

### Quantum physics as it is practised in the lab

# WHY CATEGORIES?

A , B , C ,  $\ldots$ 

• e.g. electron, atom, n qubits, classical data, ...

A , B , C ,  $\ldots$ 

• e.g. electron, atom, n qubits, classical data, ...

**Operations/experiments on systems:** 

 $A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \dots$ 

• e.g. preparation, acting force field, measurement, ...

 $A, B, C, \dots$ 

• e.g. electron, atom, n qubits, classical data, ...

**Operations/experiments on systems:** 

 $A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \dots$ 

• e.g. preparation, acting force field, measurement, ...

**Sequential composition of operations:** 

 $A \xrightarrow{h \circ g} C := A \xrightarrow{g} B \xrightarrow{h} C \qquad A \xrightarrow{1_A} A$ 

 $A, B, C, \dots$ 

 $\bullet$  e.g. electron, atom, n qubits, classical data, ...

**Operations/experiments on systems:** 

 $A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \dots$ 

• e.g. preparation, acting force field, measurement, ...

Sequential composition of operations:  $A \xrightarrow{h \circ g} C \xrightarrow{} = A \xrightarrow{g} B \xrightarrow{h} C \qquad A \xrightarrow{1_A} A$ 

**Multiplicity of systems/operations:** 

 $A \otimes B \qquad \qquad A \otimes C \xrightarrow{f \otimes g} B \otimes D$ 

#### **Bifunctoriality** $\equiv$ **independence** of basic operations



#### **Bifunctoriality** $\equiv$ **independence** of basic operations



#### $\Rightarrow$ Compatibility with relativity

#### Symmetry $\equiv$ re-arrange systems & operations



Symmetry  $\equiv$  re-arrange systems & operations



... re-associate, introduce/discard systems & operations

PRACTICING PHYSICS

Physical System

**Physical Operation** 

PROGRAMMING

Data Types

Programs

LOGIC & PROOF THEORY Propositions Proofs

### **NOT** categorifying the mathematical models of QM

### **NOT** categorifying the mathematical models of QM

**NOT** speculating about a grand unificational theory

### **NOT** categorifying the mathematical models of QM

**NOT** speculating about a grand unificational theory

Model interaction of the scientist with his subject

**NOT** categorifying the mathematical models of QM

**NOT** speculating about a grand unificational theory

Model interaction of the scientist with his subject

The particular capabilities of doing so  $\equiv$  structure

**NOT** categorifying the mathematical models of QM

**NOT** speculating about a grand unificational theory

Model interaction of the scientist with his subject

The particular capabilities of doing so  $\equiv$  structure

- Quantum structure: non-local correlations
- Classical structure: ability to clone/delete

**Distinct types of systems** 

**Distinct types of systems** 

**Two-dimensional compositionality** 

**Distinct types of systems** 

**Two-dimensional compositionality** 

Full comprehension w.r.t. classical data flow

**Distinct types of systems** 

**Two-dimensional compositionality** 

**Full comprehension** w.r.t. classical data flow

**Radical increase of degrees of axiomatic freedom** 

[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic.)

[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic.)

[Birkhoff & von Neumann 1936] "The LOGIC of Quantum Mechanics", *Annals of Mathematics*.

[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic.)

[Birkhoff & von Neumann 1936] "The LOGIC of Quantum Mechanics", *Annals of Mathematics*.

Several quantum logic programmes emerged, ...

Birkhoff-von Neumann paradigm:

| $\frac{\text{Quantum logic}}{\text{Classical logic}}$ |  | <b>NO</b> distributivity |  |
|-------------------------------------------------------|--|--------------------------|--|
|                                                       |  | distributivity           |  |

Birkhoff-von Neumann paradigm:

 $\frac{Quantum \ logic}{Classical \ logic} \ \simeq \ \frac{NO \ deduction}{deduction}$ 

Birkhoff-von Neumann paradigm:

 $\frac{\text{Quantum logic}}{\text{Classical logic}} \simeq \frac{\text{NO deduction}}{\text{deduction}}$ 

We are solving:



| $ \psi angle$ | $\langle \phi  $ | $\langle \phi   \psi  angle$ | $ \psi angle\langle\psi $ |
|---------------|------------------|------------------------------|---------------------------|
| ket           | bra              | bra-ket                      | projector                 |

| $ \psi angle$ | $\langle \phi  $ | $\langle \phi   \psi  angle$ | $ \psi angle\langle\psi $ |
|---------------|------------------|------------------------------|---------------------------|
| ket           | bra              | bra-ket                      | projector                 |

Physicist's desire for pictures: Feynman, Penrose, ...

| $ \psi angle$ | $\langle \phi  $ | $\langle \phi   \psi  angle$ | $ \psi angle\langle\psi $ |
|---------------|------------------|------------------------------|---------------------------|
| ket           | bra              | bra-ket                      | projector                 |

Physicist's desire for pictures: Feynman, Penrose, ...

graphical language for  $\otimes$ -categories:  $\otimes \sim horizontal \circ \sim vertical$ 

| $ \psi angle$ | $\langle \phi  $ | $\langle \phi   \psi  angle$ | $ \psi angle\langle\psi $ |
|---------------|------------------|------------------------------|---------------------------|
| ket           | bra              | bra-ket                      | projector                 |

Physicist's desire for pictures: Feynman, Penrose, ...

graphical language for  $\otimes$ -categories: $\otimes \sim horizontal \quad \circ \sim vertical$ provable from categorical axioms $\iff$ derivable in graphical language

| $ \psi angle$ | $\langle \phi  $ | $\langle \phi   \psi  angle$ | $ \psi angle\langle\psi $ |
|---------------|------------------|------------------------------|---------------------------|
| ket           | bra              | bra-ket                      | projector                 |

Physicist's desire for pictures: Feynman, Penrose, ...

graphical language for  $\otimes$ -categories:  $\otimes \sim horizontal \circ \sim vertical$ 

**Dirac notation in two-dimensions** 

# **Categorical Quantum Axiomatics**

## **BACKGROUND LANGUAGE**

Penrose, Freyd-Yetter, Joyal-Street, Turaev, ...



A



 $f \qquad 1_A \qquad g\circ f \qquad f\otimes g \qquad (f\otimes g)\circ h$ 























 $|\rangle$ 







< |







# $\langle | \rangle$









# **Example model**

**Hilbert spaces** 

Linear maps

**Composition of linear maps** 

Tensor product of Hilbert spaces and linear maps Adjoint of linear maps

# **Example model**

**Hilbert spaces** 

Linear maps

**Composition of linear maps** 

**Tensor product of Hilbert spaces and linear maps** 

**Adjoint of linear maps** 

#### **Expressiveness**

unitary, isometry, positivity, self-adjoint, projector

# **QUANTUM STRUCTURE**

Abramsky-Coecke (2004) IEEE-LiCS

Kelly-Laplaza (1980) Coherence for compact closed categories. Selinger (2007) †-Compact categories and CPMs.

#### Natural diagonal?

$$\{\Delta_A: A \to A \otimes A\}_A$$



#### **Cloning**?

$$\{\Delta_A: A \to A \otimes A\}_A$$



**No-cloning of quantum states** 

$$\{\Delta_{\mathcal{H}} : |i\rangle \mapsto |i\rangle \otimes |i\rangle\}_{\mathcal{H}}$$



**No-cloning of quantum states** 

$$\{\Delta_{\mathcal{H}} : |i\rangle \mapsto |i\rangle \otimes |i\rangle\}_{\mathcal{H}}$$



 $|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle \neq (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)$ Bell-states cause trouble! No-cloning in  $(\mathbf{Rel}, \times)$ 

$$\{\Delta_X : x \mapsto (x, x)\}_X$$

 $\begin{array}{c} \{*\} & \xrightarrow{\{(*,0),(*,1)\}} & \{0,1\} \\ & \downarrow \\ \{(*,(*,*))\} & \text{NO! } \{(0,(0,0)),(1,(1,1))\} \\ & \downarrow \\ \{*\} \times \{*\} \xrightarrow{\{*\}} & \xrightarrow{\{(*,0),(*,1)\} \times \{(*,0),(*,1)\}} \{0,1\} \times \{0,1\} \end{array}$ 

 $\{(0,0),(1,1)\} \neq \{0,1\} \times \{0,1\}$ 

#### A pair

$$(A\,,\eta:\mathbf{I}\to A\otimes A)$$

such that:















#### Another contravariant involution



#### Another covariant involution



$$f_* = (f^{\dagger})^* = (f^*)^{\dagger}$$











# $f^* \sim *$ -autonomy with $(A \otimes B)^* \simeq A^* \otimes B^*$



# $f^* \sim Max$ Kelly's compact closure









In Hilb:  $f^* \sim$  transposed &  $f_* \sim$  conjugated

# "Sliding" boxes



### "Sliding" boxes



# $f = f^* = f$







# **Bipartite projector**



# **Bipartite projector**



# **Bipartite state**



# **Bipartite costate**



### **Bipartite (co)states & closedness**











## $\Rightarrow$ Quantum teleportation

#### The corresponding TEXTBOOK description (only!)

Alice has an 'unknown' qubit  $|\phi\rangle$  and wants to send it to Bob. They have the ability to communicate classical bits, and they share an entangled pair in the EPR-state, that is  $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ , which Alice produced by first applying a Hadamard-gate  $\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1-1\end{pmatrix}$  to the first qubit of a qubit pair in the ground state  $|00\rangle$ , and by then applying a CNOT-gate, that is  $\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}$ , then she sends the first qubit of the pair to Bob. To

teleport her qubit, Alice first performs a bipartite measurement on the unknown qubit and her half of the entangled pair in the Bell-base, that is

$$\{|0x\rangle + (-1)^z \mid 1(1-x)\rangle \mid x, z \in \{0,1\}\},\$$

where we denote the four possible outcomes of the measurement by xz. Then she sends the 2-bit outcome xz to Bob using the classical channel. Then, if x = 1, Bob performs the unitary operation  $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$  on its half of the shared entangled pair, and he also performs a unitary operation  $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0-1 \end{pmatrix}$  on it if z = 1. Now Bob's half of the initially entangled pair is in state  $|\phi\rangle$ .









## $\Rightarrow$ Entanglement swapping

## **Classical data flow?**



## **Classical data flow?**



# **CLASSICAL STRUCTURE**

#### Coecke-Pavlovic (2006) quant-ph/0608035v1

Carboni-Walters (1986) Cartesian bicategories I.

quantum data cannot be cloned nor deleted quantum data cannot be cloned nor deleted

classical data CAN be cloned and deleted NON-FEATURE: quantum data cannot be cloned nor deleted

FEATURE: classical data CAN be cloned and deleted NON-FEATURE: quantum data cannot be cloned nor deleted

FEATURE: classical data CAN be cloned and deleted

**Classical data comes with cloning and deleting:** 

$$(X, \delta: X \to X \otimes X, \epsilon: X \to \mathbf{I})$$

NON-FEATURE: quantum data cannot be cloned nor deleted

FEATURE: classical data CAN be cloned and deleted

**Classical data comes with cloning and deleting:** 



#### **Object with classical structure**

A commutative comonoid

$$(X, \delta: X \to X \otimes X, \epsilon: X \to I)$$

such that



### **Object with classical structure**







### **Object with classical structure**



"Frobenius" (Carboni-Walters 1987 *Cartesian bicategories* I)



"unitarity"







### **Classical structure** $\Rightarrow$ **quantum structure**









The only states  $|\psi
angle$  which are such that

$$\delta_{\mathcal{H}} \circ |\psi\rangle = |\psi\rangle \otimes |\psi\rangle$$

are the base vectors  $\{|i\rangle\}_i$ .



The only states  $|\psi
angle$  which are such that

$$\delta_{\mathcal{H}} \circ |\psi\rangle = |\psi\rangle \otimes |\psi\rangle$$

are the base vectors  $\{|i\rangle\}_i \Rightarrow \delta_{\mathcal{H}}$  is base capturing!

#### An element $\psi : I \to X$ is a *base vector* iff:



#### An element $\psi : I \to X$ is a *base vector* iff:

$$\checkmark = \downarrow \downarrow$$

A set of elements  $\{\psi_i : I \to X\}_i$  is *orthonormal* iff  $\langle \psi_i | \psi_j \rangle = \psi_i^{\dagger} \circ \psi_j$  is idempotent for all i, j.

An element  $\psi : I \to X$  is a *base vector* iff:

A set of elements  $\{\psi_i : I \to X\}_i$  is *orthonormal* iff  $\langle \psi_i | \psi_j \rangle = \psi_i^{\dagger} \circ \psi_j$  is idempotent for all i, j.

#### The base vectors constitute an orthonormal set:



## "What's inside the box?"

## "What's inside the box?"



#### Notational convention:



Normalisation theorem: A "connected" network build from  $\delta$ ,  $\delta^{\dagger}$ ,  $\epsilon$ ,  $\epsilon^{\dagger}$  admits a 'spider-like' normal form:



Kock, J. (2003) Frobenius algebras and 2D TQFTs. Coecke-Paquette (2006) POVMs & Naimark's thm without sums. Normalisation theorem: A "connected" network build from  $\delta$ ,  $\delta^{\dagger}$ ,  $\epsilon$ ,  $\epsilon^{\dagger}$  admits a 'spider-like' normal form:



proof ~ "fusion" of dots  $\Rightarrow$  graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs. Coecke-Paquette (2006) POVMs & Naimark's thm without sums.















#### All five axioms follow from spider-normal-form.

# **Summary: refining quantum structure**



# **Summary: refining quantum structure**



# **Summary: refining quantum structure**



 $\mathcal{M}: A \to X \otimes A$ 

 $\mathcal{M}: A \to X \otimes A$ 



## $\mathcal{M}: A \to X \otimes A$



## $\mathcal{M}: A \to X \otimes A$



 $\Rightarrow$  Quantum measurements turn out to be Eilenberg-Moore coalgebras for the comonad  $(X \otimes -) : \mathbf{C} \rightarrow \mathbf{C}$ .



 $\Rightarrow$  Quantum measurements turn out to be Eilenberg-Moore coalgebras for the comonad  $(X \otimes -) : \mathbb{C} \to \mathbb{C}$ .

 $\mathcal{M}: A \to X \otimes A$ 



 $\Rightarrow$  Quantum measurements turn out to be Eilenberg-Moore coalgebras for the comonad  $(X \otimes -) : \mathbf{C} \to \mathbf{C}$ .



 $\Rightarrow$  Quantum measurements turn out to be Eilenberg-Moore coalgebras for the comonad  $(X \otimes -) : \mathbb{C} \to \mathbb{C}$ .

## $\mathcal{M}: A \to X \otimes A$



 $\Rightarrow$  self-adjointness.



 $\Rightarrow$  self-adjointness.

# Thm. Self-adjoint Eilenberg-Moore coalgebras for $\mathcal{H} \otimes -: \operatorname{FdHilb} \to \operatorname{FdHilb}$ are exactly dim $\mathcal{H}$ -outcome quantum measurements.

# Thm. Self-adjoint Eilenberg-Moore coalgebras for $\mathcal{H}\otimes -:\mathbf{FdHilb}\to \mathbf{FdHilb}$

#### are exactly dim $\mathcal{H}$ -outcome quantum measurements.

#### $\textbf{Coalg-square} \Rightarrow$

idempotence mutual orthogonality

#### $\textbf{Coalg-triangle} \Rightarrow$

Completeness of spectrum

#### $\textbf{Self-adjointness} \Rightarrow$

Orthogonality of projectors

$$P_i^2 = P_i$$
$$P_i \circ P_{j \neq i} = \mathbf{0}$$

$$\sum_i \mathbf{P}_i = 1_{\mathcal{H}}$$

$$\frac{\mathbf{P}_{i}^{\dagger} = \mathbf{P}_{i}}{\mathbf{PROJECTOR}}$$
SPECTRUM



















## **Teleportation enabling measurement:**











## **Teleportation enabling measurement:**



abstracts  $\dim(X) \ge (\dim(A))^2$  and  $\operatorname{Tr}(U_x \circ U_y^{\dagger}) = \delta_{xy}$ .



abstracts unitarity of  $\{U_x\}_x$  i.e.  $U_x^{\dagger} \circ U_x = U_x \circ U_x^{\dagger} = 1_A$ .





# **Proof:**







# **Proof:**



# **CLASSICAL MAPS**

(Coecke-Paquette-Pavlovic 2007)

## **Cartesian structure as a limit**

**Theorem.** [Fox 1976] The category  $C_{\times}$  of commutative comonoids and corresponding morphisms of a symmetric monoidal category with the forgetful functor  $C_{\times} \rightarrow C$ , is final among all **cartesian categories** with a monoidal functor to C, mapping the cartesian product to the monoidal tensor.

- Deterministic classical states = clone-able ones
- Deterministic classical operations = clone-able ones
- $\bullet \mathbf{FdHilb}_{\times} := \mathbf{FSet}$

# **Classical genera:**



# **Classical genera:**



#### Carboni-Walters (1987) Cartesian Bicategories I.

**Proposition.** Morphisms satisfying



subject to the local partial order  $f \leq g$  iff



constitute a *bicategory of relations*  $C_r$  in the sense of Carboni-Walters (1987).<sup>‡</sup> In particular, relations are lax comonoid homomorphisms w.r.t.  $\leq$  and  $\circ_r \neq \circ$ .

<sup>&</sup>lt;sup>‡</sup> There is an issue with finiteness of comonoid structures.

# **Classical genera:**



Let  $\Omega(\mathcal{H})$  be density matrices  $\rho : \mathcal{H} \to \mathcal{H}$  with trace 1.

A completely positive map  $\delta : \Omega(\mathcal{H}) \to \Omega(\mathcal{H} \otimes \mathcal{H})$  is a **cloning operation** if for all  $\rho \in \Omega(\mathcal{H})$ :

 $\delta(\rho) = \rho \otimes \rho \,.$ 

Let  $\Omega(\mathcal{H})$  be density matrices  $\rho : \mathcal{H} \to \mathcal{H}$  with trace 1.

A completely positive map  $\delta : \Omega(\mathcal{H}) \to \Omega(\mathcal{H} \otimes \mathcal{H})$  is a **cloning operation** if for all  $\rho \in \Omega(\mathcal{H})$ :

$$\delta(\rho) = \rho \otimes \rho \,.$$

It is a broadcasting operation if for all  $\rho \in \Omega(\mathcal{H})$ :  $\operatorname{Tr}_1(\delta(\rho)) = \operatorname{Tr}_2(\delta(\rho)) = \rho$ . Existence of a cloning/broadcasting operation for restricted sets of density operators relative to a fixed base:

|                             | cloning                       | broadcasting                   |
|-----------------------------|-------------------------------|--------------------------------|
| bases vectors               | yes                           | yes                            |
| diagonal density operators  | $\rightarrow$ no $\leftarrow$ | $\rightarrow$ yes $\leftarrow$ |
| pure density operators      | no                            | no                             |
| arbitrary density operators | no                            | no                             |

### **Classical maps are broadcast-able maps**





#### What's next:

- More structural resources for quantum things.
- Quantum Computer Science.
- Real physics problems involving 'energy' etc.
- Interaction with other instances of physics.
- What is true quantumness?