IntroductionRewriting systemsAutomataFinitenessGroupsEndomorphismsComputability00000000000000000000000000000000000

Fixed points of endomorphisms over special confluent rewriting systems

Pedro V. Silva

University of Porto (Centre of Mathematics, Faculty of Sciences)

Vienna, 25th November 2010

Rewriting systems			
of two theor	ome		

Theorem FIN

Let G be a group in class \mathcal{G} and let φ be an endomorphism of G with property \mathcal{P} . Then Fix φ is f.g.

A (1) > A (2) > A

Introduction ●○○	Rewriting systems		Finiteness 0000000	Endomorphisms 0000	Computability 0000
A talo	of two theory	ome			

Theorem FIN

Let G be a group in class \mathcal{G} and let φ be an endomorphism of G with property \mathcal{P} . Then $\operatorname{Fix} \varphi$ is f.g.

Theorem INF

Let G be a hyperbolic group in class G and let φ be a monomorphism of G with property \mathcal{P} . Let Φ denote the continuous extension of φ to the space of ends of G. Then Fix Φ is "f.g."

Introduction ○●○	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
A brief	history					

	Free groups						
	automorphisms monomorphisms endomorphisms						
Theorem FIN	Gersten 1984	Goldstein and	Goldstein and				
		Turner 1985	Turner 1986				
Theorem INF	Cooper 1987	Silva 2009					

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

Introduction ○●○	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
A brief	history					

	Free groups						
	automorphisms monomorphisms endomorphisms						
Theorem FIN	Gersten 1984	Goldstein and					
		Turner 1985	Turner 1986				
Theorem INF	Cooper 1987	Silva 2009					

	Free products of cyclic groups						
	automorphisms	endomorphisms					
Theorem FIN	Collins and	Sykiotis 2006	Sykiotis 2006				
	Turner 1994		Silva 2010				
	Gaboriau, Jaeger,						
Theorem INF	Levitt and	Silva 2009	_				
	Lustig 1998						
		+ - > + = + > + = + > + > + > + = + > + = + = + = + - = + = +	< E > < E > E の < @				

Pedro V. Silva Fixed points of endomorphisms over special confluent rewrit

- In 2004, Cassaigne and the speaker initiated an approach to these problems in the context of the theory of rewriting systems...
- ...and so we could cover groups and monoids

- In 2004, Cassaigne and the speaker initiated an approach to these problems in the context of the theory of rewriting systems...
- ...and so we could cover groups and monoids
- On doing so, we can distinguish what is specific of groups and automorphisms (often requiring algebraic geometry techniques)...
- ...from what can be studied within a combinatorial automata-theoretic framework (providing more general results)

Introduction	Rewriting systems ●0000000	Automata 0000	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
Special	rewriting sy	stems				

A – a finite alphabet $R \subseteq A^+ \times \{1\}$ – a special rewriting system over A

(ロ) (四) (三) (三)

э

A - a finite alphabet $R \subseteq A^+ \times \{1\} - a$ special rewriting system over A $u \longrightarrow v$ if u = xry, v = xy for some $x, y \in A^*$, $(r, 1) \in R$ $\stackrel{*}{\longrightarrow} -$ the reflexive and transitive closure of \longrightarrow

 $\begin{array}{l} A - \text{a finite alphabet} \\ R \subseteq A^+ \times \{1\} - \text{a special rewriting system over } A \\ u \longrightarrow v \text{ if } u = xry, \ v = xy \text{ for some } x, y \in A^*, \ (r, 1) \in R \\ \xrightarrow{*} - \text{ the reflexive and transitive closure of } \longrightarrow \\ R^{\sharp} - \text{ congruence generated by } R \\ M = A^*/R^{\sharp} - \text{ the monoid defined by } R \end{array}$

• A rewriting system *R* over *A* is said to be confluent if the diagram

can always be completed

臣

• A rewriting system *R* over *A* is said to be confluent if the diagram

can always be completed

 Monoids defined by special confluent rewriting systems (SC monoids) provide models for partial reversibility in Computer Science

Introduction	Rewriting systems ००●०००००	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
Normal	forms					

- $u \in A^*$ is irreducible if $u \xrightarrow{*} v$ implies v = u
- \overline{u} the unique irreducible word such that $u \xrightarrow{*} \overline{u}$

・ 同下 ・ ヨト ・ ヨト

Introduction	Rewriting systems ००●०००००	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
Normal	forms					

- $u \in A^*$ is irreducible if $u \xrightarrow{*} v$ implies v = u
- \overline{u} the unique irreducible word such that $u \xrightarrow{*} \overline{u}$
- M has a set of normal forms A^{*}_R ⊆ A^{*} consisting of all irreducible words
- $M \cong (A_R^*, \circ)$ for $u \circ v = \overline{uv}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 000	Rewriting systems ००●०००००	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
Normal	forms					

- $u \in A^*$ is irreducible if $u \xrightarrow{*} v$ implies v = u
- \overline{u} the unique irreducible word such that $u \xrightarrow{*} \overline{u}$
- M has a set of normal forms A^{*}_R ⊆ A^{*} consisting of all irreducible words
- $M \cong (A_R^*, \circ)$ for $u \circ v = \overline{uv}$
- A_R^{ω} the set of all infinite irreducible words over A
- $A_R^{\infty} = A_R^* \cup A_R^{\omega}$

(同) (三) (三) (三)

э

Introduction 000	Rewriting systems 000●0000	Automata	Finiteness 0000000	Endomorphisms 0000	Computability 0000
The pre	efix ultramet	ric			

• For all
$$\alpha = a_1 a_2 \dots$$
, $\beta = b_1 b_2 \dots \in A_R^{\infty}$ $(a_i, b_j \in A)$, let

$$r(\alpha, \beta) = \begin{cases} \min\{n \in \mathbb{N} \mid a_n \neq b_n\} & \text{if } \alpha \neq \beta \\ \infty & \text{if } \alpha = \beta \end{cases}$$

and $d(\alpha,\beta) = 2^{-r(\alpha,\beta)}$

Introduction 000	Rewriting systems	Automata	Finiteness 0000000	Endomorphisms 0000	Computability 0000
The pre	efix ultramet	ric			

• For all
$$lpha={\sf a}_1{\sf a}_2\ldots,\ eta={\sf b}_1{\sf b}_2\ldots\in{\sf A}^\infty_R$$
 $({\sf a}_i,{\sf b}_j\in{\sf A})$, let

$$r(\alpha,\beta) = \begin{cases} \min\{n \in \mathbb{N} \mid a_n \neq b_n\} & \text{if } \alpha \neq \beta \\ \infty & \text{if } \alpha = \beta \end{cases}$$

and $d(\alpha,\beta) = 2^{-r(\alpha,\beta)}$

• Then (A_R^{∞}, d) is the completion of (A_R^*, d) and it is compact

▲□ → ▲ □ → ▲ □ →

Introduction	Rewriting systems ००००●०००	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
The geo	odesic metric	C				

• The Cayley graph $\Gamma_A(M)$ has vertex set A_R^* and edges

$u \xrightarrow{a} \overline{ua}$ $(u \in A_R^*, a \in A)$

<ロ> (四) (四) (三) (三) (三)

• The Cayley graph $\Gamma_A(M)$ has vertex set A_R^* and edges

 $u \xrightarrow{a} \overline{ua}$ $(u \in A_R^*, a \in A)$

- The geodesic metric s in A^{*}_R is defined by the length of the shortest path in the undirected Cayley graph
- Then A_R^{ω} turns out to be the space of ends of A_R^* :

イロト 不得下 イヨト イヨト

Introduction	Rewriting systems ०००००●००	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000	
The hyr	perbolic top						

Theorem (Cassaigne and Silva 2006)

0)

(i) (A_R^*, s) is a hyperbolic metric space and we can therefore define a metric on its space of ends by means of the Gromov product to get the hyperbolic topology \mathcal{G}

(ii) The prefix metric d on A_R^ω induces the hyperbolic topology ${\mathcal G}$

(iii) The monoid A_R^* is word hyperbolic in the sense of Gilman

Introduction	Rewriting systems ०००००●००	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000	
The hyr	perbolic top						

Theorem (Cassaigne and Silva 2006)

0)

(i) (A_R^*, s) is a hyperbolic metric space and we can therefore define a metric on its space of ends by means of the Gromov product to get the hyperbolic topology \mathcal{G}

(ii) The prefix metric d on A_R^ω induces the hyperbolic topology ${\mathcal G}$

(iii) The monoid A_R^* is word hyperbolic in the sense of Gilman

...so we can get away with undirected Cayley graphs (!)

Introduction	Rewriting systems	Automata	Finiteness 0000000	Endomorphisms 0000	Computability 0000
Continu	ious extensio	ons			

Theorem (Cassaigne and Silva 2006)

Let φ be a nontrivial endomorphism of A_R^* . Then the following conditions are equivalent and decidable:

(i) φ can be extended to a continuous mapping $\Phi : A_R^{\infty} \to A_R^{\infty}$ (ii) φ is uniformly continuous for the prefix metric

(iii)
$$w\varphi^{-1}$$
 is finite for every $w \in A_R^*$

• Fix
$$\varphi = \{ u \in A_R^* \mid u\varphi = u \} \le A_R^*$$

• Fix
$$\Phi = \{ \alpha \in A_R^\infty \mid \alpha \Phi = \alpha \}$$

▲□→ ▲ 国 → ▲ 国 →

Introduction	Rewriting systems 0000000●	Automata 0000	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
The bou	unded reduc	tion pro	perty			

Proposition

Let $\varphi \in \operatorname{End} A_R^*$ be uniformly continuous for the prefix metric. Then there exists some $M_{\varphi} > 0$ such that, whenever $uv \in A_R^*$, the reduction of $(u\varphi)(v\varphi)$ involves at most M_{φ} letters from $u\varphi$ and M_{φ} letters from $v\varphi$.

uφ		Vφ		
remains	$\leq M_arphi$	$\leq M_{arphi}$	remains	

Proved by Cooper (1987) for free group automorphisms

	Rewriting systems	Automata ●000	Finiteness 0000000	Groups	Endomorphisms 0000	
Defining	g a quotient					

- Fix $\varphi: A_R^* \to A_R^*$ uniformly continuous
- Ladra and Silva 2007:

Introduction 000	Rewriting systems	Automata ○●○○	Finiteness 0000000	Groups	Endomorphisms 0000	Computability 0000
Defining	g a quotient					

• $\lambda(u)\sigma''(u)\tau(u)$ is the shortest suffix of u satisfying $|\lambda(u)\sigma''(u)\tau(u)| \ge t_R - 1$ or $\lambda(u)\sigma''(u)\tau(u) = u$

• ... so that $\lambda(u)$ is a suffix of $\sigma'(u)$ of bounded length

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

• $\lambda(u)\sigma''(u)\tau(u)$ is the shortest suffix of u satisfying $|\lambda(u)\sigma''(u)\tau(u)| \ge t_R - 1$ or $\lambda(u)\sigma''(u)\tau(u) = u$

- ...so that $\lambda(u)$ is a suffix of $\sigma'(u)$ of bounded length a write $G(u) = (\lambda(u) - \tau''(u) - \tau(u))$
- write $C(u) = (\lambda(u), \sigma''(u), \tau(u), \rho(u))$

Introduction
occRewriting systems
cooccoccAutomata
oFiniteness
occoccGroups
occEndomorphisms
occoccComputability
occoccDefining a quotient

• $\lambda(u)\sigma''(u)\tau(u)$ is the shortest suffix of u satisfying

 $|\lambda(u)\sigma''(u) au(u)| \ge t_R - 1$ or $\lambda(u)\sigma''(u) au(u) = u$

• ...so that $\lambda(u)$ is a suffix of $\sigma'(u)$ of bounded length

• write $C(u) = (\lambda(u), \sigma''(u), \tau(u), \rho(u))$

Lemma

Let $u, v \in A_R^*$ be such that C(u) = C(v) and $ua \in A_R^*$. Then $va \in A_R^*$ and C(ua) = C(va).

We build a deterministic A-automaton $\mathcal{A}'_{\varphi} = (Q', q_0, T', E')$ by taking

- $Q' = \{C(u) \mid u \leq \alpha \text{ for some } \alpha \in Fix\Phi\}$
- $q_0 = C(1)$
- $T' = \{C(u) \in Q' \mid \tau(u) = \rho(u) = 1\}$
- $E' = \{(C(u), a, C(v)) \in Q' \times A \times Q' \mid v = ua\}$

э

We build a deterministic A-automaton $\mathcal{A}'_{\varphi} = (Q', q_0, T', E')$ by taking

- $Q' = \{C(u) \mid u \leq \alpha \text{ for some } \alpha \in Fix\Phi\}$
- $q_0 = C(1)$

•
$$T' = \{C(u) \in Q' \mid \tau(u) = \rho(u) = 1\}$$

•
$$E' = \{(C(u), a, C(v)) \in Q' \times A \times Q' \mid v = ua\}$$

Proposition

 $\mathsf{Fix}\Phi = L_\infty(\mathcal{A}'_arphi)$

...where $L_{\omega}(\mathcal{A}'_{\varphi})$ is the set of labels of infinite paths $q_0 \xrightarrow{\alpha} \ldots$ and $L_{\infty}(\mathcal{A}'_{\varphi}) = L(\mathcal{A}'_{\varphi}) \cup L_{\omega}(\mathcal{A}'_{\varphi})$

(日)(4月)(4日)(4日)(日)

- Let $S = \{q \in Q' \mid q \text{ has outdegree } \geq 2\}$
- Let $Q = \{q \in Q' \mid \exists a \text{ path } q {\longrightarrow} p \in S \cup T'\}$
- We define $\mathcal{A}_{\varphi} = (Q, q_0, T, E)$ by taking

 $T = T' \cap Q, \quad E = E' \cap (Q \times A \times Q)$

- Let $S = \{q \in Q' \mid q \text{ has outdegree } \geq 2\}$
- Let $Q = \{q \in Q' \mid \exists \text{ a path } q \longrightarrow p \in S \cup T'\}$
- We define $\mathcal{A}_{\varphi} = (Q, q_0, T, E)$ by taking

 $T = T' \cap Q, \quad E = E' \cap (Q \times A \times Q)$

Proposition

 $\mathsf{Fix}\varphi = L(\mathcal{A}_{\varphi})$

イロト イポト イヨト イヨト 二日

Introduction	Rewriting systems	Automata	Finiteness ●000000	Groups	Endomorphisms 0000	Computability 0000
Finite-s	plitting					

We say that φ is finite-splitting if S is finite

Theorem FIN

If φ is a finite-splitting uniformly continuous endomorphism, then ${\rm Fix}\,\varphi$ is rational

A (B) > A (B) > A (B)

Introduction	Rewriting systems	Automata	Finiteness ●000000	Groups	Endomorphisms 0000	Computability 0000
Finite-s	olitting					

We say that φ is finite-splitting if S is finite

Theorem FIN

If φ is a finite-splitting uniformly continuous endomorphism, then $\operatorname{Fix}\varphi$ is rational

Theorem INF

If φ is a finite-splitting uniformly continuous endomorphism, then there exist $L, L_1, \ldots, L_s \in \operatorname{Rat} A^*$ and $\alpha_1, \ldots, \alpha_s \in A_R^{\omega}$ such that

 $\operatorname{Fix} \Phi = L^{c} \cup L_{1}\alpha_{1} \cup \ldots \cup L_{s}\alpha_{s},$

where L^{c} denotes the topological closure of L

э

• \mathcal{A}'_{φ} is a finite automaton with a few infinite hairs adjoined

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

• \mathcal{A}'_{φ} is a finite automaton with a few infinite hairs adjoined

- To get A_φ, we remove the hairs from the terminal vertices onwards and eventually a few other vertices
- The (infinite) hairs correspond to (Lyapunov stable) attractors or repellers

(D) (A) (A)

- Finite-splitting is a property of infinite automata which are not constructible...
- ...so who can tell when does such a property occur?

- Finite-splitting is a property of infinite automata which are not constructible...
- ...so who can tell when does such a property occur?
- We can't!
- So the plan is to identify nice subclasses of finite-splitting endomorphisms with good properties

Introduction	Rewriting systems	Automata	Finiteness 000●000	Groups	Endomorphisms 0000	Computability 0000
Bounda	ry-injectivity	/				

 We say that a uniformly continuous endomorphism φ of A^{*}_R is boundary-injective if the extension Φ is injective

- We say that a uniformly continuous endomorphism φ of A^{*}_R is boundary-injective if the extension Φ is injective
- A monomorphism needs not to be boundary-injective

Theorem

If φ is boundary-injective, then it is uniformly continuous and finite-splitting

Introduction	Rewriting systems	Automata	Finiteness 000●000	Groups	Endomorphisms 0000	Computability 0000
Bounda	ry-injectivity	/				

- We say that a uniformly continuous endomorphism φ of A^{*}_R is boundary-injective if the extension Φ is injective
- A monomorphism needs not to be boundary-injective

Theorem

If φ is boundary-injective, then it is uniformly continuous and finite-splitting

Theorem

Given a uniformly continuous endomorphism φ of A_R^* , it is decidable whether or not φ is injective or boundary-injective

• An endomorphism φ of A_R^* has bounded length decrease if

 $\exists d_{\varphi} \in \mathbb{N} \; \forall u \in A_{R}^{*} \qquad |u| - |u\varphi| \leq d_{\varphi}$

イロト イヨト イヨト イヨト

• An endomorphism φ of A_R^* has bounded length decrease if

 $\exists d_{\varphi} \in \mathbb{N} \; \forall u \in A_{R}^{*} \qquad |u| - |u\varphi| \leq d_{\varphi}$

• d_{φ} can be arbitrarily large

Theorem

If φ has bounded length decrease, then it is uniformly continuous and finite-splitting

(日)(4月)(4日)(4日)(日)

	Rewriting systems		Finiteness 00000●0	Groups	Endomorphisms 0000	
This sul	bclass is eve	n nicer!				

Theorem

Given a uniformly continuous endomorphism φ of A_R^* , it is decidable whether or not φ has bounded length decrease. If this is the case, d_{φ} can be effectively computed.

・ 同 ト ・ ヨ ト ・ ヨ

	Rewriting systems		Finiteness 00000●0	Endomorphisms 0000	Computability 0000
This sul	oclass is eve	n nicer!			

Theorem

Given a uniformly continuous endomorphism φ of A_R^* , it is decidable whether or not φ has bounded length decrease. If this is the case, d_{φ} can be effectively computed.

Theorem

Given an endomorphism φ of A_R^* having bounded length decrease, we can effectively construct finite A-automata $\mathcal{A}, \mathcal{A}_1, \dots, \mathcal{A}_s$ and $\alpha_1, \dots, \alpha_s \in A_R^{\omega}$ such that (i) Fix $\varphi = L(\mathcal{A})$ (ii) Fix $\Phi = L_{\infty}(\mathcal{A}) \cup L(\mathcal{A}_1)\alpha_1 \cup \dots \cup L(\mathcal{A}_s)\alpha_s$

 $u\varphi$

no elements in *S*

bounded number of cases

bounded number of cases

decider

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Not too many...

Proposition

The SC groups are precisely the free products of cyclic groups

Not too many...

Proposition

The SC groups are precisely the free products of cyclic groups

...but still we can get some new group theory results

(D) (A) (A)

Introduction 000	Rewriting systems		Finiteness 0000000	Groups ○●○	Endomorphisms 0000	Computability 0000
An alte	rnative proo	f				

We can get an alternative proof for

Theorem FIN (Sykiotis 2006)

Let φ be a monomorphism of a f.g. SC group. Then $\operatorname{Fix} \varphi$ is f.g.

・ 同下 ・ ヨト ・ ヨト

Introduction	Rewriting systems		Finiteness 0000000	Groups ○●○	Endomorphisms 0000	Computability 0000
An alter	rnative proo	f				

We can get an alternative proof for

Theorem FIN (Sykiotis 2006)

Let φ be a monomorphism of a f.g. SC group. Then $\operatorname{Fix} \varphi$ is f.g.

We use the following:

- every monomorphism of such a group is boundary-injective
- every rational subgroup of a group is f.g. (Anisimov and Seifert's Theorem)

A (B) > (A) = (A) (A)

	Rewriting systems		Endomorphisms 0000	
and a	new result			

Theorem INF

Let φ be a monomorphism of a f.g. SC group. Then Fix $\Phi = (Fix \varphi)^c \cup (Fix \varphi)X$ for some finite $X \subseteq Fix \Phi$.

	Rewriting systems			
and a	new result			

Theorem INF

Let φ be a monomorphism of a f.g. SC group. Then Fix $\Phi = (Fix \varphi)^c \cup (Fix \varphi)X$ for some finite $X \subseteq Fix \Phi$.

- Apparently, this is new even for free group monomorphisms
- The automorphism case (for free products of cyclic groups) is due to Gaboriau, Jaeger, Levitt and Lustig (1998)

• A monoid *M* is directly finite if

 $\forall x, y \in M \quad xy = 1 \Rightarrow yx = 1$

・ロト ・ 同ト ・ ヨト ・ ヨト

臣

Introduction Rewriting systems Automata Finiteness Groups Endomorphisms Computability Embedding monoids into groups October Oc

• A monoid *M* is directly finite if

 $\forall x, y \in M \quad xy = 1 \Rightarrow yx = 1$

• The bicyclic monoid is defined by $\langle a, b \mid ab \rightarrow 1 \rangle$

э

Introduction Rewriting systems Automata Finiteness Groups Endomorphisms Computability Embedding monoids into groups Groups

• A monoid *M* is directly finite if

 $\forall x, y \in M \quad xy = 1 \Rightarrow yx = 1$

• The bicyclic monoid is defined by $\langle a, b \mid ab \rightarrow 1 \rangle$

Proposition

The following conditions are equivalent for an SC monoid M:

- (i) *M* is embeddable into some group
- (ii) *M* contains no bicyclic submonoid
- (iii) *M* is directly finite

(iv) *M* is a free product of a free monoid and cyclic groups

э

- We can adapt Goldstein and Turner's automata-theoretic proof from free groups to SC groups
- The theorem follows also from the work of Sykiotis, which used different techniques

(D) (A) (A)

Introduction Rewriting systems Automata Finiteness Groups OOO CONSTRUCTION CONSTRUC

- We can adapt Goldstein and Turner's automata-theoretic proof from free groups to SC groups
- The theorem follows also from the work of Sykiotis, which used different techniques
- We may assume that $A = A_0 \cup A_1 \cup A_1^{-1}$ and there exist $m_a \ge 2$ for every $a \in A_0$ such that

 $R = \{(a^{m_a}, 1) \mid a \in A_0\} \cup \{(aa^{-1}, 1), (a^{-1}a, 1) \mid a \in A_1\}$

• For every
$$a \in A_0$$
, write $a^{-1} = a^{m_a - 1}$

Introduction	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms ○○●○	Computability 0000
Building	g automata					

- For every $g \in G$, let $Q(g) = \overline{g^{-1}(g\varphi)}$
- Then $g \in Fix \varphi$ if and only if Q(g) = 1

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Introduction	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms ○○●○	Computability 0000
Building	g automata					

- For every $g \in G$, let $Q(g) = \overline{g^{-1}(g\varphi)}$
- Then $g \in Fix \varphi$ if and only if Q(g) = 1
- We define an A-automaton $\mathcal{A}_{\varphi} = (Q, 1, 1, E)$ by $Q = \{Q(g) \mid g \in G\}$ $E = \{(Q(g), a, Q(ga)) \mid g \in G, a \in A\}$
- \bullet Clearly, \mathcal{A}_{φ} is a complete accessible deterministic automaton and

 $L(\mathcal{A}_{\varphi}) = (\mathsf{Fix}\varphi)\pi^{-1}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Introduction 000	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms ○○●○	Computability 0000
Building	g automata					

- For every $g \in G$, let $Q(g) = \overline{g^{-1}(g\varphi)}$
- Then $g \in Fix \varphi$ if and only if Q(g) = 1
- We define an A-automaton $\mathcal{A}_{\varphi} = (Q, 1, 1, E)$ by $Q = \{Q(g) \mid g \in G\}$ $E = \{(Q(g), a, Q(ga)) \mid g \in G, a \in A\}$
- \bullet Clearly, \mathcal{A}_{φ} is a complete accessible deterministic automaton and

$$L(\mathcal{A}_arphi) = (\mathsf{Fix}arphi)\pi^{-1}$$

• We define a subautomaton $\mathcal{A}'_{arphi} = (\mathit{Q}, 1, 1, \mathit{E'})$ through

 $E' = \{(p, a, q) \in E \mid aq \text{ is irreducible}\}$

イロト 不得下 イヨト イヨト

Introduction	n Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms ○○○●	Computability 0000
The r	esults					

• Let $d_{\varphi} = \max\{|a\varphi|; a \in A\}$ and $m_R = \max\{m_a \mid a \in A_0\}$

Introduction	Rewriting systems	Automata 0000	Finiteness 0000000	Groups	Endomorphisms 000●	Computability 0000
The results						

- Let $d_{\varphi} = \max\{|a\varphi|; a \in A\}$ and $m_R = \max\{m_a \mid a \in A_0\}$
- If $|q| > (m_R-1)d_arphi$, then q has outdegree ≤ 1 in \mathcal{A}'_arphi

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Introduction 000	Rewriting systems	Automata 0000	Finiteness 0000000	Groups	Endomorphisms 000●	Computability 0000
The results						

- Let $d_{\varphi} = \max\{|a\varphi|; a \in A\}$ and $m_R = \max\{m_a \mid a \in A_0\}$
- If $|q| > (m_R-1)d_arphi$, then q has outdegree ≤ 1 in \mathcal{A}'_arphi
- If $(p, a, q) \in E \setminus E'$ and no path of length $\leq s m_R$ connects 1 to p or q in \mathcal{A}_{φ} , then there exists a path $q \xrightarrow{a^{-1}} p$ in \mathcal{A}'_{φ}

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

Introduction	Rewriting systems	Automata 0000	Finiteness 0000000	Groups	Endomorphisms 000●	Computability 0000
The resu	ults					

- Let $d_{\varphi} = \max\{|a\varphi|; a \in A\}$ and $m_R = \max\{m_a \mid a \in A_0\}$
- If $|q| > (m_R-1)d_arphi$, then q has outdegree ≤ 1 in \mathcal{A}'_arphi
- If $(p, a, q) \in E \setminus E'$ and no path of length $\leq s m_R$ connects 1 to p or q in \mathcal{A}_{φ} , then there exists a path $q \xrightarrow{a^{-1}} p$ in \mathcal{A}'_{φ}

Theorem

Let φ be an endomorphism of a f.g. SC group. Then Fix φ is f.g.

(D) (A) (A) (A)

Introduction 000	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms 000●	Computability 0000
The results						

- Let $d_{\varphi} = \max\{|a\varphi|; a \in A\}$ and $m_R = \max\{m_a \mid a \in A_0\}$
- If $|q| > (m_R-1)d_arphi$, then q has outdegree ≤ 1 in \mathcal{A}'_arphi
- If $(p, a, q) \in E \setminus E'$ and no path of length $\leq s m_R$ connects 1 to p or q in \mathcal{A}_{φ} , then there exists a path $q \xrightarrow{a^{-1}} p$ in \mathcal{A}'_{φ}

Theorem

Let φ be an endomorphism of a f.g. SC group. Then Fix φ is f.g.

Corollary

Let φ be an endomorphism of a f.g. free product of a free monoid and cyclic groups. Then Fix φ is rational.

• Given $\varphi \in \operatorname{End} A^*$, write m = |A| and define $A_2 = \{a \in A \mid a\varphi^n = 1 \text{ for some } n \ge 1\}$ $A_3 = A \setminus A_2$ $A_4 = \{a \in A_3 \mid a\varphi \in A_2^* a A_2^*\}$

э

• Given $\varphi \in \text{End}A^*$, write m = |A| and define

 $A_2 = \{a \in A \mid a\varphi^n = 1 \text{ for some } n \ge 1\}$ $A_3 = A \setminus A_2$ $A_4 = \{a \in A_3 \mid a\varphi \in A_2^* a A_2^*\}$

- Let Γ be the directed graph with vertex set A and edges $a \longrightarrow b$ whenever b occurs in $a\varphi$
- Then $a \in A_2$ iff there exists no infinite path $a \longrightarrow \cdots$ in Γ
- This is equivalent to say there is no path a→··· in Γ of length m, hence

$$A_2 = \{ a \in A \mid a\varphi^m = 1 \}$$

• Given $\varphi \in \text{End}A^*$, write m = |A| and define

 $A_2 = \{a \in A \mid a\varphi^n = 1 \text{ for some } n \ge 1\}$ $A_3 = A \setminus A_2$ $A_4 = \{a \in A_3 \mid a\varphi \in A_2^* a A_2^*\}$

- Let Γ be the directed graph with vertex set A and edges $a \longrightarrow b$ whenever b occurs in $a\varphi$
- Then $a \in A_2$ iff there exists no infinite path $a \longrightarrow \cdots$ in Γ
- This is equivalent to say there is no path a→··· in Γ of length m, hence

$$A_2 = \{ a \in A \mid a\varphi^m = 1 \}$$

• Therefore A_2 is effectively computable, and so are A_3 and A_4

Introduction Rewriting systems Automata Finiteness Groups Endomorphisms Computability 0000 Free monoid endomorphisms

Given $B \subseteq A$, we denote by $\theta_{A,B}$ the retraction endomorphism $A^* \to B^*$ defined by

$$a heta = \left\{egin{array}{cc} a & ext{if} \ a \in B \ 1 & ext{otherwise} \end{array}
ight.$$

イロト イポト イヨト イヨト

æ

Introduction Rewriting systems Automata Finiteness Groups Endomorphisms Computability 0000 Free monoid endomorphisms

Given $B \subseteq A$, we denote by $\theta_{A,B}$ the retraction endomorphism $A^* \to B^*$ defined by

$$\mathsf{a} heta = \left\{egin{array}{cc} \mathsf{a} & ext{if} \; \mathsf{a} \in \mathsf{B} \ 1 & ext{otherwise} \end{array}
ight.$$

Lemma Let $\varphi \in \operatorname{End} A^*$ and m = |A|. Then $\operatorname{Fix} \varphi = (A_4 \varphi^m)^*$.

(日) (四) (三) (三) (三)

Introduction Rewriting systems Automata Finiteness Groups Endomorphisms Computability ooo oooo oooo oooo oooo oooo oooo oooo Free monoid endomorphisms oooo oooo oooo oooo oooo oooo

Given $B \subseteq A$, we denote by $\theta_{A,B}$ the retraction endomorphism $A^* \to B^*$ defined by

$$a heta = \left\{egin{array}{cc} a & ext{if} \ a \in B \ 1 & ext{otherwise} \end{array}
ight.$$

Lemma Let $\varphi \in \text{End}A^*$ and m = |A|. Then $\text{Fix}\varphi = (A_4\varphi^m)^*$.

- Note that, given an endomorphism φ of $A^* * G$, where G is a group, the restriction $\varphi|_G$ is an endomorphism of G
- Clearly, G is the (unique) maximal subgroup of $A^* * G$

Theorem

Let $M = A_0^* * G$ be f.g., where G is an SC group. Let $\varphi \in EndM$ be such that the equation

$x = v(x\varphi|_G)w \quad (x \in G)$

has an effectively constructible rational solution set for all $v, w \in G$. Then Fix φ is an effectively constructible rational submonoid of M.

イロト 不得下 イヨト イヨト

Theorem

Let $M = A_0^* * G$ be f.g., where G is an SC group. Let $\varphi \in EndM$ be such that the equation

 $x = v(x\varphi|_G)w \quad (x \in G)$

has an effectively constructible rational solution set for all $v, w \in G$. Then Fix φ is an effectively constructible rational submonoid of M.

Corollary

Let $M = A_0^* * G$ be f.g., where G is a free group. Let $\varphi \in \text{End}M$ be such that $\varphi|_G$ is an automorphism. Then Fix φ is an effectively constructible rational submonoid of M.

э

• This result generalizes Maslakova's Theorem (2003): if φ is a free group automorphism, then Fix φ is an effectively constructible f.g. subgroup

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Introduction	Rewriting systems	Automata	Finiteness 0000000	Groups	Endomorphisms 0000	Computability ○○○●
Final notes						

- This result generalizes Maslakova's Theorem (2003): if φ is a free group automorphism, then Fix φ is an effectively constructible f.g. subgroup
- If M is a f.g. free product of a free monoid and a free group, then $Fix\varphi$ is a rational submonoid but not necessarily a f.g. submonoid of M
- This contrasts the case of both free monoids and free groups, when ${\rm Fix}\varphi$ is f.g.

・ 同 ト ・ ヨ ト ・ ヨ ト