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The Problem

Some cases are well-known (monoids 7→ monoidal
categories, etc.)

How do we categorify an arbitrary algebraic theory?

Does it matter how we present the theory we start with?
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Multicategories

=

Plain operads: multicategories with one object.

Sequences of sets P0,P1, . . . , with Pn being n-ary arrows.
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Symmetric operads

Symmetric multicategories

 =

For each σ ∈ Sn and a1 . . . ,an,b ∈ C, a map

σ · − : Hom C(a1, . . . ,an; b) → Hom C(aσ1, . . . ,aσn; b)

that plays nicely with composition in Sn and C.

Symmetric operads: symmetric multicategories with one
object.

For each σ ∈ Sn, a map σ · − : Pn → Pn, obeying obvious
axioms.
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We have an adjunction

SetN
F //

SymmOperad
U

⊥oo

U: forget composition and permutation structure

FΦ: permuted trees
n-ary vertices labelled by elts of Φn.

M. Gould Categorification for Linear Theories



Background
Definition and Results

Comparison with Other Approaches
Summary

Categorification
Operads
Presentations

We have an adjunction

SetN
F //

SymmOperad
U

⊥oo

U: forget composition and permutation structure

FΦ: permuted trees
n-ary vertices labelled by elts of Φn.

M. Gould Categorification for Linear Theories



Background
Definition and Results

Comparison with Other Approaches
Summary

Categorification
Operads
Presentations

We have an adjunction

SetN
F //

SymmOperad
U

⊥oo

U: forget composition and permutation structure

FΦ: permuted trees
n-ary vertices labelled by elts of Φn.

M. Gould Categorification for Linear Theories



Background
Definition and Results

Comparison with Other Approaches
Summary

Categorification
Operads
Presentations

Cat-operads

Instead of sets of arrows, we have categories.
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Strongly Regular and Linear theories

Strongly Regular “Linear”
Same variables on each side,
exactly once per side, in same
order

Same variables on each side,
exactly once per side, order
may vary

(a.b).c = a.(b.c) is OK (a.b).c = a.(b.c) is OK
a.b = b.a is not OK a.b = b.a is OK
a.(b+c) = a.b+a.c is not OK a.(b+c) = a.b+a.c is not OK
Models are algebras for a
plain operad

Models are algebras for a
symmetric operad
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Presentations

Definition
Let P be a symmetric operad.
A presentation 〈Φ|E〉 of P is a coequalizer

FE
//
// FΦ

π // P

where Φ,E ∈ SetN.
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Linear Theories with Presentations

How to categorify P = 〈Φ|E〉?
First thing we think of: a symmetric Cat-operad with

objects: permuted trees of things in Φ

an arrow τ1 → τ2 iff π(τ1) = π(τ2)

all diagrams commute.

Theory of commutative monoids + standard presentation
7→ classical symm. mon. cats.
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More abstractly

Recall π : FΦ → P is regular epi.

DFΦ
Dπ //

bijective on objects "" ""EE
EE

EEE
E DP

Q
== full + faithful

==|||||||

(D is “levelwise discrete category”)
Fact : ({B.O.O arrows}, {f+f arrows}) forms a factorization
system on Cat-SymmOperad , so Q is unique.

Definition

The categorification of P w.r.t. π, Wk(P)π, is Q.
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Unbiased Categorification

We didn’t need a presentation, only a regular epi
π : FΦ → P.

In particular, ǫ : FUP → P will do:

DFUP
Dǫ //

bijective on objects ## ##FF
FF

FF
FF

F DP

Q
== full + faithful

==|||||||

Definition

The unbiased categorification of P, UWk(P), is the
categorification of P w.r.t. the counit of the adjunction F ⊣ U.
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Presentation-Independence

Theorem
Let P be a symmetric operad.
For all Φ and all regular epis π : FΦ → P,

Wk(P)π ≃ UWk(P)

as a symmetric Cat-operad.

Corollary

The category of weak P-categories and weak P-functors (w.r.t.
π) is equivalent to the category of unbiased weak P-categories
and unbiased weak P-functors.
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Blackwell, Kelly and Power

Pseudo-algebras (Blackwell, Kelly and Power)

Agrees with our definition in strongly regular case.

Not so good outside strongly regular case.

e.g. a pseudo-algebra for the “free commutative monoid”
2-monad on Cat is a strictly symmetric weak mon. cat.

Symm. mon. cats are pseudo-algebras for the “free
symmetric strict mon. cat.” 2-monad.
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Summary

We can categorify any linear algebraic theory, without
making arbitrary choices.

Up to equivalence, the choice of presentation doesn’t
matter.

This gives the Right Thing in cases where other
approaches don’t.
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Further Work

Most theories aren’t linear.

Finite presentability for categorified theories.

“Weak thing ≃ strict thing”?
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Sketch Proof of Presentation-Independence

Sketch Proof of Theorem

Fact: regular epis in SymmOperad are pointwise
surjections.
So we can choose a section ψ of Uπ : UFΦ → UP.
Hence we get ψ̄ : FUP → FΦ.

FUP
ǫ //

ψ̄

��

P

1

��
FΦ

π // P

commutes by a transpose argument
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ω

��

FΦ
π //
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Similarly, we have F π̄ : FΦ → FUP:

FΦ
π //
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FUP
ǫ //
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Sketch Proof of Presentation-Independence

Hence,
Q // //

ω

��

P

1
��

Wk(P) // //

χ

��

P

1
��

Q // // P

commutes. So Q
1Q //
χω

// Q // P is a fork.
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Sketch Proof of Presentation-Independence

Lemma

In Cat-Σ-Operad, if P
α //

β
// Q

γ
// R is a fork, and γ is

levelwise full and faithful, then α ∼= β.

Hence χω ∼= 1Q, and similarly ωχ ∼= 1Wk(P). So Q ≃ Wk(P) as
a symmetric Cat-operad, as required.
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