The Categorification of a Linear Theory is Presentation-Independent

M. Gould

Department of Mathematics University of Glasgow

Category Theory 2007

Outline

- Categorification
- Operads
- Presentations
- 2 Definition and Results
 - Categorifying a Linear Theory with Presentation
 - Presentation-Independence Theorem
- Comparison with Other Approaches
 - Blackwell, Kelly and Power

★ ∃ ► ★ ∃ ► ► ∃ =

Background

Definition and Results Comparison with Other Approaches Summary Categorification Operads Presentations

Outline

Background

- Categorification
- Operads
- Presentations
- 2 Definition and Results
 - Categorifying a Linear Theory with Presentation
 - Presentation-Independence Theorem
- Comparison with Other Approaches
 Blackwell, Kelly and Power

Categorification Operads Presentations

The Problem

- Some cases are well-known (monoids → monoidal categories, etc.)
- How do we categorify an arbitrary algebraic theory?
- Does it matter how we present the theory we start with?

Background

Definition and Results Comparison with Other Approaches Summary Categorification Operads Presentations

Operads

・ロト・(型ト・(ヨト・(型ト・(ロト)))

Background Definition and Results

Comparison with Other Approaches

Categorificatio Operads Presentations

Operads

Plain operads: multicategories with one object.

• Sequences of sets P_0, P_1, \ldots , with P_n being *n*-ary arrows.

Categorification Operads Presentations

Operads

Plain operads: multicategories with one object.

• Sequences of sets P_0, P_1, \ldots , with P_n being *n*-ary arrows.

Background Definition and Results

Categorification Operads Presentations

Operads

- Plain operads: multicategories with one object.
- Sequences of sets P_0, P_1, \ldots , with P_n being *n*-ary arrows.

Categorification Operads Presentations

Symmetric operads

Symmetric multicategories

• For each $\sigma \in S_n$ and $a_1 \dots, a_n, b \in C$, a map

 $\sigma \cdot - : \operatorname{Hom}_{\mathcal{C}}(a_1, \ldots, a_n; b) \to \operatorname{Hom}_{\mathcal{C}}(a_{\sigma 1}, \ldots, a_{\sigma n}; b)$

- Symmetric operads: symmetric multicategories with one object.
- For each $\sigma \in S_n$, a map $\sigma \cdot : P_n \to P_n$, obeying obvious axioms.

Categorification Operads Presentations

Symmetric operads

• Symmetric multicategories

• For each $\sigma \in S_n$ and $a_1 \dots, a_n, b \in C$, a map

 $\sigma \cdot - : \operatorname{Hom}_{\mathcal{C}}(a_1, \ldots, a_n; b) \to \operatorname{Hom}_{\mathcal{C}}(a_{\sigma 1}, \ldots, a_{\sigma n}; b)$

- Symmetric operads: symmetric multicategories with one object.
- For each $\sigma \in S_n$, a map $\sigma \cdot : P_n \to P_n$, obeying obvious axioms.

Categorification Operads Presentations

Symmetric operads

Symmetric multicategories

• For each $\sigma \in S_n$ and $a_1 \dots, a_n, b \in C$, a map

 $\sigma \cdot - : \operatorname{Hom}_{\mathcal{C}}(a_1, \ldots, a_n; b) \to \operatorname{Hom}_{\mathcal{C}}(a_{\sigma 1}, \ldots, a_{\sigma n}; b)$

- Symmetric operads: symmetric multicategories with one object.
- For each $\sigma \in S_n$, a map $\sigma \cdot : P_n \to P_n$, obeying obvious axioms.

Categorification Operads Presentations

Symmetric operads

Symmetric multicategories

• For each $\sigma \in S_n$ and $a_1 \dots, a_n, b \in C$, a map

 $\sigma \cdot - : \operatorname{Hom}_{\mathcal{C}}(a_1, \ldots, a_n; b) \to \operatorname{Hom}_{\mathcal{C}}(a_{\sigma 1}, \ldots, a_{\sigma n}; b)$

- Symmetric operads: symmetric multicategories with one object.
- For each $\sigma \in S_n$, a map $\sigma \cdot : P_n \to P_n$, obeying obvious axioms.

Categorification Operads Presentations

We have an adjunction

- U: forget composition and permutation structure
- *F*Φ: permuted trees
 n-ary vertices labelled by elts of Φ_n.

Categorification Operads Presentations

We have an adjunction

- U: forget composition and permutation structure
- *F*Φ: permuted trees
 n-ary vertices labelled by elts of Φ_n.

Categorification Operads Presentations

• We have an adjunction

$$\operatorname{Set}^{\mathbb{N}} \xrightarrow{F}$$
SymmOperad

- U: forget composition and permutation structure
- *F*Φ: permuted trees
 n-ary vertices labelled by elts of Φ_n.

Categorification Operads Presentations

Cat-operads

Instead of sets of arrows, we have categories.

Categorification Operads Presentations

Strongly Regular and Linear theories

Strongly Regular	"Linear"
Same variables on each side,	Same variables on each side,
exactly once per side, in same	exactly once per side, order
order	may vary
(a.b).c = a.(b.c) is OK	(a.b).c = a.(b.c) is OK
a.b = b.a is not OK	a.b = b.a is OK
a.(b+c) = a.b+a.c is not OK	a.(b+c) = a.b+a.c is not OK
Models are algebras for a	Models are algebras for a
plain operad	symmetric operad

Categorification Operads Presentations

Presentations

Definition

Let *P* be a symmetric operad. A presentation $\langle \Phi | E \rangle$ of *P* is a coequalizer

$$FE \longrightarrow F \Phi \xrightarrow{\pi} P$$

where $\Phi, E \in \mathbf{Set}^{\mathbb{N}}$.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Outline

- Categorification
- Operads
- Presentations

2 Definition and Results

- Categorifying a Linear Theory with Presentation
- Presentation-Independence Theorem
- Comparison with Other Approaches
 Blackwell, Kelly and Power

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Linear Theories with Presentations

How to categorify $P = \langle \Phi | E \rangle$?

First thing we think of: a symmetric Cat-operad with

- objects: permuted trees of things in Φ
- an arrow $\tau_1 \rightarrow \tau_2$ iff $\pi(\tau_1) = \pi(\tau_2)$
- all diagrams commute.

Theory of commutative monoids + standard presentation \mapsto classical symm. mon. cats.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Linear Theories with Presentations

How to categorify $P = \langle \Phi | E \rangle$? First thing we think of: a symmetric **Cat**-operad with

- objects: permuted trees of things in Φ
- an arrow $\tau_1 \rightarrow \tau_2$ iff $\pi(\tau_1) = \pi(\tau_2)$
- all diagrams commute.

Theory of commutative monoids + standard presentation \mapsto classical symm. mon. cats.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Linear Theories with Presentations

How to categorify $P = \langle \Phi | E \rangle$?

First thing we think of: a symmetric Cat-operad with

- objects: permuted trees of things in Φ
- an arrow $\tau_1 \rightarrow \tau_2$ iff $\pi(\tau_1) = \pi(\tau_2)$
- all diagrams commute.

Theory of commutative monoids + standard presentation \mapsto classical symm. mon. cats.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Linear Theories with Presentations

How to categorify $P = \langle \Phi | E \rangle$?

First thing we think of: a symmetric Cat-operad with

- objects: permuted trees of things in Φ
- an arrow $\tau_1 \rightarrow \tau_2$ iff $\pi(\tau_1) = \pi(\tau_2)$
- all diagrams commute.

Theory of commutative monoids + standard presentation \mapsto classical symm. mon. cats.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

More abstractly

Recall $\pi : F\Phi \rightarrow P$ is regular epi.

(*D* is "levelwise discrete category")

Fact: ({B.O.O arrows}, {f+f arrows}) forms a factorization system on Cat-SymmOperad, so Q is unique.

Definition

The categorification of *P* w.r.t. π , Wk(*P*)_{π}, is Q.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

More abstractly

Recall $\pi : F\Phi \rightarrow P$ is regular epi.

(*D* is "levelwise discrete category") **Fact**: ({B.O.O arrows}, {f+f arrows}) forms a factorization system on **Cat-SymmOperad**, so Q is unique.

Definition The categorification of P w.r.t. π , Wk(P)_{π}, is Q.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

More abstractly

Recall $\pi : F\Phi \rightarrow P$ is regular epi.

(*D* is "levelwise discrete category") **Fact**: ({B.O.O arrows}, {f+f arrows}) forms a factorization system on **Cat-SymmOperad**, so *Q* is unique.

Definition

The categorification of *P* w.r.t. π , Wk(*P*)_{π}, is Q.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Unbiased Categorification

- We didn't need a presentation, only a regular epi *π* : *F*Φ → *P*.
- In particular, ϵ : *FUP* \rightarrow *P* will do:

Definition

The unbiased categorification of *P*, UWk(*P*), is the categorification of *P* w.r.t. the counit of the adjunction $F \dashv U$.

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Unbiased Categorification

- We didn't need a presentation, only a regular epi $\pi: F\Phi \rightarrow P$.
- In particular, $\epsilon : FUP \rightarrow P$ will do:

Definition

The unbiased categorification of P, UWk(P), is the categorification of P w.r.t. the counit of the adjunction $F \dashv U$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□■ のQ@

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Unbiased Categorification

- We didn't need a presentation, only a regular epi $\pi: F\Phi \rightarrow P$.
- In particular, $\epsilon : FUP \rightarrow P$ will do:

Definition

The unbiased categorification of *P*, UWk(*P*), is the categorification of *P* w.r.t. the counit of the adjunction $F \dashv U$.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ の々で

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Presentation-Independence

Theorem

Let P be a symmetric operad. For all Φ and all regular epis π : F $\Phi \rightarrow P$,

 $\textit{Wk(P)}_{\pi} \simeq \textit{UWk(P)}$

as a symmetric Cat-operad.

Corollary

The category of weak P-categories and weak P-functors (w.r.t. π) is equivalent to the category of unbiased weak P-categories and unbiased weak P-functors.

・ロト・(日)・(日)・(日)・(ロ)

Categorifying a Linear Theory with Presentation Presentation-Independence Theorem

Presentation-Independence

Theorem

Let P be a symmetric operad. For all Φ and all regular epis π : F $\Phi \rightarrow P$,

 $\textit{Wk(P)}_{\pi} \simeq \textit{UWk(P)}$

as a symmetric Cat-operad.

Corollary

The category of weak P-categories and weak P-functors (w.r.t. π) is equivalent to the category of unbiased weak P-categories and unbiased weak P-functors.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Blackwell, Kelly and Power

Outline

- Categorification
- Operads
- Presentations
- 2 Definition and Results
 - Categorifying a Linear Theory with Presentation
 - Presentation-Independence Theorem
- 3 Comparison with Other Approaches
 - Blackwell, Kelly and Power

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

Pseudo-algebras (Blackwell, Kelly and Power)

• Agrees with our definition in strongly regular case.

- Not so good outside strongly regular case.
- e.g. a pseudo-algebra for the "free commutative monoid" 2-monad on **Cat** is a *strictly* symmetric weak mon. cat.
- Symm. mon. cats are pseudo-algebras for the "free symmetric strict mon. cat." 2-monad.

Pseudo-algebras (Blackwell, Kelly and Power)

- Agrees with our definition in strongly regular case.
- Not so good outside strongly regular case.
- e.g. a pseudo-algebra for the "free commutative monoid"
 2-monad on Cat is a *strictly* symmetric weak mon. cat.
- Symm. mon. cats are pseudo-algebras for the "free symmetric strict mon. cat." 2-monad.

Pseudo-algebras (Blackwell, Kelly and Power)

- Agrees with our definition in strongly regular case.
- Not so good outside strongly regular case.
- e.g. a pseudo-algebra for the "free commutative monoid"
 2-monad on Cat is a *strictly* symmetric weak mon. cat.
- Symm. mon. cats are pseudo-algebras for the "free symmetric strict mon. cat." 2-monad.

▲□ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 ● の Q ()

- We can categorify any linear algebraic theory, without making arbitrary choices.
- Up to equivalence, the choice of presentation doesn't matter.
- This gives the Right Thing in cases where other approaches don't.

Further Work

- Most theories aren't linear.
- Finite presentability for categorified theories.
- "Weak thing \simeq strict thing"?

- Fact: regular epis in SymmOperad are pointwise surjections.
- So we can choose a section ψ of $U\pi : UF\Phi \rightarrow UP$.
- Hence we get $\bar{\psi} : FUP \to F\Phi$.

- Fact: regular epis in SymmOperad are pointwise surjections.
- So we can choose a section ψ of $U\pi : UF\Phi \rightarrow UP$.
- Hence we get $\bar{\psi} : FUP \rightarrow F\Phi$.

- Fact: regular epis in SymmOperad are pointwise surjections.
- So we can choose a section ψ of $U\pi : UF\Phi \rightarrow UP$.
- Hence we get $\bar{\psi} : FUP \to F\Phi$.

commutes by a transpose argument - 국민 > 국립 > 국립 > 국립 - 오직 @

- Fact: regular epis in SymmOperad are pointwise surjections.
- So we can choose a section ψ of $U\pi : UF\Phi \rightarrow UP$.
- Hence we get $\bar{\psi} : FUP \to F\Phi$.

٥

commutes by a transpose argument

ELE OQO

- Fact: regular epis in SymmOperad are pointwise surjections.
- So we can choose a section ψ of $U\pi : UF\Phi \rightarrow UP$.
- Hence we get $\bar{\psi} : FUP \to F\Phi$.
- ۲

• Similarly, we have $F\bar{\pi}: F\Phi \rightarrow FUP$:

۲

commutes by a transpose argument

□ > < E > < E > E = の < ⊙

• Similarly, we have $F\bar{\pi}: F\Phi \rightarrow FUP$:

۲

★ E ▶ ★ E ▶ E = のQQ

Sketch Proof of Presentation-Independence

Lemma

In **Cat-**
$$\Sigma$$
-**Operad**, if $P \xrightarrow{\alpha}_{\beta} Q \xrightarrow{\gamma} R$ is a fork, and γ is levelwise full and faithful, then $\alpha \cong \beta$.

Hence $\chi \omega \cong 1_Q$, and similarly $\omega \chi \cong 1_{Wk(P)}$. So $Q \simeq Wk(P)$ as a symmetric **Cat**-operad, as required.