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Abstract

• We investigate the “Dynamical Aspects of Automata
minimality”. We are interested on how the choice of the
final states can affect the minimality of the automata.

• A particular attention is devoted to the analysis of some
extremal cases such as, for example, the automata that are
minimal for any choice of final states (uniformly minimal
automata) and the automata that are never minimal, under
any assignment of final states (never-minimal automata).
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Minimization of DFAs and role of q0 (initial state)

minimization of DFAs

indistinguishability notion of states

the notion of initial state is irrelevant

Moore’s and Hopcroft’s algorithms

q0

indistinguishable states

Let A = (Q,Σ, δ) a DFA, F ⊆ Q the set of final states and
{p,q} ⊆ Q.

p ≡ q ⇔ ∀w ∈ Σ∗ : δ∗(p,w) ∈ F iff δ∗(q,w) ∈ F
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Objects of study

DFA:
• the initial state is not specified
• the set of final states is not specified
• strongly connected

↪→ path from each vertex to every other vertex

A = (Q,Σ, δ)

a

b

b a

b

b

synchronization problem and Černý’s conjecture
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A useful tool for our investigation: the state-pair graph

A G(A)

Definition

The state-pair graph of A = (Q,Σ, δ) is the graph
G(A) = (VG,EG) where:

i. VG consists of all not ordered pairs of distinct states of A;
ii. EG = {((p,q), (p′,q′)) | δ(p,a) = p′, δ(q,a) = q′ and a ∈

Σ}.
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Example

A
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Notation and terminology

• A = (Q,Σ, δ)

• Â: completion of A
• A(i ,F ) : DFA with initial state i ∈ Q and F ⊆ Q as set of

final states
• A(i ,F ) is said to be trim if all its states are both accessible

and coaccessible.
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Closed components of a G(Â)

A closed component of a graph G is a subset S of the set of the
vertices of G such that
• there exists a path from any element of S to any other

element of S (i.e. S is a strongly connected component),
and

• there is no outgoing edge from one element of S to a
vertex of G which is not in S.

12 23

3414

13

24

G(A)
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To check the minimality of a DFA

γF : VG → {B,W}

γF (p,q) =

{
B if p ∈ F and q /∈ F , or vice versa;
W otherwise.

Theorem
Let A = (Q,Σ, δ), i ∈ Q and F ⊆ Q such that A(i ,F ) is a trim
DFA. Then A(i ,F ) is minimal iff in any closed component of
G(Â) there is at least an element v such that γF (v) = B.
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Example

F = {1, 2}
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A main question

Do there exist minimal automata whose minimality is not
affected by the choice of the final states?

Remark
A(i ,F ) is trim for some i ∈ Q and for all F ⊆ Q if and only if A
is strongly connected. Thus the above question makes sense
only if we consider strongly connected automata.
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Uniformly minimal automata

Definition
A strongly connected automaton A = (Q,Σ, δ) is called
uniformly minimal if, for all F ⊆ Q, it is minimal.

Remark

If A is complete and F = Q, then A is minimal only if it corresponds to the
trivial automaton with only one state. So a nontrivial uniformly minimal
automaton is not complete.

Lemma
A strongly connected (incomplete) automaton A is uniformly
minimal if and only if the only closed component of G(Â) is
{(q, s) | q ∈ Q and s is the sink state}.

consequence
polynomial algorithm to test uniform minimality
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Uniformly minimal automata
Example
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Figure: A uniformly minimal automaton A and the associated state-pair
graph G(Â).
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Remark

Uniformly minimal automata are related to well-known objects
in different contexts:
• multiple-entry DFAs
• Fisher covers of irreducible sofic shifts in Symbolic

Dynamics
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FA with a Limited Nondeterminism

DFAs with multiple initial states (multiple-entry DFAs)

A = (Q,Σ, δ)
I,F ⊆ Q

A(I,F ) = (Q,Σ, δ, I,F )

I set of initial states
F set of final states

If | I |≤ k , A(I,F ) is called k -entry DFA.

1 2

3

a

aa, b
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b
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Different notions of minimality

For an arbitrary regular language L, we have:

1 minimal DFA
2 minimal multiple-entry DFA
3 minimal k -entry DFA

More relevant,
- in general, minimal multiple-entry (resp. k -entry) DFAs are

not unique, and
- the related minimization problems are computationally

hard.
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Example
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Figure: A 2-entry DFA and the corresponding minimal DFA.
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Remark

DFA
The minimal DFA A recognizing a
regular language L has a minimal
number of final states.

Q

F

the Nerode equivalence ∼A is the
largest congruence saturating F

∀A′ : L(A′) = L → ∼A≤∼A′

k -entry DFA
L← unary string language whose
length is not a multiple of 3

both 2-entry minimal for L
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Symbolic dynamics

Sofic shifts are recognized by finite automata where all states are both initial
and final.
A sofic shift is irreducible if it is recognized by a strongly connected
automaton.

In general, the minimal automaton for an arbitrary sofic shift is not unique.
However, it is unique (up to the labeling of the states) in the case of an
irreducible sofic shift L.

This minimal automaton (called Fisher cover) can be obtained from a strongly
connected deterministic automaton recognizing L, by merging the
indistinguishable states.
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Theorem
Let A = (Q,Σ, δ) a strongly connected DFA. The following
conditions are equivalent:

1 A({q},F ) is minimal for some q ∈ Q and for all F ⊆ Q, i.e. A is
uniformly minimal.

2 A({q},F ) is minimal for all q ∈ Q and for all F ⊆ Q.

3 A({q},Q) is minimal for some q ∈ Q.

4 A({q},Q) is minimal for all q ∈ Q.

5 A(I,F ) is |I|-entry minimal for all I ⊆ Q and for all F ⊆ Q.

6 A(I,F ) is multiple-entry minimal for all I ⊆ Q and for all F ⊆ Q.

7 A(Q,Q) is the Fisher cover of some irreducible sofic shift.

8 A(Q,Q) is multiple-entry minimal.
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Scheme of the proof

1 A({q},F ) is minimal for some q ∈ Q and for all F ⊆ Q.

2 A({q},F ) is minimal for all q ∈ Q and for all F ⊆ Q.

3 A({q},Q) is minimal for some q ∈ Q.

4 A({q},Q) is minimal for all q ∈ Q.

5 A(I,F ) is |I|-entry minimal for all I ⊆ Q and for all F ⊆ Q.

6 A(I,F ) is multiple-entry minimal for all I ⊆ Q and for all F ⊆ Q.

7 A(Q,Q) is the Fisher cover of some irreducible sofic shift.

8 A(Q,Q) is multiple-entry minimal.

7 3 4

1 2

56

8

1
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consequence
Uniformly minimal automata correspond to Fisher covers of
irreducible sofic shifts in Symbolic Dynamics.

There are infinitely many uniformly minimal automata.
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Almost uniformly minimal automata

A strongly connected DFA A = (Q,Σ, δ) is almost uniformly
minimal if, for all proper subsets F ⊂ Q, it is minimal.
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Almost uniformly minimal automata

Theorem
For any integer n ≥ 2 there exists a (complete) almost
uniformly minimal DFA with n states.

δ(i , a) =

{
i+1, if 1 ≤ i < n;
1, if i = n.

δ(i , b) =


i, for i ∈ {1, n};
i+1, if i = 2k for positive integers k ≤ n

2 − 1;
i-1, if i = 1 + 2k for positive integers k ≤ n

2 − 1;
n even

δ(i , b) =



i, for i ∈ {1, n};
i, if i = 2k for integers k ∈ [ n+1

4 , n+3
4 ];

i+1, if i = 2k for positive integers k < n+1
4 ;

i-1, if i = 1 + 2k for positive integers k < n+1
4 ;

i+1, if i = n − 2k for positive integers k ≤ n−3
4 ;

i-1, if i = n + 1− 2k for positive integers k ≤ n−3
4 .

n odd
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Almost uniformly minimal automata
Example

1

2 3

4

5

a

a,b
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aa
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b

b

23

12 51

45

34

41

25 13

2435

Figure: The automatonM5 and its state-pair graph (strongly connected).

Remark

If G(Â) is strongly connected then, for all proper subsets F ⊂ Q, it has at
least one vertex v such that γF (v) = B.
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Almost uniformly minimal automata
On the complexity of the decisional problem

Remark

Almost uniformly minimal automata do not correspond to strongly connected
DFAs which are minimal for all choices of the set of final states F with
maximal cardinality.
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Figure: minimal for all F with |F | = 3, but not almost uniformly minimal
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Almost uniformly minimal automata
On the complexity of the decisional problem

Theorem

Let A = (Q,Σ, δ) be a strongly connected DFA which is not
uniformly minimal. A is almost uniformly minimal if and only if
for any closed component S of G(Â) and any pair of states
q,q′ ∈ Q there exists a sequence q1, ...,qt ∈ Q̂, with t ≥ 1,
such that q = q1,qt = q′ and (qi ,qi+1) ∈ S, for 1 ≤ i < t .

consequence
polynomial algorithm to decide whether an automaton is almost
uniformly minimal
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Almost uniformly minimal automata
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Never-minimal automata

Question
Do there exist strongly connected automata which aren’t
minimal for any choice of their final states?

We call never-minimal a DFA which isn’t minimal for any choice
of their final states.

Theorem
For any integer n ≥ 4 there exists a never-minimal strongly
connected DFA with n states.
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Proof:
Q = {1, 2, ..., n}, Σ = {a, b}

δ(i , a) =

{
1, if i ≤ 3
i-1, if 4 ≤ i ≤ n δ(i , b) =


4, if i ≤ 3
i+1, if 3 < i ≤ n − 1
2, if i = n

12 23 13 have no outgoing edge

1 ∈ F ⇒ 2 /∈ F ⇒ 3 ∈ F ⇒ γF (1, 3) = W .

1 2

43 5 6

b

a
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a a

b b
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Never-minimal automata
A sufficient condition

Let A = (Q,Σ, δ) a DFA and a ∈ Σ:

δa : Q → Q

q 7→ δ(q,a)

Definition
We say that a DFA A = (Q,Σ, δ) satisfies condition Ch if there
is Qh ⊆ Q, with | Qh |= h, such that, for all a ∈ Σ, the restriction
of δa to Qh is a constant or an identity function.

Theorem
Let A = (Q,Σ, δ) a DFA. If A satisfies C3 then it is
never-minimal.
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Never-minimal automata
C3 is not a necessary condition

1 2

5

34

13 24

23 14

34 12
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bb
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a

a

b

b

1

Figure: A never-minimal automaton A that doesn’t satisfy condition C3 and
the closed components of G(Â).

polynomial time algorithm for never-minimal DFA?
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Never-minimal automata
Relationships to the “syntactic monoid problem”

If M is a finite monoid and P a subset of M, there is a largest congruence σP

saturating P defined by:

xσPy ⇔ ∀s, t ∈ M (sxt ∈ P ⇔ syt ∈ P).

The set P is called disjunctive if σP is the equality in M.
A monoid M is syntactic if it has a disjunctive subset.

Syntactic monoid problem

Instance: A finite monoid M
Question: is M syntactic?

P. Goralcik, V. Koubek (98)

• Polynomial-time algorithm (O(|M|3)) for the syntactic monoid problem
for a large class of finite monoids.

• A slide generalization of syntactic monoid problem makes it
NP-complete.

◦ Is there any chance to have a polynomial-time algorithm for the
“syntactic monoid problem” ?
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Never-minimal automata
Relationships to the “syntactic monoid problem”

Let M be the transition monoid of a DFA A.

M not syntactic A never-minimal
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Complete characterization for the automata over a
unary alphabet

Strongly connected DFAs are cyclic.

Uniformly minimal automata

There do not exist nontrivial uniformly minimal automata.

Never-minimal automata

All vertices of the associated state-pair graphs are covered by disjoint cycles.
Moreover, for each q ∈ Q there is at least one vertex in any cyclic component
of G(A) that contains q. It follows that A is minimal for every choice of the set
of final states F with |F | = 1.
⇒ There do not exist never-minimal automata.
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Complete characterization for the automata over a
unary alphabet

Almost uniformly minimal automata

Theorem
Let A = (Q, {σ}, δ) be a cyclic DFA with | Q |= n. A is almost
uniformly minimal if and only if n is a prime number.

Proof:
(⇐) n = hk , F = {q1, ..., qh}

δ∗(qi , σ
k ) =

{
qi+1, if i ∈ {1, ..., h − 1};
q1, if i = h.

If i ∈ F ⇒ L(A) = {w | |w | = k · c, c ≥ 0} ⇒ A(i ,F ) isn’t minimal.

(⇒) n prime, |F | = m < n. L(A(i ,F )), ∀i , is given by all words over {σ}
whose length belongs to the union of exactly m equivalence classes
modulo n. Since n is prime, this set of integer numbers cannot be equal
to the union of classes modulo different integers. Therefore A(i ,F ) is
minimal.
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Thank you for your attention!
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