Extended real number object in the bornological topos

Luis Español
luis.espanol@unirioja.es
Universidad de La Rioja
Departamento de Matemáticas y Computación

July 19th
Carvoeiro (Portugal), CT2007

Index

(1) Acknowledgements and references
(2) MSet with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$

- MSet with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations
- M-sets and covariant analysis
- Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$
(3) The bornological topos $\mathcal{B}=\operatorname{sh}(M ; \mathbb{J}) \hookrightarrow M$ Set
- The bornological Grothendieck topology
- Rational number object \mathbb{Q}_{κ}
- Extended real number object $\overline{\mathbb{R}}_{b}$ in \mathcal{B}

Acknowledgements and references

To Bill Lawvere
1973. F. W. Lawvere. "Metric spaces, generalized logics, and closed categories". Rend. Sem. Mat. Fis. di Milano, 43, pp. 135-166.
$\overline{\mathbb{R}}^{+}=[0, \infty]$ as distance-norm-recipient.
1983. F. W. Lawvere. Talk at the Workshop on Category Theory and its Applications. Bogotá (Colombia).

The study of the bornological topos was encouraged.

. . . references

1983. J. Z. Reichman. "Semicontinuous real numbers in a topos.
J. Pure Appl. Algebra, 28, pp. 81-91.

Extended real number object in an elementary topos.
1990. L. Lambán. PhD. dissertation, University of Zaragoza (Spain).

First steps on the bornological topos.
2000. L. Español, L. Lambán. "On bornologies, locales and toposes of M-sets". J. Pure Appl. Algebra, 176, pp. 113-125.

An improvement of a part of the Lambán PhD.
... it follows, and ... to be continued ...

Notations for $M \operatorname{Set}, M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$

We consider M-sets E with a right action denoted by composition:

$$
x \circ f \in E, \quad x \in E, f \in M
$$

$\alpha: E \rightarrow L$ is equivariant if $\alpha(x \circ f)=\alpha(x) \circ f$.
M is an M-subset and morphisms $M \rightarrow E$ represent elements of E. Morphisms $1 \rightarrow E$ represent fixed elements of E : set $\Gamma(E)$. Each set X is a trivial M-set $\Delta(X)$ (any element is fixed).

If S is an M-subset of E and $x \in E$ then

$$
\langle x \in S\rangle=\{f \in M ; x \circ f \in S\}
$$

is an ideal (M-subset of M).
$M S e t$ with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations M-sets and covariant analysis
Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

The set Ω of all ideals I of M, with the action $\langle x \in I\rangle$, is the subobject classifier of MSet.

MSet is cartesian closed, $(-) \times E \dashv(-)^{E}: M S e t \rightarrow$ MSet:

- $\theta: P \rightarrow L^{E}, \theta(p)(f, x)=\xi(p \circ f, x)$
- $\xi: P \times E \rightarrow L, \xi(p, x)=\theta(p)(i d, x)$
- evaluation morphism: $L^{E} \times E \rightarrow L, \operatorname{ev}(\xi, x)=\xi(i d, x)$
omembership relation: $(x \in M \xi\rangle=\{f \in M ; \xi(f, x \circ f)=M\}$
M Set with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations M-sets and covariant analysis Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

The set Ω of all ideals I of M, with the action $\langle x \in I\rangle$, is the subobject classifier of MSet.

MSet is cartesian closed, $(-) \times E \dashv(-)^{E}: M S e t \rightarrow$ MSet:

- $\theta: P \rightarrow L^{E}, \theta(p)(f, x)=\xi(p \circ f, x)$
- $\xi: P \times E \rightarrow L, \xi(p, x)=\theta(p)(i d, x)$
- evaluation morphism: $L^{E} \times E \rightarrow L, \operatorname{ev}(\xi, x)=\xi(i d, x)$
- membership relation: $(x \in M \xi\rangle=\{f \in M ; \xi(f, x \circ f)=M\}$

The set Ω of all ideals I of M, with the action $\langle x \in I\rangle$, is the subobject classifier of MSet.

MSet is cartesian closed, $(-) \times E \dashv(-)^{E}: M S e t \rightarrow$ MSet:

- $\theta: P \rightarrow L^{E}, \theta(p)(f, x)=\xi(p \circ f, x)$
- $\xi: P \times E \rightarrow L, \xi(p, x)=\theta(p)(i d, x)$
- evaluation morphism: $L^{E} \times E \rightarrow L$, ev $(\xi, x)=\xi(i d, x)$
- membership relation: $\langle x \in M \xi\rangle=\{f \in M ; \xi(f, x \circ f)=M\}$.
$M S e t$ with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations M-sets and covariant analysis

The set Ω of all ideals I of M, with the action $\langle x \in I\rangle$, is the subobject classifier of MSet.

MSet is cartesian closed, $(-) \times E \dashv(-)^{E}: M S e t \rightarrow$ MSet:

- $\theta: P \rightarrow L^{E}, \theta(p)(f, x)=\xi(p \circ f, x)$
- $\xi: P \times E \rightarrow L, \xi(p, x)=\theta(p)(i d, x)$
- evaluation morphism: $L^{E} \times E \rightarrow L$, ev $(\xi, x)=\xi(i d, x)$
- membership relation: $\langle x \in M \xi\rangle=\{f \in M ; \xi(f, x \circ f)=M\}$.
$\zeta: E \rightarrow \Omega^{L}, \quad \zeta(x)=\{y ; \varphi(x, y)\}$ adjoint of $\varphi: E \times L \rightarrow \Omega$.
$\operatorname{Im}: L^{E} \times \Omega^{E} \rightarrow \Omega^{L}, \operatorname{Im}(\alpha, H)=\{y ; \exists x, x \in H \wedge \alpha(x)=y\}$.

M-sets and covariant analysis

Sequence spaces as M-sets:
An M-set E is separated if the unit $E \rightarrow \Gamma(E)^{\mathbb{N}}$ is mono. $E \cong \Sigma(X)$, bounded sequences in a bornological space X (we only consider sequential bornologies).

The full and faithful $\Sigma:$ Born \rightarrow MSet preserves exponentials.
Examples of non-separated M-sets:

- $\overline{\mathbb{R}}_{m}^{+}=\left\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}}^{+} ; \mu\right.$ monotone, $\left.\mu(\emptyset)=0\right\}$
- Outer measures (add countably subadditive).

M-sets and covariant analysis

Sequence spaces as M-sets:
An M-set E is separated if the unit $E \rightarrow \Gamma(E)^{\mathbb{N}}$ is mono. $E \cong \Sigma(X)$, bounded sequences in a bornological space X (we only consider sequential bornologies).

The full and faithful $\Sigma:$ Born \rightarrow MSet preserves exponentials.
Examples of non-separated M-sets:

- Ω, with Cont \dashv Ext $: \Omega \rightarrow \mathcal{P}(\mathbb{N})$, Ext \circ Cont $=i d$
- $\overline{\mathbb{R}}_{m}^{+}=\left\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}}^{+} ; \mu\right.$ monotone, $\left.\mu(\emptyset)=0\right\}$
- Outer measures (add countably subadditive).

M-sets and covariant analysis

Sequence spaces as M-sets:
An M-set E is separated if the unit $E \rightarrow \Gamma(E)^{\mathbb{N}}$ is mono. $E \cong \Sigma(X)$, bounded sequences in a bornological space X (we only consider sequential bornologies).

The full and faithful $\Sigma:$ Born \rightarrow MSet preserves exponentials.
Examples of non-separated M-sets:

- Ω, with Cont \dashv Ext $: \Omega \rightarrow \mathcal{P}(\mathbb{N})$, Ext \circ Cont $=i d$
- $\overline{\mathbb{R}}_{m}^{+}=\left\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}}^{+} ; \mu\right.$ monotone, $\left.\mu(\emptyset)=0\right\}$
- Outer measures (add countably subadditive).

M-sets and covariant analysis

Sequence spaces as M-sets:
An M-set E is separated if the unit $E \rightarrow \Gamma(E)^{\mathbb{N}}$ is mono. $E \cong \Sigma(X)$, bounded sequences in a bornological space X (we only consider sequential bornologies).

The full and faithful $\Sigma:$ Born \rightarrow MSet preserves exponentials.
Examples of non-separated M-sets:

- Ω, with Cont \dashv Ext $: \Omega \rightarrow \mathcal{P}(\mathbb{N})$, Ext \circ Cont $=i d$
- $\overline{\mathbb{R}}_{m}^{+}=\left\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}}^{+} ; \mu\right.$ monotone, $\left.\mu(\emptyset)=0\right\}$
- Outer measures (add countably subadditive).

Discrete measures does't give M-sets.
M Set with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations
M-sets and covariant analysis
Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Parts of \mathbb{Q} in MSet:

Because \mathbb{Q} is trivial in M Set, elements of $\Omega^{\mathbb{Q}}$ are (equivalently):

$M S e t$ with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations
M-sets and covariant analysis
Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Parts of \mathbb{Q} in MSet:

Because \mathbb{Q} is trivial in M et, elements of $\Omega^{\mathbb{Q}}$ are (equivalently):

- a : $\mathbb{Q} \rightarrow \Omega \subseteq \mathcal{P}(M), \quad a(x)=\{f \in M ; x \in \alpha(f)\}$
- $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$ monotone, $\alpha(f)=\{x \in \mathbb{Q} ; f \in a(x)\}$ $f \leq g$ if $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$ is a preorder in M
- $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}$ monotone, $\mu(\emptyset)=\mathbb{Q}$, $\mu(A)=\alpha(f), A=\operatorname{Im}(f)$

Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Parts of \mathbb{Q} in MSet:

Because \mathbb{Q} is trivial in M et, elements of $\Omega^{\mathbb{Q}}$ are (equivalently):

- a : $\mathbb{Q} \rightarrow \Omega \subseteq \mathcal{P}(M), \quad a(x)=\{f \in M ; x \in \alpha(f)\}$
- $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}$ monotone, $\alpha(f)=\{x \in \mathbb{Q} ; f \in a(x)\}$ $f \leq g$ if $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$ is a preorder in M
- $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$ monotone, $\mu(\emptyset)=\mathbb{Q}$, $\mu(A)=\alpha(f), A=\operatorname{Im}(f)$
$M S e t$ with the monoid $M=\operatorname{Set}(\mathbb{N}, \mathbb{N})$. Notations
M-sets and covariant analysis
Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Extended real number M-set, $\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}$

Parts of \mathbb{Q} in MSet:
Because \mathbb{Q} is trivial in M et, elements of $\Omega^{\mathbb{Q}}$ are (equivalently):

- a : $\mathbb{Q} \rightarrow \Omega \subseteq \mathcal{P}(M), \quad a(x)=\{f \in M ; x \in \alpha(f)\}$
- $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}$ monotone, $\alpha(f)=\{x \in \mathbb{Q} ; f \in a(x)\}$ $f \leq g$ if $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$ is a preorder in M
- $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}$ monotone, $\mu(\emptyset)=\mathbb{Q}$, $\mu(A)=\alpha(f), A=\operatorname{Im}(f)$

Actions:

- $(a \circ f)(x)=\langle f \in a(x)\rangle, \quad(\alpha \circ f)(g)=\alpha(f \circ g)$
- $(\mu \circ f)(A)=\mu(f(A))$

... Upper cuts of \mathbb{Q} in MSet

$$
\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}: \quad \phi(\alpha): \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)
$$

Elements of $\overline{\mathbb{R}}_{m}$:

$$
\begin{aligned}
& \text { - } a: \mathbb{Q} \rightarrow \Omega: \forall f, a_{f}=\{x \in \mathbb{Q} ; f \in a(x)\} \text { upper cut } \\
& \text { - } \alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}: \forall f, \alpha(f) \text { upper cut }
\end{aligned}
$$

Hence

- $\overline{\mathbb{R}}_{m}=\{\alpha: M \rightarrow \overline{\mathbb{R}} ; \alpha$ monotone $\}$ (Reichman, 1983)
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

... Upper cuts of \mathbb{Q} in MSet

$$
\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}: \quad \phi(\alpha): \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)
$$

Elements of $\overline{\mathbb{R}}_{m}$:

- $a: \mathbb{Q} \rightarrow \Omega: \quad \forall f, a_{f}=\{x \in \mathbb{Q} ; f \in a(x)\}$ upper cut
- $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}: \forall f, \alpha(f)$ upper cut

Hence

- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

... Upper cuts of \mathbb{Q} in MSet

$$
\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}: \quad \phi(\alpha): \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)
$$

Elements of $\overline{\mathbb{R}}_{m}$:

- $a: \mathbb{Q} \rightarrow \Omega: \quad \forall f, a_{f}=\{x \in \mathbb{Q} ; f \in a(x)\}$ upper cut
- $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}: \forall f, \alpha(f)$ upper cut

Hence

- $\overline{\mathbb{R}}_{m}=\{\alpha: M \rightarrow \overline{\mathbb{R}} ; \alpha$ monotone $\}$ (Reichman, 1983)
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

... Upper cuts of \mathbb{Q} in MSet

$$
\overline{\mathbb{R}}_{m} \subseteq \Omega^{\mathbb{Q}}: \quad \phi(\alpha): \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)
$$

Elements of $\overline{\mathbb{R}}_{m}$:

- $a: \mathbb{Q} \rightarrow \Omega: \quad \forall f, a_{f}=\{x \in \mathbb{Q} ; f \in a(x)\}$ upper cut
- $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}: \forall f, \alpha(f)$ upper cut

Hence

- $\overline{\mathbb{R}}_{m}=\{\alpha: M \rightarrow \overline{\mathbb{R}} ; \alpha$ monotone $\}$ (Reichman, 1983)
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

The bornological Grothendieck topology Rational number object \mathbb{Q}_{κ}

The bornological topos \mathcal{B}

Dense and closed $E \subseteq X^{\mathbb{N}}$
$\bar{E}=\Sigma(A)$, with $A=\operatorname{Ext}(E) \subseteq X$ and the final bornology.
$s \in \bar{E}$ if and only if $\exists s_{1}, \ldots, s_{n} \in E, \quad \operatorname{Im}(s) \subseteq \bigcup_{1 \leq i \leq n} \operatorname{Im}\left(s_{i}\right)$
$E \subseteq X^{\mathbb{N}}$ is dense if $\bar{E}=X^{\mathbb{N}}$, and closed if $\bar{E}=E$.

- E is dense if and only if has a finite covering, that is,

$$
\exists s_{1}, \ldots, s_{n} \in E, \mathbb{N}=\bigcup_{1 \leq i \leq n} \operatorname{Im}\left(s_{i}\right)
$$

- E is closed if and only if is finitely determined, that is,

$$
\left(\exists s_{1}, \ldots, s_{n} \in E, \operatorname{Im}(s) \subseteq \bigcup_{1 \leq i \leq n} \operatorname{Im}\left(s_{i}\right)\right) \Rightarrow s \in E
$$

. . . Finite coverings and sheaves

Case $X=\mathbb{N}$, ideals $I \subseteq M$.

- The dense ideals form a Grothendieck topology $\mathbb{J} \subseteq \Omega$ on M. The bornological topos is $\mathcal{B}=\operatorname{sh}(M ; \mathbb{J}) \hookrightarrow M$ Set.
- Each $\Sigma(X)$ is a sheaf, $\Sigma:$ Born $\rightarrow \mathcal{B}$.
- The sheafification on a set X is the M-set X_{κ} of all sequences $\mathbb{N} \rightarrow X$ with finite image.
- The subobject classifier of \mathcal{B} is the M-subset $\Omega_{b} \subseteq \Omega$ of all closed ideals of M. Moreover $1+1 \cong 2_{\kappa} \cong \mathcal{P}(\mathbb{N})$.
- Rational number sheaf: \mathbb{Q}_{κ}.
- Real number sheaf: $\mathbb{R}_{b}=\ell^{\infty}$ (real bounded sequences)

$$
C\left(\Omega_{b}\right)=\mathbb{R}_{b}^{\Omega_{b}} \cong \mathbb{R}_{b} \times \mathbb{R}_{b} \cong \mathbb{R}_{b}^{\mathcal{P}(\mathbb{N})}
$$

The bornological Grothendieck topology Rational number object \mathbb{Q}_{κ}

$\mathcal{P}(\mathbb{N})$ and Ω_{b}

The inclusion $1+1 \hookrightarrow \Omega_{b}$ is a open morphism of locales $(-)_{\kappa} \dashv$ Ext \dashv Cont $: \mathcal{P}(\mathbb{N}) \hookrightarrow \Omega_{b}$

- $\operatorname{Cont}(A)=\{f \in M ; \operatorname{Im}(f) \subseteq A\}$ (content)
- Ext $\circ(-)_{\kappa}=i d=$ Ext \circ Cont
- Cont \circ Ext $=\neg \neg$
- Frobenius identity: $(A \cap \operatorname{Ext}(I))_{\kappa}=A_{\kappa} \cap I$

Index

The bornological Grothendieck topology Rational number object \mathbb{Q}_{κ}

$\mathcal{P}(\mathbb{N})$ and Ω_{b}

The inclusion $1+1 \hookrightarrow \Omega_{b}$ is a open morphism of locales $(-)_{\kappa} \dashv$ Ext \dashv Cont $: \mathcal{P}(\mathbb{N}) \hookrightarrow \Omega_{b}$

- $\operatorname{Cont}(A)=\{f \in M ; \operatorname{Im}(f) \subseteq A\}$ (content)
- Ext $\circ(-)_{\kappa}=i d=$ Ext \circ Cont
- Cont \circ Ext $=\neg \neg$
- Frobenius identity: $(A \cap \operatorname{Ext}(I))_{\kappa}=A_{\kappa} \cap I$
Ω_{b} is isomorphic to the local of open set of the space $\beta \mathbb{N}$ Ω_{b} is the free regular compact local on the discrete local $\mathcal{P}(\mathbb{N})$.

Rational number object \mathbb{Q}_{κ}

Image finite sequences $s \in \mathbb{Q}_{\kappa}$

$$
\begin{aligned}
& \text { Display of } s: \mathbb{N} \longrightarrow \mathbb{Q}, \quad \operatorname{Im}(s)=\left\{x_{1}, \ldots, x_{k}\right\} \\
& \left(\mathbb{N}=\Sigma_{i} A_{i}, \quad A_{i}=s^{-1}\left(x_{i}\right), \quad s=\sum_{i} x_{i} e_{A_{i}}\right. \\
& I_{i}=\left\langle s=x_{i}\right\rangle=\operatorname{Cont}\left(A_{i}\right) \in \Omega_{b} \\
& I_{s}=\Sigma_{i} I_{i}=\{g \in M ; s \circ g=c t e\} \in \mathbb{J} \\
& I_{i}=\left(g_{i}\right), \operatorname{Im}\left(g_{i}\right)=A_{i} ; \quad \bigvee_{i} I_{i}=M
\end{aligned}
$$

Definition of $\alpha: \mathbb{Q}_{\kappa} \rightarrow E$ by its constant level $\alpha_{0}: \mathbb{Q} \rightarrow \Gamma(E)$

$$
\exists!\alpha(s), \quad \forall i, \quad \alpha(s) \circ g_{i}=\alpha_{0}\left(x_{i}\right)
$$

Parts of \mathbb{Q}_{κ}

Official: $\Omega_{b}^{\mathbb{Q}_{\kappa}}=\mathcal{B}\left(M \times \mathbb{Q}_{\kappa}, \Omega_{b}\right)$

$$
\bar{a}: M \times \mathbb{Q}_{\kappa} \rightarrow \Omega_{b}, \quad(\bar{a} \circ f)(g, s)=\bar{a}(f \circ g, s)
$$

Free sheaf:

$$
\hat{a}: M \times \mathbb{Q} \rightarrow \Omega_{b}
$$

Practical: $\Omega_{b}^{\mathbb{Q}_{\kappa}} \cong \Omega_{b}^{\mathbb{Q}}=\operatorname{Set}\left(\mathbb{Q}, \Omega_{b}\right)$

$$
a: \mathbb{Q} \rightarrow \Omega_{b}, \quad(a \circ f)(x)=\langle f \in a(x)\rangle
$$

From a to \bar{a} :

- $\hat{a}(f, x)=(a \circ f)(x)$
- $\bar{a}(f, s)=\bigvee_{i}\left(I_{i} \cap\left\langle f \in a\left(x_{i}\right)\right\rangle\right)$

Set theory of \mathbb{Q}_{κ}

$$
\begin{aligned}
& (=) \hookrightarrow \mathbb{Q}_{\kappa} \times \mathbb{Q}_{\kappa} \rightarrow \Omega_{b}, \quad\langle s=t\rangle=\bigvee_{x_{i}=y_{j}}\left(I_{i} \cap J_{j}\right) \\
& \quad \text { Free sheaf: } \mathbb{Q} \times \mathbb{Q} \rightarrow\{\emptyset, M\} \hookrightarrow \Omega_{b} \\
& \text { at : } \mathbb{Q}_{\kappa} \rightarrow \Omega_{b}^{\mathbb{Q}}, \quad \text { at }(s)(x)=\langle s=x\rangle= \begin{cases}I_{i}, & x=x_{i}, 1 \leq i \leq k \\
\emptyset, & x \notin \operatorname{Im}(s)\end{cases}
\end{aligned}
$$

Free sheaf: $a t_{0}: \mathbb{Q} \rightarrow \mathcal{P}(\mathbb{Q}), \quad a t_{0}(x)=\{x\}$
$e v: \Omega_{b}^{\mathbb{Q}} \times \mathbb{Q}_{\kappa} \rightarrow \Omega_{b}, \quad a(s): \quad l_{i} \cap a(s)=l_{i} \cap a\left(x_{i}\right), 1 \leq i \leq k$
Free sheaf: iv : $\Omega_{b}^{\mathbb{Q}} \times \mathbb{Q} \rightarrow \Omega_{b}, \quad e v(a, x)=a(x)$
$s \in a \Leftrightarrow l_{i} \subseteq a\left(x_{i}\right), \quad 1 \leq i \leq k \Leftrightarrow a t(s) \subseteq a$
$s<s^{\prime} \Leftrightarrow \forall i, j\left(I_{i} \cap I_{j}^{\prime} \neq \emptyset \Rightarrow x_{i}<x_{j}^{\prime}\right)$

Variations of $\Omega_{b}^{\mathbb{Q}}$

Recall:

- $a: \mathbb{Q} \rightarrow \Omega \subseteq \mathcal{P}(M)$,

$$
a(x)=\{f \in M ; x \in \alpha(f)\}
$$

- $\alpha: M \rightarrow \mathcal{P}(\mathbb{N})^{o p}$ monotone,
$\alpha(f)=\{x \in \mathbb{Q} ; f \in a(x)\}$
- $\mu: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{Q})^{\text {op }}$ monotone, $\mu(A)=\alpha(f), A=\operatorname{Im}(f), \mu(\emptyset)=\mathbb{Q}$

Now are equivalent:

- a factorizes throught Ω_{b}
- $\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{J} \Rightarrow \alpha(f)=\bigcap_{i} \alpha\left(f \circ g_{i}\right)$
- $A=\bigcup_{i} A_{i} \Rightarrow \mu(A)=\bigcap_{i} \mu\left(A_{i}\right),(1 \leq i \leq n)$

Set theory: $s \in \mu \Leftrightarrow x_{i} \in \mu\left(A_{i}\right), 1 \leq i \leq k$

The bornological Grothendieck topology
Rational number object \mathbb{Q}_{κ}
Extended real number object $\overline{\mathbb{R}}_{b}$ in \mathcal{B}

Extended real number object \mathbb{R}_{b} in \mathcal{B}

$\overline{\mathbb{R}}_{b} \subseteq \Omega_{b}^{\mathbb{Q}}: \phi(\alpha): \quad \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)$
Recall $\overline{\mathbb{R}}_{m}$ in MSet. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α monotone
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

Now $\overline{\mathbb{R}}_{b}$ in \mathcal{B}. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α factorizes through Ω_{b}
- $\overline{\mathbb{R}}_{b}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ preserves finite $\vee\}$

The bornological Grothendieck topology
Rational number object \mathbb{Q}_{κ}
Extended real number object $\overline{\mathbb{R}}_{b}$ in \mathcal{B}

Extended real number object $\overline{\mathbb{R}}_{b}$ in \mathcal{B}

$\overline{\mathbb{R}}_{b} \subseteq \Omega_{b}^{\mathbb{Q}}: \phi(\alpha): \quad \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)$
Recall $\overline{\mathbb{R}}_{m}$ in MSet. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α monotone
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

Now $\overline{\mathbb{R}}_{b}$ in \mathcal{B}. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α factorizes through Ω_{b}
- $\overline{\mathbb{R}}_{b}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ preserves finite $V\}$

Extended real number object $\overline{\mathbb{R}}_{b}$ in \mathcal{B}

$\overline{\mathbb{R}}_{b} \subseteq \Omega_{b}^{\mathbb{Q}}: \phi(\alpha): \quad \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)$
Recall $\overline{\mathbb{R}}_{m}$ in MSet. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α monotone
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

Now $\overline{\mathbb{R}}_{b}$ in \mathcal{B}. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α factorizes through Ω_{b}
- $\overline{\mathbb{R}}_{b}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ preserves finite $\vee\}$

Extended real number object $\overline{\mathbb{R}}_{b}$ in \mathcal{B}

$\overline{\mathbb{R}}_{b} \subseteq \Omega_{b}^{\mathbb{Q}}: \phi(\alpha): \quad \forall x, \forall y((x<y \rightarrow y \in \alpha) \leftrightarrow x \in \alpha)$
Recall $\overline{\mathbb{R}}_{m}$ in MSet. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α monotone
- $\overline{\mathbb{R}}_{m}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ monotone, $\mu(\emptyset)=-\infty\}$

Now $\overline{\mathbb{R}}_{b}$ in \mathcal{B}. Elements: $\alpha: M \rightarrow \mathcal{P}(\mathbb{Q})^{o p}$:

- $\forall f, \alpha(f)$ is an upper cut, and α factorizes through Ω_{b}
- $\overline{\mathbb{R}}_{b}=\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}} ; \mu$ preserves finite $\vee\}$
$\overline{\mathbb{R}}_{b}$ is non-separated $\left(\Gamma\left(\overline{\mathbb{R}}_{b}\right) \cong \overline{\mathbb{R}}\right)$
$\overline{\mathbb{R}}_{b}$ is an internal local.

The bornological Grothendieck topology

Relating \mathbb{R}_{b} and $\overline{\mathbb{R}}_{b}$

- $\mathbb{R}_{b} \hookrightarrow \overline{\mathbb{R}}_{b}, \quad s(A)=\sup _{n \in A} s(n)$
- $\left|-\left|: \mathbb{R}_{b} \rightarrow \overline{\mathbb{R}}_{b}^{+},|s|(A)=\sup _{n \in A}\right| s(x)\right|$
- $\overline{\mathbb{R}}_{b}^{+}=\left\{\mu: \mathcal{P}(\mathbb{N}) \rightarrow \overline{\mathbb{R}}^{+} ; \mu\right.$ preserves finite $\left.\vee\right\}$ (semiring)
$\overline{\mathbb{R}}_{b}^{+}$has the properties we need to study internal normed linear spaces with norms valued on $\overline{\mathbb{R}}_{b}^{+}$

To be continued ... CT200?

