Bob Coecke
University of Oxford

Quantum physics as it is practised in the lab

WHY CATEGORIES?

Kinds/types of systems:

$$
A, B, C, \ldots
$$

- e.g. electron, atom, n qubits, classical data, ...

Kinds/types of systems:

$$
A, B, C, \ldots
$$

- e.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

$$
A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \ldots
$$

- e.g. preparation, acting force field, measurement, ...

Kinds/types of systems:

$$
A, B, C, \ldots
$$

- e.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

$$
A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \ldots
$$

- e.g. preparation, acting force field, measurement, ...

Sequential composition of operations:

$$
A \xrightarrow{h \circ g} C:=A \xrightarrow{g} B \xrightarrow{h} C \quad A \xrightarrow{1_{A}} A
$$

Kinds/types of systems:

$$
A, B, C, \ldots
$$

- e.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

$$
A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \ldots
$$

- e.g. preparation, acting force field, measurement, ...

Sequential composition of operations:

$$
A \xrightarrow{h \circ g} C:=A \xrightarrow{g} B \xrightarrow{h} C \quad A \xrightarrow{1_{A}} A
$$

Multiplicity of systems/operations:

$$
A \otimes B \quad A \otimes C \xrightarrow{f \otimes g} B \otimes D
$$

Bifunctoriality \equiv independence of basic operations

Bifunctoriality \equiv independence of basic operations

\Rightarrow Compatibility with relativity

Symmetry \equiv re-arrange systems \& operations

Symmetry \equiv re-arrange systems \& operations

... re-associate, introduce/discard systems \& operations

PRACTICING PHYSICS

Physical System
Physical Operation

PROGRAMMING

Data Types
Programs

LOGIC \& PROOF THEORY
Propositions
Proofs

Practising physics in the lab = operationalism

Practising physics in the lab = operationalism

NOT categorifying the mathematical models of QM

Practising physics in the lab = operationalism

NOT categorifying the mathematical models of QM

NOT speculating about a grand unificational theory

Practising physics in the lab = operationalism

NOT categorifying the mathematical models of QM

NOT speculating about a grand unificational theory

Model interaction of the scientist with his subject

Practising physics in the lab = operationalism

NOT categorifying the mathematical models of QM

NOT speculating about a grand unificational theory

Model interaction of the scientist with his subject

The particular capabilities of doing so \equiv structure

Practising physics in the lab = operationalism

NOT categorifying the mathematical models of QM

NOT speculating about a grand unificational theory

Model interaction of the scientist with his subject

The particular capabilities of doing so \equiv structure

- Quantum structure: non-local correlations
- Classical structure: ability to clone/delete

The immediate pay-off

Distinct types of systems

The immediate pay-off

Distinct types of systems

Two-dimensional compositionality

The immediate pay-off

Distinct types of systems

Two-dimensional compositionality

Full comprehension w.r.t. classical data flow

The immediate pay-off

Distinct types of systems

Two-dimensional compositionality

Full comprehension w.r.t. classical data flow

Radical increase of degrees of axiomatic freedom
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"

[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"

[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic.)
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic.)
[Birkhoff \& von Neumann 1936] "The LOGIC of Quantum Mechanics", Annals of Mathematics.
[von Neumann 1932] Formalized quantum mechanics in "Mathematische Grundlagen der Quantenmechanik"
[von Neumann to Birkhoff 1935] "I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more." (sic.)
[Birkhoff \& von Neumann 1936] "The LOGIC of Quantum Mechanics", Annals of Mathematics.

Several quantum logic programmes emerged, ...

Birkhoff-von Neumann paradigm:

$\underline{\text { Quantum logic }} \sim \underline{\text { NO distributivity }}$ $\overline{\text { Classical logic }} \simeq \xrightarrow[\text { distributivity }]{ }$

Birkhoff-von Neumann paradigm:

$\underline{\text { Quantum logic }} \sim \underline{\text { NO deduction }}$
$\overline{\text { Classical logic }} \simeq \overline{\text { deduction }}$

Birkhoff-von Neumann paradigm:

$$
\frac{\text { Quantum logic }}{\text { Classical logic }} \simeq \frac{\text { NO deduction }}{\text { deduction }}
$$

We are solving:

$$
\frac{? ? ?}{\text { quantum theory }} \simeq \frac{\text { natural deduction }}{\text { truth tables }}
$$

Physicist use Dirac notation, not Hilbert space axioms.

$|\psi\rangle$
$\langle\phi|$
$\langle\phi \mid \psi\rangle$
$|\psi\rangle\langle\psi|$
ket
bra
bra-ket projector

Physicist use Dirac notation, not Hilbert space axioms.
$|\psi\rangle$
$\langle\phi|$
$\langle\phi \mid \psi\rangle$
$|\psi\rangle\langle\psi|$
ket
bra
bra-ket projector

Physicist's desire for pictures: Feynman, Penrose, ...

Physicist use Dirac notation, not Hilbert space axioms.
$|\psi\rangle$
$\langle\phi|$
$\langle\phi \mid \psi\rangle$
$|\psi\rangle\langle\psi|$
ket
bra
bra-ket
projector

Physicist's desire for pictures: Feynman, Penrose, ...
graphical language for \otimes-categories:

$$
\otimes \sim \text { horizontal } \circ \sim \text { vertical }
$$

Physicist use Dirac notation, not Hilbert space axioms.

$\|\psi\rangle$	$\langle\phi\|$	$\langle\phi \mid \psi\rangle$	$\|\psi\rangle\langle\psi\|$
ket	bra	bra-ket	projector

Physicist's desire for pictures: Feynman, Penrose, ...
graphical language for \otimes-categories: $\otimes \sim$ horizontal $\circ \sim$ vertical
provable from categorical axioms
derivable in graphical language

Physicist use Dirac notation, not Hilbert space axioms.
$|\psi\rangle$
$\langle\phi|$
$\langle\phi \mid \psi\rangle$
$|\psi\rangle\langle\psi|$
ket
bra
bra-ket
projector

Physicist's desire for pictures: Feynman, Penrose, ...
graphical language for \otimes-categories:

$$
\otimes \sim \text { horizontal } \circ \sim \text { vertical }
$$

Dirac notation in two-dimensions

Categorical Quantum Axiomatics

BACKGROUND LANGUAGE

Penrose, Freyd-Yetter, Joyal-Street, Turaev, ...

$$
\begin{aligned}
& f \quad 1_{A} \quad g \circ f \quad f \otimes g \quad(f \otimes g) \circ h
\end{aligned}
$$

$$
\begin{aligned}
& f \quad 1_{A} \quad g \circ f \quad f \otimes g \quad(f \otimes g) \circ h
\end{aligned}
$$

$$
\begin{aligned}
& \text { + } \boldsymbol{\square}=\boldsymbol{\square}
\end{aligned}
$$

$$
\begin{aligned}
& \psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
& \stackrel{\mid A}{V}
\end{aligned}
$$

$$
\begin{array}{ccc}
\psi: \mathrm{I} \rightarrow A & \pi: A \rightarrow \mathrm{I} & \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
{\underset{V}{A}}_{W} & {\underset{A}{A}}_{A}^{4} &
\end{array}
$$

$$
\begin{aligned}
& \psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
& \stackrel{\mid A}{V} \\
& \Delta=\frac{\mathbf{A}}{\boldsymbol{N}}
\end{aligned}
$$

$$
\psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I}
$$

$$
\begin{aligned}
& \psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
& \text { V } \\
& \Delta=\frac{\boldsymbol{A}}{\boldsymbol{*}}
\end{aligned}
$$

<|

$$
\begin{array}{ccc}
\psi: \mathrm{I} \rightarrow A & \pi: A \rightarrow \mathrm{I} & \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
\|^{A} & \mathbb{A}_{A}^{A} & \\
\nabla & & =\frac{\mathbb{A}_{A}^{A}}{V}
\end{array}
$$

$$
\psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I}
$$

$\Delta=\frac{A}{\sqrt{n}}$

$$
\begin{array}{ccc}
\psi: \mathrm{I} \rightarrow A & \pi: A \rightarrow \mathrm{I} & \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
\|^{A} & {\underset{A}{A}}^{4} &
\end{array}
$$

$$
\begin{aligned}
& \psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I} \\
& \stackrel{\mid A}{*} \\
& { }_{A}^{A} \\
& \Delta=\frac{A}{\boldsymbol{V}}
\end{aligned}
$$

$$
\psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I}
$$

$\Delta=\frac{\mathbf{A}}{\boldsymbol{N}}$

$$
f: A \rightarrow B \quad \longleftrightarrow \quad f^{\dagger}: B \rightarrow A
$$

Example model

Hilbert spaces

Linear maps
Composition of linear maps
Tensor product of Hilbert spaces and linear maps
Adjoint of linear maps

Example model

Hilbert spaces

Linear maps
Composition of linear maps
Tensor product of Hilbert spaces and linear maps
Adjoint of linear maps

Expressiveness

unitary, isometry, positivity, self-adjoint, projector

QUANTUM STRUCTURE

Abramsky-Coecke (2004) IEEE-LiCS

Kelly-Laplaza (1980) Coherence for compact closed categories. Selinger (2007) \dagger-Compact categories and CPMs.

Natural diagonal?
$\left\{\Delta_{A}: A \rightarrow A \otimes A\right\}_{A}$

Cloning?

$$
\left\{\Delta_{A}: A \rightarrow A \otimes A\right\}_{A}
$$

No-cloning of quantum states

$$
\begin{aligned}
& \left\{\Delta_{\mathcal{H}}:|i\rangle \mapsto|i\rangle \otimes|i\rangle\right\}_{\mathcal{H}} \\
& \underset{|c| c|c|}{\mathbb{C}} \begin{array}{l}
1 \mapsto|0\rangle+|1\rangle \\
1 \mapsto 1 \otimes 1 \\
\end{array} \\
& \mathbb{C} \simeq \mathbb{C} \otimes \mathbb{C} \xrightarrow[1 \otimes 1 \mapsto(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle)]{ }(\mathbb{C} \oplus \mathbb{C}) \otimes(\mathbb{C} \oplus \mathbb{C})
\end{aligned}
$$

No-cloning of quantum states

$$
\begin{aligned}
& \left\{\Delta_{\mathcal{H}}:|i\rangle \mapsto|i\rangle \otimes|i\rangle\right\}_{\mathcal{H}}
\end{aligned}
$$

$$
\begin{aligned}
& |0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \neq(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle) \\
& \text { Bell-states cause trouble! }
\end{aligned}
$$

No-cloning in (Rel, \times)

$$
\begin{gathered}
\left\{\Delta_{X}: x \mapsto(x, x)\right\}_{X} \\
\{*\} \xrightarrow[\{(*, 0),(*, 1)\}]{\longrightarrow}\{0,1\} \\
\{\{(*,(*, *))\} \quad \text { NO! }\{(0,(0,0)),(1,(1,1))\} \\
\{*\} \times\{*\} \frac{}{\{(*, 0),(*, 1)\} \times\{(*, 0),(*, 1)\}} \cdot\{0,1\} \times\{0,1\} \\
\{(0,0),(1,1)\} \neq\{0,1\} \times\{0,1\}
\end{gathered}
$$

Object with quantum structure

A pair

$$
(A, \eta: \mathrm{I} \rightarrow A \otimes A)
$$

such that:

Object with quantum structure

Object with quantum structure

Object with quantum structure

Another contravariant involution

Another covariant involution

$$
f_{*}=\left(f^{\dagger}\right)^{*}=\left(f^{*}\right)^{\dagger}
$$

Three intertwined involutions

$$
f_{*}=\left(f^{\dagger}\right)^{*}=\left(f^{*}\right)^{\dagger} \Rightarrow f^{*}=\left(f^{\dagger}\right)_{*}=\left(f_{*}\right)^{\dagger}
$$

Three intertwined involutions

$f^{*} \sim *$-autonomy

Three intertwined involutions

$f^{*} \sim *$-autonomy with $(A \otimes B)^{*} \simeq A^{*} \otimes B^{*}$

Three intertwined involutions

$f^{*} \sim$ Max Kelly's compact closure

Three intertwined involutions

$$
\left(f_{*}\right)^{*}=\left(f^{*}\right)_{*}=f^{\dagger}
$$

Three intertwined involutions

In Hilb: $f^{*} \sim$ transposed $\& f_{*} \sim$ conjugated

"Sliding" boxes

"Sliding" boxes

"Decorated" normalization

"Decorated" normalization

"Decorated" normalization

Bipartite projector

Bipartite projector

Bipartite state

Bipartite costate

Bipartite (co)states \& closedness

$$
a^{t}=?
$$

$$
a j=1
$$

$$
a_{i}=1
$$

\Rightarrow Quantum teleportation

The corresponding TEXTBOOK description (only!)

Alice has an 'unknown' qubit $|\phi\rangle$ and wants to send it to Bob. They have the ability to communicate classical bits, and they share an entangled pair in the EPR-state, that is $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, which Alice produced by first applying a Hadamard-gate $\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$ to the first qubit of a qubit pair in the ground state $|00\rangle$, and by then applying a CNOTgate, that is $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$, then she sends the first qubit of the pair to Bob. To teleport her qubit, Alice first performs a bipartite measurement on the unknown qubit and her half of the entangled pair in the Bell-base, that is

$$
\left\{|0 x\rangle+(-1)^{z}|1(1-x)\rangle \mid x, z \in\{0,1\}\right\}
$$

where we denote the four possible outcomes of the measurement by $x z$. Then she sends the 2-bit outcome $x z$ to Bob using the classical channel. Then, if $x=1$, Bob performs the unitary operation $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ on its half of the shared entangled pair, and he also performs a unitary operation $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ on it if $z=1$. Now Bob's half of the initially entangled pair is in state $|\phi\rangle$.

\Rightarrow Entanglement swapping

Classical data flow?

Classical data flow?

CLASSICAL STRUCTURE
 Coecke-Pavlovic (2006) quant-ph/0608035v1

Carboni-Walters (1986) Cartesian bicategories I.
quantum data cannot be cloned nor deleted

quantum data cannot be cloned nor deleted

classical data CAN be cloned and deleted

NON-FEATURE:
quantum data cannot be cloned nor deleted

FEATURE:
classical data CAN be cloned and deleted

NON-FEATURE:

quantum data cannot be cloned nor deleted

FEATURE:

classical data CAN be cloned and deleted

Classical data comes with cloning and deleting:

$$
(X, \delta: X \rightarrow X \otimes X, \epsilon: X \rightarrow \mathrm{I})
$$

NON-FEATURE:

quantum data cannot be cloned nor deleted

FEATURE:

classical data CAN be cloned and deleted

Classical data comes with cloning and deleting:

Object with classical structure

A commutative comonoid

$$
(X, \delta: X \rightarrow X \otimes X, \epsilon: X \rightarrow \mathrm{I})
$$

such that

Object with classical structure

Object with classical structure

Classical structure \Rightarrow quantum structure

In FdHilb we have commutation of:

In FdHilb we have commutation of:

In FdHilb we have commutation of:

The only states $|\psi\rangle$ which are such that

$$
\delta_{\mathcal{H}} \circ|\psi\rangle=|\psi\rangle \otimes|\psi\rangle
$$

are the base vectors $\{|i\rangle\}_{i}$.

In FdHilb we have commutation of:

The only states $|\psi\rangle$ which are such that

$$
\delta_{\mathcal{H}} \circ|\psi\rangle=|\psi\rangle \otimes|\psi\rangle
$$

are the base vectors $\{|i\rangle\}_{i} \Rightarrow \delta_{\mathcal{H}}$ is base capturing!

An element $\psi: I \rightarrow X$ is a base vector iff:

An element $\psi: \mathrm{I} \rightarrow X$ is a base vector iff:

A set of elements $\left\{\psi_{i}: \mathrm{I} \rightarrow X\right\}_{i}$ is orthonormal iff $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\psi_{i}^{\dagger} \circ \psi_{j}$ is idempotent for all i, j.

An element $\psi: \mathrm{I} \rightarrow X$ is a base vector iff:

A set of elements $\left\{\psi_{i}: \mathrm{I} \rightarrow X\right\}_{i}$ is orthonormal iff $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\psi_{i}^{\dagger} \circ \psi_{j}$ is idempotent for all i, j.

The base vectors constitute an orthonormal set:

"What's inside the box?"

"What's inside the box?"

Notational convention:

Normalisation theorem: A "connected" network build from $\delta, \delta^{\dagger}, \epsilon, \epsilon^{\dagger}$ admits a 'spider-like' normal form:

Kock, J. (2003) Frobenius algebras and 2D TQFTs. Coecke-Paquette (2006) POVMs \& Naimark's thm without sums.

Normalisation theorem: A "connected" network build from $\delta, \delta^{\dagger}, \epsilon, \epsilon^{\dagger}$ admits a 'spider-like' normal form:

proof \sim "fusion" of dots \Rightarrow graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs \& Naimark's thm without sums.

All five axioms follow from spider-normal-form.

Summary: refining quantum structure

Summary: refining quantum structure

Summary: refining quantum structure

Quantum measurement:

$$
\mathcal{M}: A \rightarrow X \otimes A
$$

Quantum measurement:

$$
\mathcal{M}: A \rightarrow X \otimes A
$$

Quantum measurement:

$$
\mathcal{M}: A \rightarrow X \otimes A
$$

Quantum measurement:

$$
\mathcal{M}: A \rightarrow X \otimes A
$$

\Rightarrow Quantum measurements turn out to be EilenbergMoore coalgebras for the comonad $(X \otimes-): \mathbf{C} \rightarrow \mathbf{C}$.

Quantum measurement:

\Rightarrow Quantum measurements turn out to be EilenbergMoore coalgebras for the comonad $(X \otimes-): \mathbf{C} \rightarrow \mathbf{C}$.

Quantum measurement:

$$
\mathcal{M}: A \rightarrow X \otimes A
$$

\Rightarrow Quantum measurements turn out to be EilenbergMoore coalgebras for the comonad $(X \otimes-): \mathbf{C} \rightarrow \mathbf{C}$.

Quantum measurement:

\Rightarrow Quantum measurements turn out to be EilenbergMoore coalgebras for the comonad $(X \otimes-): \mathbf{C} \rightarrow \mathbf{C}$.

Quantum measurement:

$$
\mathcal{M}: A \rightarrow X \otimes A
$$

Quantum measurement:

Thm. Self-adjoint Eilenberg-Moore coalgebras for $\mathcal{H} \otimes-:$ FdHilb \rightarrow FdHilb are exactly $\operatorname{dim} \mathcal{H}$-outcome quantum measurements.

Thm. Self-adjoint Eilenberg-Moore coalgebras for

$$
\mathcal{H} \otimes-: \text { FdHilb } \rightarrow \text { FdHilb }
$$

are exactly $\operatorname{dim} \mathcal{H}$-outcome quantum measurements.
Coalg-square \Rightarrow
idempotence
mutual orthogonality
Coalg-triangle \Rightarrow
Completeness of spectrum
Self-adjointness \Rightarrow
Orthogonality of projectors

$$
\begin{gathered}
\mathrm{P}_{i}^{2}=\mathrm{P}_{i} \\
\mathrm{P}_{i} \circ \mathrm{P}_{j \neq i}=\mathbf{0}
\end{gathered}
$$

$$
\sum_{i} \mathrm{P}_{i}=1_{\mathcal{H}}
$$

$$
\frac{\mathrm{P}_{i}^{\dagger}=\mathrm{P}_{i}}{\text { PROJECTOR }} \underset{\text { SPECTRUM }}{ }
$$

Teleportation:

Bipartite quantum measurement:

Bipartite quantum measurement:

Bipartite quantum measurement:

Bipartite quantum measurement:

Teleportation enabling measurement:

Teleportation enabling measurement:

abstracts $\operatorname{dim}(X) \geq(\operatorname{dim}(A))^{2}$ and $\operatorname{Tr}\left(U_{x} \circ U_{y}^{\dagger}\right)=\delta_{x y}$.

abstracts unitarity of $\left\{U_{x}\right\}_{x}$ i.e. $U_{x}^{\dagger} \circ U_{x}=U_{x} \circ U_{x}^{\dagger}=1_{A}$.

Teleportation:

Intended behavior:

Proof:

Dense coding:

Intended behavior:

Proof:

CLASSICAL MAPS

(Coecke-Paquette-Pavlovic 2007)

Cartesian structure as a limit

Theorem. [Fox 1976] The category C_{\times}of commutative comonoids and corresponding morphisms of a symmetric monoidal category with the forgetful functor $\mathbf{C}_{\times} \rightarrow \mathbf{C}$, is final among all cartesian categories with a monoidal functor to C , mapping the cartesian product to the monoidal tensor.

- Deterministic classical states = clone-able ones
- Deterministic classical operations = clone-able ones
- FdHilb $_{\times}$:= FSet

Classical genera:

Classical genera:

Carboni-Walters (1987) Cartesian Bicategories I.

Proposition. Morphisms satisfying

subject to the local partial order $f \leq g$ iff

constitute a bicategory of relations \mathbf{C}_{r} in the sense of Carboni-Walters (1987). ${ }^{\ddagger}$ In particular, relations are lax comonoid homomorphisms w.r.t. \leq and $\circ_{r} \neq \circ$.
${ }^{\ddagger}$ There is an issue with finiteness of comonoid structures.

Classical genera:

Let $\Omega(\mathcal{H})$ be density matrices $\rho: \mathcal{H} \rightarrow \mathcal{H}$ with trace 1 .

A completely positive map $\delta: \Omega(\mathcal{H}) \rightarrow \Omega(\mathcal{H} \otimes \mathcal{H})$ is a cloning operation if for all $\rho \in \Omega(\mathcal{H})$:

$$
\delta(\rho)=\rho \otimes \rho
$$

Let $\Omega(\mathcal{H})$ be density matrices $\rho: \mathcal{H} \rightarrow \mathcal{H}$ with trace 1 .

A completely positive map $\delta: \Omega(\mathcal{H}) \rightarrow \Omega(\mathcal{H} \otimes \mathcal{H})$ is a cloning operation if for all $\rho \in \Omega(\mathcal{H})$:

$$
\delta(\rho)=\rho \otimes \rho
$$

It is a broadcasting operation if for all $\rho \in \Omega(\mathcal{H})$:

$$
\operatorname{Tr}_{1}(\delta(\rho))=\operatorname{Tr}_{2}(\delta(\rho))=\rho
$$

Existence of a cloning/broadcasting operation for restricted sets of density operators relative to a fixed base:

	cloning	broadcasting
bases vectors	yes	yes
diagonal density operators	\rightarrow no \leftarrow	\rightarrow yes \leftarrow
pure density operators	no	no
arbitrary density operators	no	no

Classical maps are broadcast-able maps

What's next:

- More structural resources for quantum things.
- Quantum Computer Science.
- Real physics problems involving 'energy' etc.
- Interaction with other instances of physics.
- What is true quantumness?

