Álgebra I

Folha 1 : Simetrias, Axiomas de Grupo, Congruências e Grupos Diedrais

- 1. Encontre todas as simetrias rotacionais de um cubo.
- 2. (a) Encontre todas as simetrias no plano (rotações e reflexões) de um pentágono regular.
 - (b) Construa a tabela para o seu grupo grupo de simetrias.
 - (c) O grupo de simetrias do pentágono regular é comutativo?
- 3. Averigúe se os seguintes conjuntos têm estrutura de grupo para as operações indicadas:
 - (a) $(\mathbb{Q} \{0\}, .)$
 - (b) $(\mathbb{Q}, .)$
 - (c) $(\mathbb{Q}, +)$
 - (d) $(\mathbb{C},+)$
 - (e) (\mathbb{R}, \diamond) com $x \diamond y = xy + 1, \forall x, y \in \mathbb{R}$
 - (f) O conjunto das potências inteiras de 3 com a multiplicação
 - (g) $(\mathbb{R}, *)$ com $x * y = x + y xy, \forall x, y \in \mathbb{R}$
 - (h) $(\mathbb{R} \{0\} \times \mathbb{R}, \odot)$ com $(x, y) \odot (x', y') = (xx', y'x^{-1} + x'y), \forall y, y' \in \mathbb{R}, \forall x, x' \in \mathbb{R} \{0\}$
 - (i) O conjunto das matrizes reais quadradas de ordem n com a multiplicação de matrizes. E com a adição?
 - (j) O conjunto das soluções complexas da equação $x^n 1 = 0$, para a multiplicação, sendo n um número natural fixo.
 - (k) O conjunto das soluções reais da equação da alínea anterior para a mesma operação.
 - (l) O conjunto das aplicações $\alpha_{a,b}: \mathbb{R} \to \mathbb{R}, a \in \mathbb{R} \{0\}, b \in \mathbb{R}$, definidas por $\alpha_{a,b}(x) = ax + b$, para a composição.
 - (m) O conjunto $A = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ para a multiplicação de reais. E para a adição?
 - (n) Os números inteiros pares constituem um grupo para a adição? E os ímpares?
- 4. (a) Mostre que o conjunto de todas as rotações do plano em torno de um ponto fixo P forma um grupo para a composição de funções.
 - (b) Será que o conjunto de todas as reflexões em torno de rectas que passam por P também forma um grupo para a composição de funções?
- 5. Sejam $a, b \in c$ elementos de um grupo (G, .). Prove que:
 - (a) $(a^{-1})^{-1} = a$;
 - (b) $(ab)^{-1} = b^{-1}a^{-1}$;

- (c) $ab = a \Longrightarrow b = e$, sendo e o elemento neutro de G.
- 6. Mostre que (G,*) é grupo se e só se verifica A_1, A_{2e} e A_{3e} (axiomas esquerdos):
 - A_1) Para todo $a, b, c \in G, (a * b) * c = a * (b * c)$
 - A_{2e}) Existe um elemento $e \in G$ tal que, para todo $a \in G$, e * a = a
 - A_{3e}) Para cada $a \in G$ existe um elemento a' tal que a' * a = e
- 7. Sejam x e y elementos de um grupo (G, .).
 - (a) Prove que se $x^2 = y^2 = (xy)^2 = e$, $x \in y$ comutam.
 - (b) Seja $n \in \mathbb{N}$. Prove que $(x^{-1}yx)^n = x^{-1}yx$ se e só se $y^n = y$.
 - (c) É verdade que $x^n x^m = x^{n+m}$, para $n, m \in \mathbb{N}$? E $(xy)^n = x^n y^n$, para $n \in \mathbb{N}$? E se o grupo for comutativo?
- 8. Prove que se G é um grupo tal que $\forall a \in G \ a^2 = e$, então G é abeliano.
- 9. Seja G um grupo. Prove que as proposições seguintes são equivalentes.
 - (a) G é abeliano.
 - (b) $\forall a, b \in G \ aba^{-1}b^{-1} = e$.
 - (c) $\forall a, b \in G \ (ab)^2 = a^2b^2$.
- 10. Sejam a e b elementos de um grupo G. Mostre que a equação $xax = b^2a^{-1}$ tem, pelo menos, uma solução em G.
- 11. $(\mathbb{Z}_n, +_n)$ é um grupo abeliano?
- 12. Verifique que cada um dos conjuntos

$$\{1, 3, 7, 9, 11, 13, 17, 19\}, \{1, 3, 7, 9\}, \{1, 9, 13, 17\}$$

forma um grupo para a multiplicação módulo 20.

- 13. Quais dos seguintes conjuntos forma um grupo para a multiplicação módulo 14?
 - (a) $\{1, 3, 5\}$
 - (b) $\{1, 3, 5, 7\}$
 - (c) $\{1, 9, 11, 13\}$
- 14. Mostre que se um subconjunto de $\{1, 2, ..., 21\}$ contém um número par, ou contém o número 11, então não pode formar um grupo para a multiplicação módulo 22.
- 15. Seja p um número primo e x um inteiro que satisfaça $1 \le x \le p-1$. Mostre que nenhum x, 2x, ..., (p-1)x é um múltiplo de p. Deduza, desse facto, que existe um inteiro z tal que $1 \le z \le p-1$ e $xz \equiv 1 \pmod{p}$.
- 16. Construa a tabela multiplicativa do grupo diedral D_3 .
- 17. Quantos elementos de ordem 2 tem o grupo diedral D_4 ? E o grupo D_n ?

- 18. Quantos elementos de $(\mathbb{R}, +)$ têm ordem finita? E em $(\mathbb{C} \setminus \{0\}, \times)$?
- 19. Determine a ordem de todos os elementos de $(\mathbb{Z}_9, +_9)$.
- 20. Mostre que um grupo de ordem par tem de conter um numero ímpar de elementos de ordem 2. (Nota: Um elemento x de um grupo satisfaz $x^2 = e$ se e só se $x = x^{-1}$)
- 21. Sejam x e g dois elementos de um grupo G. Mostre que x e gxg^{-1} têm a mesma ordem. Mostre também que, para quaisquer dois elementos a, b de G, ab e ba têm a mesma ordem.

Sólidos platónicos:

 $http://mathworld.wolfram.com/PlatonicSolid.html \\ http://www.math.utah.edu/\sim alfeld/math/polyhedra/polyhedra.html \\ http://www.dartmouth.edu/\sim matc/math5.geometry/unit6/unit6.html \\$

História breve da Teoria de Grupos:

 $http://www-gap.dcs.st-and.ac.uk/{\sim} history/HistTopics/Development_group_theory.html$