Álgebra I

Folha 2 : Subgrupos, Permutações e Isomorfismos

- 23. Prove que \mathbb{Q}^+ é um subgrupo de $(\mathbb{Q} \{0\}, .)$.
- 24. Seja m um inteiro positivo e considere o conjunto $m\mathbb{Z} = \{\ldots, -2m, -m, 0, m, 2m, \ldots\}$ dos múltiplos inteiros de m. Prove que $m\mathbb{Z}$ é um subgrupo de $(\mathbb{Z}, +)$.
- 25. Se m e n forem inteiros positivos, e se m for um factor de n, mostre que \mathbb{Z}_n contém um subgrupo de ordem m. Será que \mathbb{Z}_n contém mais do que um subgrupo de ordem m?
- 26. Encontre o subgrupo de D_n gerado por r^2 e r^2s , distinguindo cuidadosamente os casos em que n é par daqueles em que é ímpar.
- 27. Sejam H um subgrupo de (G, \cdot) e $x, y \in G$. Prove que se quaisquer dois elementos de $\{x, y, xy\}$ pertencem a H, então também o terceiro pertence a H.
- 28. Desenhe uma diagonal num hexágono regular. Identifique as simetrias do hexágono que fixam essa diagonal e aquelas que enviam a diagonal nela própria. Mostre que ambos os conjuntos de simetrias são subgrupos do grupo de todas as simetrias (no plano) do hexágono.
- 29. Determine os elementos de \mathbb{Z}_{12} que geram \mathbb{Z}_{12} . Responda à mesma questão para \mathbb{Z}_5 e para \mathbb{Z}_9 e procure encontrar um resultado geral a partir dos casos anteriores.
- 30. Prove que \mathbb{Q} não é cíclico nem pode ser gerado por um número finito de elementos.
- 31. Determine o subgrupo de $(\mathbb{Q} \{0\},.)$ gerado pelo conjunto $\{\frac{1}{p}: p \text{ \'e um inteiro primo}\}.$
- 32. Seja (G, \cdot) um grupo. Prove que o conjunto $\mathcal{C} = \{x \in G : xg = gx, \forall g \in G\}$, designado por centro de G, é um subgrupo abeliano de (G, \cdot) .
- 33. Sejam (G, .) um grupo e S um subconjunto de G. Prove que o conjunto $\mathcal{N}(S) = \{g \in G : gS = Sg\}$, chamado normalizador de S, é um subgrupo de (G, \cdot) .
- 34. Sejam $A \in B$ subgrupos de um grupo (G, .).
 - (a) $A \cap B$ é um subgrupo de (G, .)?
 - (b) Mostre que $A \cup B$ não é, em geral, um subgrupo de (G, \cdot) .
 - (c) Prove que $A \cup B$ é um subgrupo de (G, \cdot) se e só se $A \subseteq B$ ou $B \subseteq A$.
- 35. Prove que o conjunto dos números pares é o menor subgrupo de $(\mathbb{Z},+)$ que contém o número 2.
- 36. Construa a tabela multiplicativa do grupo S_3 .
- 37. Mostre que as permutações de S_9 que enviam os elementos do conjunto $\{2, 5, 7\}$ em elementos desse mesmo conjunto formam um subgrupo de S_9 . Qual é a ordem desse subgrupo?

- 38. Escreva cada um dos seguintes elementos de S_8 como produto de ciclos disjuntos e como produto de transposições:
 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 3 & 1 & 8 & 5 & 7 & 6 \end{pmatrix}$
 - (c) (4568)(1245)
 - (d) (624)(253)(876)(45)
 - (e) (123)(32)

Quais destas permutações pertencem a A_8 ?

- 39. Mostre que S_n é gerado por $\{(12), (12...n)\}$
- 40. Seja H um subgrupo de S_n tal que H não está contido em A_n . Prove que exactamente metade dos elementos de H são permutações pares.
- 41. Mostre que, para n impar, $\{(123), (12...n)\}$ gera A_n e prove que, para n par, A_n é gerado por $\{(123), (23...n)\}$.
- 42. Prove que a ordem de um elemento $\alpha \in S_n$ é o menor múltiplo comum do comprimento dos ciclos obtidos quando α se escreve como produto de ciclos disjuntos.
- 43. Indique a ordem e a paridade da permutação $(1\ 2\ 3\ 4\ 5\ 6)(1\ 2\ 3\ 4)(1\ 2\ 3)$ de S_6 .
- 44. Verifique que os números 1, 2, 4, 5, 7, 8 formam um grupo para a multiplicação módulo 9 e mostre que esse grupo é isomorfo a \mathbb{Z}_6 .
- 45. Mostre que o subgrupo $\{\varepsilon, (12)(34), (13)(24), (14)(23)\}$ de A_4 é isomorfo ao grupo de simetrias no plano de um tabuleiro de xadrez.
- 46. Seja G um grupo e $g \in G$. Mostre que a função $\varphi : G \to G$ definida por $\varphi(x) = gxg^{-1}$ é um isomorfismo. Determine esse isomorfismo quando G é igual a A_4 e g é permutação (123).
- 47. H diz-se um subgrupo próprio do grupo G se H não for nem $\{e\}$ nem o grupo G. Encontre um grupo que seja isomorfo a um dos seus subgrupos próprios.
- 48. Mostre que dois grupos cíclicos da mesma ordem são isomorfos.
- 49. Prove que se G é um grupo não trivial sem subgrupos próprios, então G é isomorfo a \mathbb{Z}_p , para algum $p \in \mathbb{N}$ primo.

Cubo de Rubik:

http://members.tripod.com/~dogschool/rubikscube.html

http://www.schubart.net/rc/

http://web.usna.navy.mil/~wdj/rubik_nts.htm