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Introduction

Two fundamental approaches to higher-dimensional entities in category

theory:

◮ “Topological”: possession of sufficiently many good properties;

◮ “Algebraic”: specification of a sufficiently well-behaved structure.

First school:

◮ “Easy” to calculate with (and so get things done!);

◮ “Hard” to pin things down.

Second school:

◮ “Easy” to pin things down;

◮ “Hard” to calculate with.



Now:

◮ A useful organising tool in the “topological” approach is given by

Quillen model categories.

◮ So if we could “algebraise” the notion of Quillen model category. . .

◮ In such a way that all the model category structures we find in

nature are examples of this more algebraic notion. . .

◮ Then we would have a much better understanding of the link

between the two approaches.

We won’t do this today. . . but we will get some of the way there!



Weak factorisation systems

A weak factorisation system (w.f.s.) on a category C consists of two classes

of maps L and R, closed under retracts, and satisfying:

◮ Factorisation: every C-map can be decomposed as an L-map

followed by an R-map; and

◮ Weak orthogonality: f⋔ g for every f ∈ L and g ∈ R,

where f⋔ g means that for every commutative square

A
h

f

C

g

B
k

D

there exists a diagonal fill-in j : B → C making both triangles commute.



Intuitively:

◮ In an orthogonal factorisation system à la Freyd-Kelly,

factorisations of morphisms are unique up to isomorphism, and

diagonal fill-ins are unique;

◮ In a weak factorisation system, both factorisations and diagonal

fill-ins are unique up to “something weaker.”



Example

◮ A functor f : A → B between categories is an injective equivalence

if it is both injective on objects and an equivalence of categories.

◮ A functor g : C → D is an isofibration if cartesian liftings exist for

all isomorphisms in D.

◮ There is a weak factorisation system on Cat with

L = {injective equivalences} and R = {isofibrations}.



Now, the notion of weak factorisation system fails to be algebraic in two

ways:

◮ We do not choose an (L,R) factorisation for each morphism;

◮ We do not choose a diagonal fill-in for each square

A
h

f

C

g

B
k

D

with f ∈ L and g ∈ R.

However, we can overcome each of these by modifying the notion of

w.f.s.



Functorial realisations

For any category C, we write

◮ C→ for the arrow category of C;

◮ dom, cod : C→ → C for the domain and codomain functors;

◮ κ : dom ⇒ cod : C→ → C for the canonical natural transformation

with components κf = f : dom(f) → cod(f).

A functorial factorisation (F, λ, ρ) on a category C is given by a functor

F : C→ → C and a factorisation of κ as:

κ = dom
λ

F
ρ

cod.

A functorial realisation of a w.f.s. (L,R) on a category C is given by a

functorial factorisation (F, λ, ρ) such that each λf ∈ L and each ρf ∈ R.



Example

The {injective equivalence, isofibration} w.f.s. on Cat admits a

functorial realisation:

◮ Given a functor f : A → B, we write Ff for the iso-comma category

B ↓∼= f:- the full subcategory of the comma category B ↓ f spanned

by the isomorphisms.

◮ There is a functor λf : A → Ff sending a to (idfa : fa → fa);

◮ There is a functor ρf : Ff → B sending (θ : b → fa) to b.

And this assignment extends to a functorial factorisation (F, λ, ρ) on C,

with every λf an injective equivalence and every ρf an isofibration.



What remains to address is the failure to choose diagonal fill-ins between

L-maps and R-maps. To do this, let us change perspective:

◮ Instead of thinking of “being an L-map” as a property of a

morphism of C, let us think of it as extra structure on that

morphism:

◮ Where this extra structure specifies a coherent choice of diagonal

fill-in opposite every R-map.

◮ (And vice versa.)

To understand how we can do this, let us consider for a moment how an

orthogonal factorisation system works.



Motivation: orthogonal factorisation systems

An orthogonal factorisation system on a category C consists of two classes

of maps E and M, closed under retracts, and satisfying:

◮ Factorisation: every C-map can be decomposed as an E-map

followed by an M-map; and

◮ Orthogonality: f⊥ g for every f ∈ E and g ∈ M,

where f⊥ g means that for every commutative square

A
h

f

C

g

B
k

D

there exists a unique fill-in j : B → C making both triangles commute.



◮ For an orthogonal factorisation system on C, any choice of (E,M)

factorisation for each map f : X → Y:

f 7→ X
λf

Ff
ρf

Y.

extends in a unique way to a functorial realisation (F, λ, ρ) (because

of orthogonality).

◮ Moreover, such a functorial realisation determines the orthogonal

factorisation system completely, as follows:



◮ Any functorial factorisation (F, λ, ρ) on C determines a pointed

endofunctor (R,Λ) on C→, with

R







X

f

Y






=

Ff

ρf

Y,

and Λf : f → Rf given by

X

f

λf
Ff

ρf

Y
idY

Y.



◮ Dually, any functorial factorisation (F, λ, ρ) on C determines a

copointed endofunctor (L,Φ) on C→, with

L







X

f

Y






=

X

λf

Ff.

and Φf : Lf → f given by

X

λf

idX
X

f

Ff
ρf

Y.



Moreover, if (F, λ, ρ) is a functorial realisation of an orthogonal

factorisation system (E,M), then:

◮ The corresponding pointed endofunctor (R,Λ) underlies an

idempotent monad R = (R,Λ,Π) on C→;

◮ The corresponding copointed endofunctor (L,Φ) underlies an

idempotent comonad L = (L,Φ,Σ) on C→;

◮ The category of R-algebras is the full subcategory of C→ spanned

by the M-maps;

◮ The category of L-algebras is the full subcategory of C→ spanned

by the E-maps.



Natural weak factorisation systems

A natural weak factorisation system (n.w.f.s.) [Grandis-Tholen 2006] on a

category C is given by:

◮ A functorial factorisation (F, λ, ρ) on C;

◮ An extension of the corresponding copointed endofunctor (L,Φ)

to a comonad;

◮ An extension of the corresponding pointed endofunctor (R,Λ) to a

monad.

All subject to one additional axiom.

[From the above data, we can define a natural transformation

∆: LR ⇒ RL: and the extra axiom ensures that ∆ gives a distributive

law.]



Stated in a more obviously algebraic manner, a n.w.f.s. on a category C

is given by:

◮ A comonad L = (L,Φ,Σ) on C→;

◮ A monad R = (R,Λ,Π) on C→;

◮ A distributive law ∆: LR ⇒ RL.

satisfying some laws:

dom · L = dom, cod · L = dom · R, cod · R = cod;

dom ·Φ = 1dom , cod · Φ = κ · R, dom · Λ = κ · L, cod · Λ = 1cod ;

and dom · Σ = 1dom , cod · Σ = dom · ∆, dom ·Π = cod · ∆, cod · Π = 1cod .



This is our “algebraisation” of the notion of weak factorisation system:

◮ The property of being an L-map is replaced with the structure of

being a coalgebra for the comonad L;

◮ The property of being an R-map is replaced with the structure of

being an algebra for the monad R;

◮ The cofree functor C→ → L-Coalg sends a map of C to the left half

of its (L,R)-factorisation;

◮ The free functor C→ → R-Alg sends a map of C to the right half of

its (L,R)-factorisation;

◮ Liftings between L-coalgebras and R-algebras are built canonically

by interacting their (co)algebraic structure.



Example

Consider again the functorial factorisation

f = A
λf

B ↓∼= f
ρf

B

on Cat. This extends to a n.w.f.s. (L,R,∆), for which:

◮ Giving an L-coalgebra structure on f : A → B amounts to giving an

adjoint pseudo-inverse functor p : B → A for which the counit

isomorphism ǫ : pf ∼= idA is actually an identity;

◮ Giving an R-algebra structure on g : C → D amounts to making it

into a split isofibration.



Building weak factorisation systems

In a locally presentable category C, any set J of maps generates a weak

factorisation system (L,R) where:

R = { g : C → D | f⋔ g for all f ∈ J }

L = {f : A → B | f⋔ g for all g ∈ R} .

Intuitively:

◮ Each map f : A → B in J specifies a valid “boundary” shape (A)

together with a “cell” (B) which fills it: the map f being the

boundary inclusion.

◮ Each L-map in the resultant weak factorisation system is built by

recursively glueing in “J-cells” along their “boundaries” (and then

taking retracts).



Building natural weak factorisation systems

[G. 2007] For a locally presentable category C, any set J of maps in C

generates a natural weak factorisation system (L,R,∆) where:

◮ R-algebras are maps g : C → D of C equipped with chosen liftings

against every element of J.

◮ L-algebras are maps f : A → B of C equipped with a specification

of how we recursively glued in “J-cells” along their “boundaries”

(think of computads).

We say that (L,R,∆) is cofibrantly generated by J.

(NB: can weaken the local presentability requirement to deal with

categories like Top and Haus.)



Cofibrantly generated n.w.f.s.’s: abstractly

Let (L,R,∆), (L′,R′,∆′) be n.w.f.s.’s on C. A morphism of n.w.f.s.’s

between them is a natural transformation α between the underlying

functorial factorisations:

dom
λ λ′

F

ρ

α F′

ρ′

cod

which is compatible with the comonad structures of L and L
′ and the

monad structures of R and R
′.



We thus obtain a category Nwfs(C) of n.w.f.s.’s on C; and can now

define a “semantics” functor

G : Nwfs(C) → CAT/C→

sending a n.w.f.s. (L,R,∆) to the object

(L-Coalg
UL

−−→ C→)

of CAT/C→.



◮ Given a set J of arrows of C, we may view J as a discrete

subcategory of C→;

◮ Thus we obtain an object (J ,→ C→) of CAT/C→;

◮ And the n.w.f.s. cofibrantly generated by J is now obtained as a

reflection of (J ,→ C→) along the functor

G : Nwfs(C) → CAT/C→.

(So we have a n.w.f.s. (L,R,∆) on C, and a map

J
η

L-Coalg

UL

C→

of CAT/C→, which is universal amongst all such arrows.)



Cofibrantly generated n.w.f.s.’s: concretely

Suppose we are given a generating set J of maps in our (locally

presentable) category C, and a map g : C → D of C which we wish to

factorise:

◮ We consider the set Sg of all squares of the form

A
h

f

C

g

B
k

D

where f is in our generating set J.



◮ We can view each such element x ∈ Sg as a map

(hx, kx) : fx → g

of C→; so taking their copairing, we obtain a square

∑

x∈Sg
Ax

〈hx〉x∈Sg

∑

x fx

C

g

∑

x∈Sg
Bx

〈kx〉x∈Sg
D.



◮ Now we factorise this square as

∑

x∈Sg
Ax

〈hx〉x∈Sg

fx

C

λ1g

idC
C

g

∑

x∈Sg
Bx F1g

ρ1g
D.

where the left square is a pushout.

◮ We obtain in this way the component at g of a functorial

factorisation (F1, λ1, ρ1) on C.



Now let (R1,Λ1) be the pointed endofunctor on C→ corresponding to

(F1, λ1, ρ1). We have that:

◮ An algebra for (R1,Λ1) is precisely a morphism of C equipped with

a chosen lifting against every element of J;

◮ The algebraically-free monad on the pointed endofunctor (R1,Λ1),

if it exists, will have the same algebras as (R1,Λ1);

◮ And hence will give us the correct “monad” half of our n.w.f.s.

Moreover, the assumption of local presentability (or whatever) ensures

that the algebraically-free monad R on (R1,Λ1) exists (cf. [Kelly, 1980]).



This explains how we obtain the “monad” half of our n.w.f.s.: so what

about the “comonad” half ?

Let (L1,Φ1) be the copointed endofunctor on C→ corresponding to

(F1, λ1, ρ1). Then:

◮ (L1,Φ1) already underlies a comonad on C→ – it is a density (or

model-induced) comonad in the 2-category CAT/C.

◮ The “free monad” construction we used above can be refined to

carry the comonad structure of (L1,Φ1) along with it.

◮ (Rather than forming a free monoid in a monoidal category of

endofunctors, we form a free monoid in a monoidal category of

comonads).



In explicit terms, R sends g : C → D to the colimit of the following

transfinite sequence:

C
λ1g

g

F1g
λ2g

ρ1g

F2g

ρ2g

. . .

D
idD

D
idD

D . . .

where

◮ F2g is given by the following coequaliser:

F1g

λ1
ρ1g

F1(λ1g,idD)

F1(ρ1g) F2g

and λ2g is the common composite from left to right;

◮ Each subsequent Fα
+
g appears as a quotient of F1Fαg;

◮ For γ a limit ordinal, Fγg is the colimit of the previous stages.



Compare this with the “small object argument” used to construct

factorisations in cofibrantly generated w.f.s.’s.

We begin in the same manner, constructing the functorial factorisation

(F1, λ1, ρ1). . .

But now, for a map g : C → D, we form the following transfinite

sequence:

C
λ1g

g

F1g
λ1
ρ1g

ρ1g

F1F1g

ρ1
ρ1g

λ1
ρ1
ρ1g . . .

D
idD

D
idD

D . . .

And this sequence almost never converges! Instead, we are forced to

choose a point (sufficiently far along the sequence) at which we will stop.



Why is this interesting?

Let C = SSet and let J be the set of horn inclusions.

◮ J cofibrantly generates a n.w.f.s. (L,R,∆); and the monad R

restricts to a “fibrant replacement monad” T on C.

◮ AlgKan := T-Alg has:

◮ Objects: Kan complexes with chosen fillers for every horn;
◮ Morphisms: maps of SSet commuting strictly with the chosen

liftings.

◮ So we have a category of algebraic Kan complexes and strict maps:

which has nice categorical properties (e.g., complete and

cocomplete).



◮ We get a “pseudo map” category to accompany this “strict map”

category by factorising the forgetful functor U : AlgKan → SSet as

AlgKan
J
−→ AlgKanψ

V
−→ SSet

where J is bijective on objects and V is fully faithful.

◮ In fact, AlgKanψ is just the co-Kleisli category for the comonad on

T-Alg induced by the free/forgetful adjunction with SSet;

◮ Hence J has a left adjoint ( )′ : AlgKanψ → AlgKan.



Now let C = 2-Cat and let J be the following set of maps:

;

•

,

• •

• •

,

• •

• •

,

• •

• •

(cf. [Lack, 2002]).

◮ J cofibrantly generates a n.w.f.s. (L,R,∆); and the comonad L

restricts to a “cofibrant replacement comonad” Q on 2-Cat.



◮ This comonad Q classifies pseudomorphisms: for 2-categories A

and B, there is a bijection between

pseudo-functors A → B and 2-functors QA → B.

◮ Hence the co-Kleisli category of Q is the 2-category 2-Catψ of

2-categories and pseudo-functors.

◮ We can extend this example in an obvious way to 3-, 4-, . . . ,

ω-categories, and so obtain a workable definition of weak higher

dimensional functor, by defining

weak functors A → B to be strict functors QA → B.

Even better, the comonad structure on Q ensures that these weak

functors have a strictly associative composition!
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