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Multiplicity of systems/operations:

A⊗B A⊗ C f⊗g
-B ⊗D
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⇒ Compatibility with relativity
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Symmetry ≡ re-arrange systems & operations

A⊗ C f⊗g
-B ⊗D

C ⊗ A

σA,C

?

g⊗f
-D ⊗B

σB,D

?

... re-associate, introduce/discard systems & operations



PRACTICING PHYSICS
Physical System

Physical Operation

PROGRAMMING
Data Types
Programs

LOGIC & PROOF THEORY
Propositions

Proofs
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Practising physics in the lab = operationalism

NOT categorifying the mathematical models of QM

NOT speculating about a grand unificational theory

Model interaction of the scientist with his subject

The particular capabilities of doing so ≡ structure

• Quantum structure: non-local correlations

• Classical structure: ability to clone/delete
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The immediate pay-off

Distinct types of systems

Two-dimensional compositionality

Full comprehension w.r.t. classical data flow

Radical increase of degrees of axiomatic freedom
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[von Neumann 1932] Formalized quantum mechanics
in “Mathematische Grundlagen der Quantenmechanik”

[von Neumann to Birkhoff 1935] “I would like to
make a confession which may seem immoral: I do not
believe absolutely in Hilbert space no more.” (sic.)

[Birkhoff & von Neumann 1936] “The LOGIC of
Quantum Mechanics”, Annals of Mathematics.

Several quantum logic programmes emerged, ...
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Birkhoff-von Neumann paradigm:

Quantum logic

Classical logic
' NO deduction

deduction

We are solving:

???

quantum theory
' natural deduction

truth tables
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Physicist use Dirac notation, not Hilbert space axioms.

|ψ〉 〈φ| 〈φ|ψ〉 |ψ〉〈ψ|
ket bra bra-ket projector

Physicist’s desire for pictures: Feynman, Penrose, ...

graphical language for ⊗-categories:
⊗ ∼ horizontal ◦ ∼ vertical

Dirac g
Dirac notation in two-dimensions

Dirac g



Categorical Quantum Axiomatics



BACKGROUND LANGUAGE
Penrose, Freyd-Yetter, Joyal-Street, Turaev, ...
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f : A→ B ←→ f† : B → A

ff †
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Example model

Hilbert spaces

Linear maps

Composition of linear maps

Tensor product of Hilbert spaces and linear maps

Adjoint of linear maps

Expressiveness

unitary, isometry, positivity, self-adjoint, projector



QUANTUM STRUCTURE
Abramsky-Coecke (2004) IEEE-LiCS

Kelly-Laplaza (1980) Coherence for compact closed categories.
Selinger (2007) †-Compact categories and CPMs.



Natural diagonal ?

{∆A : A→ A⊗ A}A
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Cloning ?
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No-cloning of quantum states

{∆H : | i 〉 7→ | i 〉 ⊗ | i 〉}H

C 17→|0〉+|1〉
- C⊕ C

NO!

C ' C⊗ C

17→1⊗1

?

1⊗17→(|0〉+|1〉)⊗(|0〉+|1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉

?



No-cloning of quantum states

{∆H : | i 〉 7→ | i 〉 ⊗ | i 〉}H

C 17→|0〉+|1〉
- C⊕ C

NO!

C ' C⊗ C

17→1⊗1

?

1⊗17→(|0〉+|1〉)⊗(|0〉+|1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉

?

|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 6= (|0〉 + |1〉)⊗ (|0〉 + |1〉)
Bell-states cause trouble!



No-cloning in (Rel,×)

{∆X : x 7→ (x, x)}X

{∗} {(∗,0),(∗,1)}
- {0, 1}

NO!

{∗} × {∗}

{(∗,(∗,∗))}

?

{(∗,0),(∗,1)}×{(∗,0),(∗,1)}
- {0, 1} × {0, 1}

{(0,(0,0)),(1,(1,1))}

?

{(0, 0), (1, 1)} 6= {0, 1} × {0, 1}



Object with quantum structure

A pair
(A , η : I→ A⊗ A)

such that:

A I⊗ A'oo (A⊗ A)⊗ Aη† ⊗ 1Aoo

A

1A

OO

' //A⊗ I 1A ⊗ η
//A⊗ (A⊗ A)

'

OO
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Three intertwined involutions
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Three intertwined involutions

f *

=

f

f

f

† f

f
*

*

f*

=

f †

In Hilb: f∗ ∼ transposed & f∗ ∼ conjugated
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f

=

f f *

=

f
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“Decorated” normalization

=Projector Projector

ProjectorProjector
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Bipartite projector



Bipartite state



Bipartite costate



Bipartite (co)states & closedness

f f

f

†

†

A

B A

A B

B



Applying “decorated” normalization

f*

=

f
f †f †



Applying “decorated” normalization

f*

=

f †



Applying “decorated” normalization
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Applying “decorated” normalization

f*

ALICE

BOB

=

ALICE

BOB

f †

⇒ Quantum teleportation



The corresponding TEXTBOOK description (only!)
Alice has an ‘unknown’ qubit |φ〉 and wants to send it to Bob. They have the ability
to communicate classical bits, and they share an entangled pair in the EPR-state, that is
1√
2
(|00〉+|11〉), which Alice produced by first applying a Hadamard-gate 1√

2

(
1 1
1−1

)
to the first qubit of a qubit pair in the ground state |00〉, and by then applying a CNOT-

gate, that is


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, then she sends the first qubit of the pair to Bob. To

teleport her qubit, Alice first performs a bipartite measurement on the unknown qubit
and her half of the entangled pair in the Bell-base, that is

{|0x〉+ (−1)z | 1(1− x)〉 | x, z ∈ {0, 1}},
where we denote the four possible outcomes of the measurement by xz. Then she sends
the 2-bit outcome xz to Bob using the classical channel. Then, if x = 1, Bob performs

the unitary operation σx =

(
0 1
1 0

)
on its half of the shared entangled pair, and he

also performs a unitary operation σz =

(
1 0
0−1

)
on it if z = 1. Now Bob’s half of the

initially entangled pair is in state |φ〉.



Applying “decorated” normalization 3
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Applying “decorated” normalization 3

=
f*

f*

f* f†

⇒ Entanglement swapping



Classical data flow?
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Classical data flow?

f*

ALICE

BOB

=

ALICE

BOB

f †



CLASSICAL STRUCTURE
Coecke-Pavlovic (2006) quant-ph/0608035v1

Carboni-Walters (1986) Cartesian bicategories I.
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NON-FEATURE:
quantum data cannot be

cloned nor deleted

FEATURE:
classical data CAN be

cloned and deleted

Classical data comes with cloning and deleting:
X X

X X



Object with classical structure

A commutative comonoid

(X , δ : X → X ⊗X , ε : X → I)

such that

X⊗X δ† //

δ⊗1X
��

X

δ
��

X δ //

1X
##GGGGGGGGGGGGGGGGGGGG X⊗X
δ†

��

X⊗X⊗X
1X⊗δ†

//X⊗X X



Object with classical structure

=

= =

=



Object with classical structure

=

=
“Frobenius”

(Carboni-Walters 1987 Cartesian bicategories I)

“unitarity”
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Classical structure⇒ quantum structure

= =
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In FdHilb we have commutation of:

C
ηH :: 17→

∑
i |ii〉 //

ε
†
H :: 17→

∑
i |i〉
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??
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??
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H

δH :: |i〉7→|ii〉

<<xxxxxxxxxxxxxxxxxxxxxxxxxxxx

The only states |ψ〉 which are such that

δH ◦ |ψ〉 = |ψ〉 ⊗ |ψ〉

are the base vectors {|i〉}i⇒ δH is base capturing!
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〈ψi|ψj〉 = ψ†i ◦ ψj is idempotent for all i, j.



An element ψ : I→ X is a base vector iff:

ψ ψ ψ

=

A set of elements {ψi : I → X}i is orthonormal iff
〈ψi|ψj〉 = ψ†i ◦ ψj is idempotent for all i, j.

The base vectors constitute an orthonormal set:

ψ ψ ψ

=ψ ψψ

ψ ψ

=ψ ψ=

ψ
ψ



“What’s inside the box?”



“What’s inside the box?”

X X

X X



Notational convention:

....
....

....

....



Normalisation theorem: A “connected” network build
from δ, δ†, ε, ε† admits a ‘spider-like’ normal form:

X X

X X XX

X X.........

....
“fusion” of dots⇒ graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs & Naimark’s thm without sums.



Normalisation theorem: A “connected” network build
from δ, δ†, ε, ε† admits a ‘spider-like’ normal form:

X X

X X XX

X X.........

....
proof ∼ “fusion” of dots⇒ graphical rewrite system

Kock, J. (2003) Frobenius algebras and 2D TQFTs.
Coecke-Paquette (2006) POVMs & Naimark’s thm without sums.



Object with classical structure

=

= =

=



=

=
Carboni-Walters 1987 Cartesian bicategories I

“unitarity”



=

=
Carboni-Walters 1987 Cartesian bicategories I

“unitarity”
All five axioms follow from spider-normal-form.
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Quantum measurement:

M : A→ X ⊗ A

=
⇒ Quantum measurements turn out to be Eilenberg-
Moore coalgebras for the comonad (X⊗−) : C→ C.
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Quantum measurement:

A

X ⊗ A

M

?

λ
†
A◦(ε⊗1A)

-A

1
A

-

⇒ Quantum measurements turn out to be Eilenberg-
Moore coalgebras for the comonad (X⊗−) : C→ C.
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Quantum measurement:

X ⊗ A

X ⊗X ⊗ A

1X⊗M

?

λ
†
A◦(η

†⊗1A)

-A

M †

-

⇒ self-adjointness.
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Thm. Self-adjoint Eilenberg-Moore coalgebras for

H⊗− : FdHilb→ FdHilb

are exactly dimH-outcome quantum measurements.

Coalg-square⇒
idempotence P2

i = Pi
mutual orthogonality Pi ◦ Pj 6=i = 0

Coalg-triangle⇒
Completeness of spectrum

∑
i Pi = 1H

Self-adjointness⇒
Orthogonality of projectors P†i = Pi

PROJECTOR
SPECTRUM



Teleportation:
A

Bob

Alice

A

A
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Bipartite quantum measurement:



Teleportation enabling measurement:

A

X

A

A

AA

AA

X

X

=

AA

AA

=

X

X

ands.t

abstracts dim(X) ≥ (dim(A))2 and Tr(Ux◦ U †y) = δxy.

A

A X

=

A

A X A X

A

=

A

A X

and

A

X A

s.t

abstracts unitarity of {Ux}x i.e. UxUy = UyUx = 1A.



Teleportation enabling measurement:

A

X

A

A

AA

AA

X

X

=

AA

AA

=

X

X

ands.t

abstracts dim(X) ≥ (dim(A))2 and Tr(Ux◦ U †y) = δxy.

A

A X

=

A

A X A X

A

=

A

A X

and

A

X A

s.t

abstracts unitarity of {Ux}x i.e. U †x◦Ux= Ux◦U †x= 1A.



Teleportation:
A

Bob

Alice

A

A

A



Intended behavior:
A

Bob

Alice

A



Proof:

A

A
A

A =

A

=

A

A
=

A

A

A

A

A



Dense coding:

X

Bob

Alice

X

X
A

A



Intended behavior:

X

Bob

Alice

X

X



Proof:

X

X

X
A

A

=

XX

X

XX

X

=
A A

=

XX

X



CLASSICAL MAPS
(Coecke-Paquette-Pavlovic 2007)



Cartesian structure as a limit
Theorem. [Fox 1976] The category C× of commu-
tative comonoids and corresponding morphisms of a
symmetric monoidal category with the forgetful func-
tor C× → C, is final among all cartesian categories
with a monoidal functor to C, mapping the cartesian
product to the monoidal tensor.

• Deterministic classical states = clone-able ones

• Deterministic classical operations = clone-able ones

• FdHilb× := FSet



Classical genera:
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Carboni-Walters (1987) Cartesian Bicategories I.



Proposition. Morphisms satisfying

f = f f*

subject to the local partial order f ≤ g iff

f = f g*

constitute a bicategory of relations Cr in the sense
of Carboni-Walters (1987).‡ In particular, relations are
lax comonoid homomorphisms w.r.t. ≤ and ◦r 6= ◦.
‡ There is an issue with finiteness of comonoid structures.
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Let Ω(H) be density matrices ρ : H → H with trace 1.

A completely positive map δ : Ω(H) → Ω(H ⊗H) is
a cloning operation if for all ρ ∈ Ω(H):

δ(ρ) = ρ⊗ ρ .



Let Ω(H) be density matrices ρ : H → H with trace 1.

A completely positive map δ : Ω(H) → Ω(H ⊗H) is
a cloning operation if for all ρ ∈ Ω(H):

δ(ρ) = ρ⊗ ρ .

It is a broadcasting operation if for all ρ ∈ Ω(H):

Tr1(δ(ρ)) = Tr2(δ(ρ)) = ρ .



Existence of a cloning/broadcasting operation for re-
stricted sets of density operators relative to a fixed base:

cloning broadcasting
bases vectors yes yes

diagonal density operators → no← → yes←
pure density operators no no

arbitrary density operators no no



Classical maps are broadcast-able maps

=f f=ρ ρ

= environment



What’s next:

•More structural resources for quantum things.

• Quantum Computer Science.

• Real physics problems involving ‘energy’ etc.

• Interaction with other instances of physics.

•What is true quantumness?


