Álgebra I

Folha 6 : Teorema do Isomorfismo, Teoremas de Sylow, Grupos Abelianos Finitamente Gerados

- 98. Sejam $G = (\mathbb{C} \setminus \{0\}, \times), G' = (\mathbb{R}^+, \times) \in \phi : G \to G'$ tal que $\phi(a) = |a|$
 - (a) Verifique que ϕ é um homomorfismo.
 - (b) Qual é núcleo K de ϕ ?
 - (c) G/K é isomorfo a G'?
- 99. Utilize o 1º Teorema do Isomorfismo e a função $\varphi : \mathbb{R} \to \mathbb{C}$, com $\varphi(x) = e^{2\pi i x}$, para mostrar que \mathbb{Z} é isomorfo a \mathbb{R}/\mathbb{Z} .
- 100. Determine a ordem de
 - (a) Um subgrupo-3 de Sylow de um grupo de ordem 24.
 - (b) Um subgrupo-3 de Sylow de um grupo de ordem 18.
- 101. Um grupo de ordem 24 tem um ou três subgrupos-2 de Sylow. Justifique.
- 102. Determine dois subgrupos-2 de Sylow de S_4
- 103. Prove que um subgrupo-p de Sylow de um grupo finito G é normal se e só se é o único subgrupo-p de Sylow de G.
- 104. Mostre que todo o grupo de ordem 15 tem um subgrupo normal de ordem 5.
- 105. Mostre que um grupo de ordem 126 tem de conter um subgrupo normal de ordem 7.
- 106. Sejam p e q números primos. Mostre que se p não for congruente com 1 módulo q então todo o grupo de ordem pq é cíclico.
- 107. Averigue se são verdadeiras as seguintes afirmações:
 - (a) $\mathbb{Z}_3 \times \mathbb{Z}_4$ é isomorfo a \mathbb{Z}_{12}
 - (b) $\mathbb{Z}_3 \times \mathbb{Z}_6$ é isomorfo a \mathbb{Z}_{18}
 - (c) $\mathbb{Z}_6 \times \mathbb{Z}_{10}$ é isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{10}$ e a $\mathbb{Z}_2 \times \mathbb{Z}_{30}$
- 108. Encontre os coeficientes de torsão dos seguintes grupos:
 - (a) $\mathbb{Z}_{10} \times \mathbb{Z}_{15} \times \mathbb{Z}_{20}$
 - (b) $\mathbb{Z}_9 \times \mathbb{Z}_{14} \times \mathbb{Z}_6 \times \mathbb{Z}_{16}$
 - (c) $\mathbb{Z}_{28} \times \mathbb{Z}_{42}$
- 109. Seja G um grupo cíclico de ordem 24. Determine todos os pares de subgrupos H e K de G tais que $G\cong H\times K$.

- 110. Indique o número de grupos abelianos, não isomorfos, com ordem 45.
- 111. Prove que se \mathbb{Z}^s é isomorfo a \mathbb{Z}^t então s=t.
- 112. Seja G um grupo abeliano de ordem 100. Mostre que G tem de conter um elemento de ordem 10. Quais são os coeficientes de torsão de G se nenhum elemento de G tiver ordem maior do que 10?
- 113. Prove que um subgrupo finitamente gerado (não trivial) de $\mathbb{R} \{0\}$ tem de ser isomorfo a \mathbb{Z}_2 ou \mathbb{Z}^s ou $\mathbb{Z}_2 \times \mathbb{Z}^s$, para algum inteiro positivo s.