinfinite paths in A. It is the edge
shift of the underlying graph of A. We denote by LA the set of
labels of biinfinite paths in A. We denote by λA the 1-block map
from XA into the full shift AZ which assigns to a path its label.
Thus LA = λA(XA). If this holds, we say that LA is the shift space
recognized by A.
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Proposition

Let W ⊂ A∗ be a recognizable set and let A = (Q, I ,T ) be a trim
finite automaton recognizing the set A∗ \ A∗WA∗. Then
LA = X (W ).

The following proposition states in some sense the converse.

Proposition

Let X be a sofic shift over A, and let A = (Q, I ,T ) be a trim finite
automaton recognizing the set B(X ) of blocks of X . Then LA = X.

Proposition

A shift X over A is sofic if and only if there is a finite automaton
A such that X = LA.
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The golden mean shift and the even shift

The golden mean shift of is the shift of finite type recognized by
the automaton on the left. The even shift is the sofic shift
recognized by the automaton on the right.

1 2a

a

b

1 2a

b

b
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The adjacency matrix of the automaton A = (Q,E ) is the
Q × Q-matrix M(A) with elements in N〈A〉 defined by

(M(A)pq, a) =

{

1 if (p, a, q) ∈ E ,

0 otherwise.

We write M for M(A) when the automaton is understood.
A matrix M is called alphabetic over the alphabet A if its elements
are homogeneous polynomials of degree 1 over A with nonnegative
coefficients. Adjacency matrices are special cases of alphabetic
matrices. Indeed, its elements are homogeneous polynomials of
degree 1 with coefficients 0 or 1.
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Labeled conjugacy

Let A and B be two automata on the alphabet A. A labeled
conjugacy from XA onto XB is a conjugacy ϕ such that λA = λBϕ,
that is such that the following diagram is commutative.

XA XB

AZ

ϕ

λA λB

We say that A and B are conjugate if there exists a labeled
conjugacy from XA to XB.
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Labeled split and merge

Let A = (Q,E ) and B = (R ,F ) be two automata. Let G ,H be the
underlying graphs of A and B respectively.
A labeled in-merge from B onto A is an in-merge (h, k) from H
onto G such that for each f ∈ F the labels of f and h(f ) are
equal. We say that B is a labeled in-split of A, or that A is a
labeled in-merge of B.

Proposition

If (h, k) is a labeled in-merge from the automaton B onto the
automaton A, then the map h∞ is a labeled conjugacy from XB

onto XA.
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Proposition

An automaton B = (R ,F ) is a labeled in-split of the automaton
A = (Q,E ) if and only if there is an R × Q-column division matrix
D and an alphabetic Q × R-matrix N such that

M(A) = ND, M(B) = DN.
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An in-split

1 2

a

c

b

a

3

5

4

a

c b

a

bac

Let A and B be the automata represented above. One has
M(A) = ND and M(B) = DN with

N =

[

a + c 0 b
0 a 0

]

, D =





1 0
1 0
0 1



 .

Jean Berstel, Marie-Pierre Béal, Søren Eilers, Dominique Perrin Symbolic dynamics and automata



Shift spaces
Automata

Minimal automata
Symbolic conjugacy

Special families of automata
Syntactic invariants

Let A = (Q,E ) be an automaton. For a pair of integers m, n ≥ 0,
denote by A[m,n] the following automaton called the (m, n)-th
extension of A. The underlying graph of A[m,n] is the higher edge
graph G [k] for k = m + n + 1. The label of an edge

p0
a1→ p1

a2→ · · · am→ pm
am+1→ pm+1

am+2→ · · · am+n→ pm+n
am+n+1→ pm+n+1

is the letter am+1. Observe that A[0,0] = A. By this construction,
each graph G [k] produces k extensions according to the choice of
the labeling.

Proposition

For m ≥ 1, n ≥ 0, the automaton A[m−1,n] is a labeled in-merge of
the automaton A[m,n] and for m ≥ 0, n ≥ 1, the automaton
A[m,n−1] is a labeled out-merge of the automaton A[m,n].
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Decomposition Theorem

The following result is the analogue, for automata, of the
Decomposition Theorem.

Theorem

Every conjugacy of automata is a composition of labeled splits and
merges.
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Classification Theorem for automata

Let M and M ′ be two alphabetic square matrices over the same
alphabet A. We say that M and M ′ are elementary equivalent if
there exists a nonnegative integral matrix D and an alphabetic
matrix N such that

M = DN , M ′ = ND or vice-versa.

We say that M,M ′ are strong shift equivalent if there is a
sequence (M0,M1, . . . ,Mn) such that Mi and Mi+1 are elementary
equivalent for 0 ≤ i < n with M0 = M and Mn = M ′.

Theorem

Two automata are conjugate if and only if their adjacency matrices
are strong shift equivalent.
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Krieger automata and Fischer automata
Syntactic semigroup

Krieger automata

For y ∈ A−N, the set of right contexts of y is the set
CX (y) = {z ∈ AN | y · z ∈ X}.
The Krieger automaton of a shift space X is the deterministic
automaton whose states are the nonempty sets of the form CX (y)
for y ∈ A−N, and whose edges are the triples (p, a, q) where
p = CX (y) for some left infinite word, a ∈ A and q = CX (ya).

1 2

a

b

b

Proposition (Krieger, 1984)

The Krieger automaton of a shift space X is reduced and
recognizes X . It is finite if and only if X is sofic.
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Krieger automata and Fischer automata
Syntactic semigroup

1234

34

1 3 134

2 4

a

c

b

a

b

d

a

c

e

a

e

c

a

e

c

b a

c

This automaton is obtained using the subset construction starting
from the set {1, 2, 3, 4}.
The subautomaton with dark shaded states 1, 2, 3, 4 is strongly
connected and recognizes an irreducible sofic shift X . The whole
automaton is the minimal automaton of the blocks of X . The
Krieger automaton of X is on the five shaded states.
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Krieger automata and Fischer automata
Syntactic semigroup

Fischer automata

A shift space X ⊂ AZ is called irreducible if for any u, v ∈ B(X )
there exists a w ∈ B(X ) such that uwv ∈ B(X ).
An automaton is said to be strongly connected if its underlying
graph is strongly connected. Clearly a shift recognized by a
strongly connected automaton is irreducible.
A strongly connected component of an automaton A is minimal if
all successors of vertices of the component are themselves in the
component. One may verify that a minimal strongly connected
component is the same as a strongly connected subautomaton.

Proposition (Fischer,1975)

The Krieger automaton of an irreducible sofic shift X is
synchronized and has a unique minimal strongly connected
component.
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Let A = (Q,E ) and B = (R ,F ) be two deterministic automata. A
reduction from A onto B is a map h from Q onto R such that for
any letter a ∈ A, one has (p, a, q) ∈ E if and only if
(h(p), a, h(q)) ∈ F . Thus any labeled in or out-merge is a
reduction. However the converse is not true since a reduction is
not, in general, a conjugacy.

Proposition

Let X be an irreducible shift space. For any strongly connected
deterministic automaton A recognizing X there is a reduction from
A onto the Fischer automaton of X .

This statement shows that the Fischer automaton of an irreducible
shift X is minimal in the sense that it has the minimal number of
states among all deterministic strongly connected automata
recognizing X .
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Ordered semigroups

Recall that a preorder on a set is a relation which is reflexive and
transitive. The equivalence associated to a preorder is the
equivalence relation defined by u ≡ v if and only if u ≤ v and
v ≤ u.
Let S be a semigroup. A preorder on S is said to be stable if s ≤ s ′

implies us ≤ us ′ and su ≤ s ′u for all s, s ′, u ∈ S . An ordered
semigroup S is a semigroup equipped with a stable preorder. Any
semigroup can be considered as an ordered semigroup equipped
with the equality order.
A congruence in an ordered semigroup S is the equivalence
associated to a stable preorder which is coarser than the preorder
of S . The quotient of an ordered semigroup by a congruence is the
ordered semigroup formed by the classes of the congruence.

Jean Berstel, Marie-Pierre Béal, Søren Eilers, Dominique Perrin Symbolic dynamics and automata



Shift spaces
Automata

Minimal automata
Symbolic conjugacy

Special families of automata
Syntactic invariants

Krieger automata and Fischer automata
Syntactic semigroup

Syntactic semigroup

Set ΓW (u) = {(ℓ, r) ∈ A∗ × A∗ | ℓur ∈ W }. The preorder on A+

defined by u ≤W v if ΓW (u) ⊂ ΓW (v) is stable and thus defines a
congruence of the semigroup A+ equipped with the equality order
called the syntactic congruence. The syntactic semigroup of a set
W ⊂ A∗ is the quotient of the semigroup A+ by the syntactic
congruence.
For a deterministic automaton A = (Q,E ), the preorder defined on
A+ by u ≤A v if p · u ⊂ p · v for all p ∈ Q is stable. The quotient
of A+ by the congruence associated to this preorder is the
transition semigroup of A.
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The syntactic semigroup of a shift space X is by definition the
syntactic semigroup of B(X ).

Proposition

Let X be a sofic shift and let S be its syntactic semigroup. The
transition semigroup of the Krieger automaton of X is isomorphic
to S. Moreover, if X is irreducible, then it is isomorphic to the
transition semigroup of its Fischer automaton.

Jean Berstel, Marie-Pierre Béal, Søren Eilers, Dominique Perrin Symbolic dynamics and automata



Shift spaces
Automata

Minimal automata
Symbolic conjugacy

Special families of automata
Syntactic invariants

Splitting and merging maps
Symbolic conjugate automata

Symbolic conjugacy

We introduce now a new notion of conjugacy between automata
called symbolic conjugacy. It extends the notion of labeled
conjugacy and captures the fact that the automata may be over
different alphabets. The table below summarizes the various
notions.

object type isomorphism elementary transformation

shift spaces conjugacy split/merge
edge shifts conjugacy edge split/merge
integer matrices strong shift equiv. elementary equivalence
automata (same alph.) labeled conjugacy labeled split/merge
automata symbolic conjugacy split/merge
alphabetic matrices symbolic strong shift elementary symbolic
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An automaton is now a pair A = (G , λ) of a graph G = (Q, E)
and a map assigning to each edge e ∈ E of a label λ(e) ∈ A. The
adjacency matrix of A is the Q × Q-matrix M(A) with elements in
N〈A〉 defined by

(M(A)pq, a) = Card{e ∈ E | λ(e) = a}. (2)

We denote by XA the edge shift on G and by LA the set of labels
of infinite paths in G .
Let A,B be two automata. A symbolic conjugacy from A onto B
is a pair (ϕ,ψ) of conjugacies ϕ : XA → XB and ψ : LA → LB such
that the following diagram is commutative.

XA XB

ϕ

LA LB

λA λB
ψ
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Splitting and merging maps

Let A,B be two alphabets and let f : A → B be a map. We
consider the set of words A′ = {f (a1)a2 | a1a2 ∈ B2(X )} as a new
alphabet. For a shift space X , let g : B2(X ) → A′ be the 2-block
substitution defined by g(a1a2) = f (a1)a2.
The in-splitting map defined on X and relative to f or to g is the
sliding block map g1,0

∞ corresponding to g . It is a conjugacy from
X onto its image by X ′ = g1,0

∞ (X ) since its inverse is 1-block. The
shift space X ′, is called the textcolorredin-splitting of X , relative to
f or g . The inverse of an in-splitting map is called an in-merging
map.

Example

Let A = B and let f be the identity on A. The out-splitting of a
shift X relative to f is the second higher block shift of X .
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Symmetrically an out-splitting map is defined by the substitution
g(ab) = af (b). Its inverse is an out-merging map.
We use the term splitting to mean either a in-splitting or
out-splitting. The same convention holds for a merging.
The following result, is a generalization of the Decomposition
Theorem to arbitrary shift spaces.

Theorem (Nasu, 1986)

Any conjugacy between shift spaces is a composition of splitting
and merging maps.
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The proof is similar to the proof of classical decomposition
Theorem. It relies on the following lemma.

Lemma

Let ϕ : X → Y be a 1-block conjugacy whose inverse has memory
m ≥ 1 and anticipation n ≥ 0. There are in-splitting maps from
X ,Y to X̃ , Ỹ respectively such that the 1-block conjugacy ϕ̃
making the diagram below commutative has an inverse with
memory m − 1 and anticipation n.

X X̃

Y Ỹ

ϕ ϕ̃
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Symbolic strong shift equivalence

Two alphabetic Q × Q-matrices M,M ′ over the alphabets A and
B , are similar if they are equal up to a bijection of A onto B . We
write M ↔ M ′.
Two alphabetic square matrices M and M ′ over the alphabets A
and B respectively are symbolic elementary equivalent if there exist
two alphabetic matrices R ,S over the alphabets C and D
respectively such that

M ↔ RS , M ′ ↔ SR .

Two matrices M,M ′ are symbolic strong shift equivalent if there is
a sequence (M0,M1, . . . ,Mn) of alphabetic matrices such that Mi

and Mi+1 are symbolic elementary equivalent for 0 ≤ i < n with
M0 = M and Mn = M ′.
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Bipartite automata

An automaton A on the alphabet A is said to be bipartite if its
adjacency matrix has the form

M(A) =

[

0 M1

M2 0

]

The automata A1 and A2 which have M1M2 and M2M1

respectively as adjacency matrix are called the components of A.

Proposition

Let A = (Q,E ) be a bipartite deterministic essential automaton.
Its components A1,A2 are deterministic essential automata which
are symbolic conjugate. If moreover A is strongly connected (resp.
reduced, resp. synchronized), then A1,A2 are strongly connected
(resp.reduced, resp. synchronized).
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Proposition

Let A,B be two automata such that M(A) and M(B) are
symbolic elementary equivalent. Then there is a bipartite
automaton C = (C1, C2) such that M(C1),M(C2) are similar to
M(A),M(B) respectively.

Proposition

If the adjacency matrices of two automata are symbolic strong
shift equivalent, the automata are symbolic conjugate.
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Example

1 2a, b

c

c
1 2d

e, f

f

g

We have M(A) ↔ RS and M(B) ↔ SR for

R =

[

x y
0 x

]

, S =

[

z t
t 0

]

.

RS =

[

xz + yt xt
xt 0

]

, SR =

[

zx zy + tx
tx ty

]

.

Bijections between the alphabets.

a b c

xz yt xt
,

d e f g

zx zy tx ty
.
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The following result shows in particular that the Krieger (resp.
Fischer) automaton is invariant under conjugacy. The equivalence
between conditions (i) and (ii) is a version, for sofic shifts, of the
Classification Theorem. The equivalence between conditions (i)
and (iii) is due to Krieger (1984).

Theorem (Nasu,1986)

Let X ,X ′ be two sofic shifts (resp. irreducible sofic shifts) and let
A,A′ be their Krieger (resp. Fischer) automata. The following
conditions are equivalent.

(i) X ,X ′ are conjugate.

(ii) The adjacency matrices of A,A′ are symbolic strong shift
equivalent.

(iii) A,A′ are symbolic conjugate.
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A classification theorem for automata

The following result, due to is a version for automata of the
Classification Theorem. It shows that, in the previous theorem, the
equivalence between conditions (ii) and (iii) holds for automata
which are not reduced.

Theorem (Hamachi, Nasu, 1988)

Two essential automata are symbolic conjugate if and only if their
adjacency matrices are symbolic strong shift equivalent.

The first element of the proof is a version of the Decomposition
Theorem for automata.
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A decomposition theorem for automata

Let A,A′ be two automata. An in-split from A onto A′ is a
symbolic conjugacy (ϕ,ψ) such that ϕ : XA → XA′ and
ψ : LA → LA′ are in-splitting maps. A similar definition holds for
out-splits.

Theorem

Any symbolic conjugacy between automata is a composition of
splits and merges.
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The proof relies on the following lemma.

Lemma

Let α, β be 1-block maps and ϕ,ψ be 1-block conjugacies be as
below. If the inverses of ϕ,ψ have memory m ≥ 1 and anticipation
n ≥ 0, there exist in-splits X̃ , Ỹ , Z̃ , T̃ of X ,Y ,Z ,T respectively
and 1-block maps α̃ : X̃ → Z̃ , β̃ : Ỹ → T̃ such that the 1-block
conjugacies ϕ̃, ψ̃ below have inverses with memory m − 1 and
anticipation n.

X Y

Z T

ϕ

ψ

α β

X Y

X̃ Ỹ

Z̃ T̃

ϕ

ψ

α β

ϕ̃

ψ̃
α̃ β̃
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The second step for the proof of the classification theorem is the
following statement.

Proposition

Let A,A′ be two essential automata. If A′ is an in-split of A, the
matrices M(A) and M(A′) are symbolic elementary equivalent.
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Local automata

Let m, n ≥ 0. An automaton A = (Q,E ) is said to be (m, n)-local
if whenever p

u→ q
v→ r and p′ u→ q′ v→ r ′ are two paths with

|u| = m and |v | = n, then q = q′. It is local if it is (m, n)-local for
some m, n.

Example

The automaton represented below is (3, 0)-local.

1

2 3

a, b

b

a
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We say that an automaton A = (Q,E ) is contained in an
automaton A′ = (Q ′,E ′) if Q ⊂ Q ′ and E ⊂ E ′. We note that if
A is contained in A′ and if A′ is local, then A is local.

Proposition

An essential automaton A is local if and only if the map
λA : XA → LA is a conjugacy from XA onto LA.

Proposition

The following conditions are equivalent for a strongly connected
finite automaton A.

(i) A is local ;

(ii) distinct cycles have distinct labels.

Two cycles in this statement are considered to be distinct if,
viewed as paths, they are distinct.
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The following result shows the strong connection between shifts of
finite type and local automata.

Proposition

A shift space (resp. an irreducible shift space) is of finite type if and
only if its Krieger automaton (resp. its Fischer automaton) is local.

Example

Let X be the shift of finite type on the alphabet A = {a, b}
defined by the forbidden factor ba. The Krieger automaton of X is
represented below. It is (1, 0)-local.

1 2

a b

b
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For m, n ≥ 0, the standard (m, n)-local automaton is the
automaton with states the set of words of length m + n and edges
the triples (uv , a, u′v ′) for u, u′ ∈ Am, a ∈ A and v , v ′ ∈ An such
that for some letters b, c ∈ A, one has uvc = bu′v ′ and a is the
first letter of vc .
The standard (m, 0)-local automaton = De Bruijn automaton of
order m.

Example

The standard (1, 1)-local automaton on the alphabet {a, b} :

aa

ab

bb

ba

a b

a b

ba

a b
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Complete automata

An automaton A on the alphabet A is called complete if any word
on A is the label of some path in A. As an example, the standard
(m, n)-local automaton is complete.

Theorem (Béal, Lombardy, P. ,2008)

Any local automaton is contained in a complete local automaton.

The proof relies on the following version of the masking lemma.

Proposition (Masking lemma)

Let A and B be two automata and assume that M(A) and M(B)
are elementary equivalent. If B is contained in an automaton B′,
then A is contained in some automaton A′ which is conjugate to
B′.
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Example

1

2 3

a, b

b

a

1

2

3

4

a b

b

b

a
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Example

1

2 3

a, b

b

a

1

2

3

4

a b

b

b

a

a b

a
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Example

1

2 3

e

f

g
a, b

b

a

1

2

3

4

a b

b

b

a

a b

a
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Example

1

2 3

e

f

g
a, b

b

a

a

a

a

b

b

b

b

a
1

2

3

4

a b

b

b

a

a b

a
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In terms of adjacency matrices, we have M(A′) = N ′D ′,
M(B′) = D ′N ′ with

N ′ =

















0 a b 0
0 0 0 b
a 0 0 0
0 a 0 0
0 0 0 b
a 0 0 0

















, D ′ =









1 0 0 0 0 0
0 1 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0








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Automata with finite delay

An automaton is said to have right delay d ≥ 0 if for any pair of
paths

p
a→ q

z→ r , p
a→ q′ z→ r ′

with a ∈ A, if |z | = d , then q = q′. Thus a deterministic
automaton has right delay 0. An automaton has finite right delay if
it has right delay d for some (finite) integer d . Otherwise, it is said
to have infinite right delay.

Example

The automaton represented below has right delay 1.

1 2a

a

b
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Proposition

An automaton has finite right delay if and only if it is conjugate to
a deterministic automaton.

In the same way the automaton is said to have left delay d ≥ 0 if
for any pair of paths p

z→ q
a→ r and p′ z→ q′ a→ r with a ∈ A, if

|z | = d , then q = q′.

Corollary

If two automata are conjugate, and if one has finite right (left)
delay, then the other also has.

Proposition

An essential (m, n)-local automaton has right delay n and left
delay m.
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Shifts of almost finite type

A shift space is said to have almost finite type if it can be
recognized by a strongly connected automaton with both finite left
and finite right delay.
An irreducible shift of finite type is also of almost finite type since
a local automaton has finite right and left delay.

Example

The even shift has almost finite type. Indeed, its Fischer
automaton has right and left delay 0.

Proposition (Nasu, 1985)

An irreducible shift space is of almost finite type if and only if its
Fischer automaton has finite left delay.
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example

The deterministic automaton represented below has infinite left

delay. Indeed, there are paths · · · 1 b→ 1
a→ 1 and · · · 2 b→ 2

a→ 1.
Since this automaton cannot be reduced, X = LA is not of almost
finite type.

1 2

a, b

c

a

b
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Syntactic graph

We associate with A a labeled graph G (A) called its syntactic
graph. The vertices of G (A) are the regular D-classes of the
transition semigroup of A. Each vertex is labeled by the rank of
the D-class and its structure group. There is an edge from the
vertex associated with a D-class D to the vertex associated to a
D-class D ′ if and only if D ≥J D ′.
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Example

The automaton A on the left is the Fischer automaton of the even
shift . The semigroup of transitions of A has 3 regular D-classes of
ranks 2 (containing ϕA(b)), 1 (containing ϕA(a)), and 0
(containing ϕA(aba)). Its syntactic graph is represented on the
right.

1 2a

b

b

2, Z/2Z 1, Z/Z 0, Z/Z
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Theorem (Béal, Fiorenzi, P.,2006)

Two symbolic conjugate automata have isomorphic syntactic
graphs.

The proof uses the following result.

Proposition

Let A = (A1,A2) be a bipartite automaton. The syntactic graphs
of A,A1 and A2 are isomorphic.
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Flow equivalent automata

Let A be an automaton on the alphabet A and let G be its
underlying graph. An expansion of A is a pair (ϕ,ψ) of a graph
expansion of G and a symbol expansion of LA such that the
diagram below is commutative.

XA XB

ϕ

LA LB

λA λB
ψ

The inverse of an automaton expansion is called a contraction.

Jean Berstel, Marie-Pierre Béal, Søren Eilers, Dominique Perrin Symbolic dynamics and automata



Shift spaces
Automata

Minimal automata
Symbolic conjugacy

Special families of automata
Syntactic invariants

The syntactic graph
Pseudovarieties

example

Let A and B be the automata represented below. The second
automaton is an expansion of the first one.

1 2 3

4

5

6

a

a
b a ω

ω

ω

a

b
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The flow equivalence of automata is the equivalence generated by
symbolic conjugacies, expansions and contractions.
The invariance of the syntactic graph under symbolic conjugacy
has been generalized to flow equivalence.

Theorem (Costa and Steinberg, 2010)

Two flow equivalent automata have isomorphic syntactic graphs.
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example

The syntactic graphs of the automata A, B below are isomorphic
to the syntactic graph of the Fischer automaton C of the even shift.

1 2a, b

c

c
1 2d

e, f

f

g

Note that the automata A,B are not flow equivalent to C . Indeed,
the edge shifts XA, XB on the underlying graphs of the automata
A, B are flow equivalent to the full shift on 3 symbols while the
edge shift XC is flow equivalent to the full shift on 2 symbols. Thus
the converse of the theorem is false.
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Pseudovarieties

A morphism of ordered semigroups ϕ from S into T is an order
compatible semigroup morphism, that is such that s ≤ s ′ implies
ϕ(s) ≤ ϕ(s ′). An ordered subsemigroup of S is a subsemigroup
equipped with the restriction of the preorder.
A pseudovariety of finite ordered semigroups is a class of ordered
semigroups closed under taking ordered subsemigroups, finite
direct products and image under morphisms of ordered semigroups.
Let V be a pseudovariety of ordered semigroups. We say that a
semigroup S is locally in V if all the submonoids of S are in V . The
class of these semigroups is a pseudovariety of ordered semigroups.
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.

Theorem (Costa, 2007)

Let V be a pseudovariety of finite ordered semigroups containing
the class of commutative ordered monoids such that every element
is idempotent and greater than the identity. The class of shifts
whose syntactic semigroup is locally in V is invariant under
conjugacy.
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The following statements give examples of pseudovarieties
satisfying the above condition.

Proposition

An irreducible shift space is of finite type if and only if its syntactic
semigroup is locally commutative.

An inverse semigroup is a semigroup which can be represented as a
semigroup of partial one-to-one maps from a finite set Q into
itself. According to Ash’s theorem (1987), the variety generated by
inverse semigroups is characterized by the property that the
idempotents commute.

Theorem (Costa, 2007)

An irreducible shift space is of almost finite type if and only if its
syntactic semigroup is locally in the pseudovariety generated by
inverse semigroups.
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