Problema 1

- 1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que $a^3 = b^2 = e$ e $ba = a^2b$.
 - (a) Indique, justificando, se:
 - i. a é sempre igual a b;
 - ii. a nunca é igual a b;
 - iii. a pode ser ou não igual a b, consoante o grupo G.
 - (b) Determine a ordem de G e construa a sua tabela.
- 2. Considere agora o grupo H composto pelas simetrias do plano em relação às rectas que passam pela origem e fazem um ângulo múltiplo de 60° com o eixo dos xx e pelas rotações de ângulo múltiplo de 120° em torno da origem.

Averigúe se G e H são isomorfos.

Resolução

- 1. (a) Se fosse a=b ter-se-ia $a^3=a^2$. Multiplicando ambos os membros por a^{-2} viria a=e contradizendo o enunciado. Logo a e b são distintos (ii).
 - (b) Devido à relação $ba=a^2b$, qualquer produto de a's, b's e dos seus inversos pode ser escrito na forma a^nb^m , com $n,m\in\mathbb{Z}$. Como a tem ordem 3 e b tem ordem 2, temos os elementos $e,\ a,\ a^2,\ b,\ ab,\ a^2b$ e a tabela de G é dada por

2. O grupo H contém 3 simetrias: em relação ao eixo dos xx, e das duas rectas que fazem um ângulo de 60° com este eixo. Contém ainda 3 rotações: a identidade, e as rotações de 120° e 240° em torno da origem. Assim H é isomorfo ao grupo D_3 que é gerado por dois elementos r e s tais que $r^3 = e$, $s^2 = e$ e $sr = r^2s$. Ora, como em G se tem $a^3 = e$, $b^2 = e$ e $ba = a^2b$, então existe um isomorfismo $\Phi: G \to H$ definido por $\Phi(a) = r$ e $\Phi(b) = s$. Este é

$$\begin{array}{ccccc} \Phi: & G & \rightarrow & H \\ & e & \mapsto & e \\ & a & \mapsto & r \\ & a^2 & \mapsto & r^2 \\ & b & \mapsto & s \\ & ab & \mapsto & rs \\ & a^2b & \mapsto & r^2s \end{array}$$

Problema 2

Sejam α e β elementos de $S_n - \{\epsilon\}$ e r um número natural. Determine condições suficientes para que

- (i) $\{\epsilon, \alpha, \beta\}$ seja subgrupo de S_n ;
- (ii) $\alpha \circ \beta = \beta \circ \alpha$;
- (iii) α^r seja um ciclo se α for um ciclo;

e averigúe se são também necessárias.

Resolução

- (i) Para que $\{\epsilon, \alpha, \beta\}$ seja subgrupo de S_n é necessário e suficiente que α (e $\beta = \alpha^{-1}$) seja um elemento de ordem três. Portanto S_n tem um tal subgrupo se e só se $n \geq 3$ e, nesse caso, α é qualquer ciclo $(a \ b \ c)$ de comprimento três.
- (ii) $\alpha \circ \beta = \beta \circ \alpha$ se e só se $\alpha = \beta \circ \alpha \circ \beta^{-1}$ o que quer dizer que β é uma das o permutações que se obtêm (Veja Notas, 14.1.3)
 - decompondo α no produto de ciclos disjuntos, por ordem crescente dos seus comprimentos, sem omitir os ciclos de comprimento um,
 - escrevendo α debaixo de α
 - e fazendo corresponder a cada elemento de α o elemento que está na vertical por baixo.
- (iii) Se α é um ciclo de comprimento n, α^r é um ciclo se e só se m.d.c.(r,n)=1: Se $\sigma=(1\ 2\cdots n)$ então

$$\sigma^r = (1 \ 1 +_n r \ 1 +_n 2r \ \cdots 1 +_n (k-1)r) \cdots,$$

sendo k o menor inteiro tal que $1 +_n kr = 1$, o que é equivalente a ter $kr \equiv 0$ módulo n.

Como $kr \equiv 0$ se e só se n|kr, isso implica que n|k se m.d.c.(n,r) = 1. Nesse caso, e o menor valor de k é n e σ^r é um ciclo de comprimento n.

Reciprocamente, suponhamos que m.d.c.(n,r) = d > 1. Então

$$\sigma^r = (1 \ 1 +_n r \ 1 +_n 2r \ \cdots 1 +_n (n'-1)r)(\cdots,$$

sendo n' = n/d o que significa que σ^r não é um ciclo mas um produto de ciclos disjuntos.

Problema 3

Considere o grupo
$$G = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} : ae - bd \neq 0 \right\}$$
 munido da operação
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \diamondsuit \begin{bmatrix} g & h & i \\ j & k & l \end{bmatrix} = \begin{bmatrix} ag + bj & ah + bk & c + i \\ dg + ej & dh + ek & f + l \end{bmatrix}.$$

- 1. Mostre que G tem uma estrutura de grupo produto com 3 factores.
- 2. Considere agora os subgrupos H e K de G definidos por

$$\begin{split} H = \left\langle \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 0 \end{array} \right], \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right] \right\rangle \\ K = \left\{ \left[\begin{array}{ccc} 1 & 0 & m \\ 0 & 1 & n \end{array} \right] : m, n \in 2\mathbb{Z} \right\}. \end{split}$$

Mostre que K é um subgrupo de H e determine [H:K].

Resolução

1. Seja $H = (GL_2(\mathbb{R}), .) \times (\mathbb{R}, +) \times (\mathbb{R}, +)$ e consideremos a aplicação

$$\Phi: \qquad G \qquad \to \qquad H \\ \left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array} \right] \quad \mapsto \quad \left(\left[\begin{array}{ccc} a & b \\ d & e \end{array} \right], c, f \right).$$

- Φ é homomorfismo, uma vez que $\Phi\left(\left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array}\right] \diamondsuit \left[\begin{array}{ccc} g & h & i \\ j & k & l \end{array}\right]\right) =$ $= \Phi\left(\left[\begin{array}{ccc} ag + bj & ah + bk & c + i \\ dg + ej & dh + ek & f + l \end{array}\right]\right) = \left(\left[\begin{array}{ccc} ag + bj & ah + bk \\ dg + ej & dh + ek \end{array}\right], c + i, f + l\right) =$ $= \left(\left[\begin{array}{ccc} a & b \\ d & e \end{array}\right], c, f\right) \left(\left[\begin{array}{ccc} g & h \\ j & k \end{array}\right], i, l\right) = \Phi\left(\left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array}\right]\right) \Phi\left(\left[\begin{array}{ccc} g & h & i \\ j & k & l \end{array}\right]\right),$ para todos os pares de elementos de G.
- \bullet É imediata a verificação de que Φ é bijectiva, logo Φ é um isomorfismo.

2. Sejam
$$a = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$
 e $b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Como $ab = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} = ba$, então

$$H = \langle a, b \rangle = \{a^n b^m : n, m \in \mathbb{Z}\} = \left\{ \begin{bmatrix} 1 & 0 & n \\ 0 & (-1)^n & m \end{bmatrix} : n, m \in \mathbb{Z} \right\} \supset K.$$

Para determinar [H:K] vamos averiguar quando é que duas classes laterais esquerdas de K coincidem. Tem-se

$$\begin{bmatrix} 1 & 0 & n \\ 0 & (-1)^n & m \end{bmatrix} K = \begin{bmatrix} 1 & 0 & p \\ 0 & (-1)^p & q \end{bmatrix} K \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & n \\ 0 & (-1)^n & m \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & p \\ 0 & (-1)^p & q \end{bmatrix} \in K \Leftrightarrow$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & p-n \\ 0 & (-1)^{p-n} & q-m \end{bmatrix} \in K \Leftrightarrow p-n \in 2\mathbb{Z} \land q-m \in 2\mathbb{Z}.$$

Logo há quatro classes laterais correspondentes às paridades das entradas da 3 coluna dos elementos de H. Explicitamente, as 4 classes laterais são K, $\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} K$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} K$ e $\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} K$.

Problema 4

Determine

- (i) todos os subgrupos do grupo \mathbb{Z}_n ;
- (ii) quantos homomorfismos existem de \mathbb{Z}_n em \mathbb{Z}_m ;
- (iii) condições de existência de um homomorfismo sobrejectivo de \mathbb{Z}_n em \mathbb{Z}_m .

Resolução

- 1. \mathbb{Z}_n tem um e um só subgrupo de ordem m para cada factor m de n:
 - Todo o subgrupo H do grupo cíclico \mathbb{Z}_n (de qualquer grupo cíclico) é cíclico:
 - $H = \{0\}$ é cíclico;
 - se $H \neq \{0\}$ e m é o menor inteiro positivo que pertence a H então $H = \langle m \rangle$: se $s \in H$ e s = mq + r, com $0 \le r < m$, como $r = s mq \in H$, pela minimabilidade de m, r = 0.

- Todo o divisor próprio de n gera um subgrupo próprio de \mathbb{Z}_n : se n = mk então k tem ordem m e, consequentemente, gera um subgrupo de ordem m.
- Existe um e um só subgrupo de ordem m para cada factor m de n que é o subgrupo gerado por n/m.
- 2. Existem d homomorfismos de \mathbb{Z}_n em \mathbb{Z}_m sendo d o máximo divisor comum de n e m:

Se

$$f: \mathbb{Z}_n \to \mathbb{Z}_m$$

e f(1) = a então $0 = f(n \cdot 1) = nf(1) = na$, portanto $na \equiv 0 \pmod{m}$. Assim, se na = mk vem que

$$a = \frac{mk}{n} = \frac{m'dk}{n'd} = \frac{m'k}{n'}$$

sendo m.d.c.(m', n') = 1. Como a é um inteiro, n'|k. Temos então que k = sn' com $s = 0, 1, \dots, (d-1)$, a que correspondem d homomorfismos distintos.

3. Existe um homomorfismo sobrejectivo de \mathbb{Z}_n em \mathbb{Z}_m se e só se m divide n: Se $f: \mathbb{Z}_n \to \mathbb{Z}_m$ é homomorfismo sobrejectivo então, pelo primeiro Teorema de Isomorfismo, $\mathbb{Z}_m \equiv \mathbb{Z}_n/N$, sendo N o núcleo de f. Logo

$$|\mathbb{Z}_m| = \frac{|\mathbb{Z}_n|}{|N|},$$

portanto m divide n.

Reciprocamente, se n = mk então N = < m > é o subgrupo de \mathbb{Z}_n de ordem k e a projecção canónica $p: \mathbb{Z}_n \to \mathbb{Z}_n/N$ é um homomorfismo sobrejectivo. Como \mathbb{Z}_n/N é cíclico e tem ordem m ele é isomorfo a \mathbb{Z}_m .

Problema 5

Determine todos os subgrupos-p de Sylow normais em G, onde

- 1. $G = \mathbb{Z}_n$
- $2. G = D_n$
- 3. $G = S_n$

Resolução

Lema: Seja S um subgrupo-p de Sylow de um grupo finito G. Então S é normal sse contém todos os elementos cuja ordem é uma potência de p.

Prova.

- (⇒) Seja $g \in G$ com ordem potência de p. Então a ordem do elemento $gS \in G/S$ também é uma potência de p. Mas G/S é um grupo cuja ordem é prima com p, logo gS = S, ou seja, $g \in S$.
- (⇐) Seja S' um subgrupo-p de Sylow de G. As ordens dos elementos de S' são potências de p, logo $S' \subseteq S$, donde S' = S. Portanto S é normal em G.

Para qualquer grupo G, se p não divide |G|, tem-se que o único subgrupo-p de Sylow de G é $S = \{e\}$, logo $S \triangleleft G$. Resta assim analisar os casos em que p divide |G|.

- 1. Como $G = \mathbb{Z}_n$ é abeliano, todos os seus subgrupos são normais.
- 2. Seja $n = 2^m k$, com $m \ge 0$ e k impar.
 - Seja S um subgrupo-2 de Sylow de D_n . Pelo lema, se S é normal contém todas as reflexões. O produto de duas reflexões distintas é uma rotação, logo S contém mais de metade dos elementos de D_n e portanto $S = D_n$. Conclui-se que S é normal sse n é uma potência de 2.
 - Seja p um primo que divide k. Um subgrupo-p de Sylow S de D_n é um subconjunto do subgrupo cíclico das rotações. Assim, S é único e portanto normal.

Portanto um subgrupo-p de Sylow é normal em D_n sse $p \neq 2$ ou n é uma potência de p = 2.

- 3. Seja S um subgrupo-2 de Sylow de S_n . Pelo lema, se S é normal contém todas as transposições. Logo $S = S_n$. Ora S_n tem ordem potência de 2 sse n = 2, logo $S \triangleleft S_n$ sse n = 2.
 - Seja S um subgrupo-3 de Sylow de S_n . Pelo lema, se S é normal contém todos os ciclos de ordem 3. Se $n \geq 4$, S contém o produto (123)(124) = (13)(24) que tem ordem 2, absurdo. Para n = 3, S tem metade dos elementos de S_n , logo $S \triangleleft S_3$.
 - Seja S um subgrupo-p de Sylow de S_n , com $p \geq 4$. Pelo lema, se S é normal contém todos os ciclos de ordem p. Ora $(p(p-1)(p-2)\cdots 4312))(1234\cdots (p-1)p) = (1p2) \in S$ tem ordem 3, absurdo.

Portanto um subgrupo-p de Sylow é normal em S_n sse p=n=2 ou p=n=3 ou p>n.