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1. Introduction

Proper homotopy theory
Classification of non compact surfaces
B. Kerékjártó, Vorlesungen uber Topologie , vol.1, Springer-
Verlag (1923). Ideal point
H. Freudenthal, Über die Enden topologisher Räume und
Gruppen , Math. Zeith. 53 (1931) 692-713. End of a space

L.C. Siebenmann, The obstruction to finding a boundary
for an open manifold of dimension greater than five , Tesis,
1965.
Proper homotopy invariants at one end represented by a
base ray
H.J. Baues, A. Quintero, Infinite Homotopy Theory, K-
Monographs in Mathematics, 6. Kluwer Publishers, 2001.
Invariants associated at a base tree
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One of the main problems of the proper category is that there are few limits
and colimits.
Pro-spaces
J.W. Grossman, A homotopy theory of pro-spaces , Trans. Amer. Math.
Soc.,201 (1975) 161-176.

T. Porter, Abstract homotopy theory in procategories , Cahiers de topologie
et geometrie differentielle, vol 17 (1976) 113-124.

A. Edwards, H.M. Hastings, Every weak proper homotopy equivalence is
weakly properly homotopic to a proper homotopy equivalence , Trans.
Amer. Math. Soc. 221 (1976), no. 1, 239–248.
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Exterior spaces
J. Garćıa Calcines, M. Garćıa Pinillos, L.J. Hernández Paricio, A closed
model category for proper homotopy and shape theories, Bull. Aust. Math.
Soc. 57 (1998) 221-242.
J. Garćıa Calcines, M. Garćıa Pinillos, L.J. Hernández Paricio, Closed Sim-
plicial Model Structures for Exterior and Proper Homotopy Theory, Applied
Categorical Structures, 12, ( 2004) , pp. 225-243.
J. I. Extremiana, L.J. Hernández, M.T. Rivas , Postnikov factorizations at
infinity, Top and its Appl. 153 (2005) 370-393.

n-types
J.H.C. Whitehead, Combinatorial homotopy. I , II , Bull. Amer. Math.
Soc., 55 (1949) 213-245, 453-496.
Crossed complexes and crossed modules
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2. Proper maps, exterior spaces and
categories of proper and exterior 2-
types

A continuous map f : X → Y is said to be proper if for every closed

compact subset K of Y , f−1(K) is a compact subset of X .

Top topological spaces and continuous maps

P spaces and proper maps

P does not have enough limits and colimits

Definition 2.1 Let (X, τ ) be a topological space. An externology on

(X, τ ) is a non empty collection ε of open subsets which is closed under

finite intersections and such that if E ∈ ε , U ∈ τ and E ⊂ U then U ∈ ε.
An exterior space (X, ε ⊂ τ ) consists of a space (X, τ ) together with an

externology ε. A map f : (X, ε ⊂ τ )→ (X ′, ε′ ⊂ τ ′) is said to be exterior

if it is continuous and f−1(E) ∈ ε, for all E ∈ ε′.

The category of exterior spaces and maps will be denoted by E.
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N non negative integers, usual topology, cocompact externology
R+ [0,∞), usual topology, cocompact externology
EN exterior spaces under N
ER+ exterior spaces under R+
(X,λ) object in ER+ , λ: R+ → X a base ray in X
The natural restriction λ|N: N→ X is a sequence base in X

ER+ → EN forgetful functor

X , Z exterior spaces, Y topological space
X×̄Y , ZY exterior spaces
ZX topological space (box ⊃ topology ZX ⊃ compact-open)

Sq q-dimensional (pointed) sphere:

HomE(N×̄Sq, X) ∼= HomTop(Sq, XN)

HomE(R+×̄Sq, X) ∼= HomTop(Sq, XR+)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Definition 2.2 Let (X,λ) be in ER+ and an integer q ≥ 0 .
The q-th R+-exterior homotopy group of (X,λ):

πR+
q (X,λ) = πq(X

R+, λ)

The q-th N-exterior homotopy group of (X,λ):

πN
q (X,λ|N) = πq(X

N, λ|N)
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Definition 2.3 An exterior map f : (X,λ) → (X ′, λ′) is said to be a
weak [1, 2]-R+-equivalence ( weak [1, 2]-N-equivalence ) if πR+

1 (f ), πR+

2 (f )
(πN

1 (f ), πN
2 (f ) ) are isomorphisms.

ΣR+
class of weak [1, 2]-R+-equivalences

ΣN class of weak [1, 2]-N-equivalences

The category of exterior R+-2-types is the category of fractions

ER+[ΣR+
]−1,

the category of exterior N-2-types

ER+[ΣN]−1

and the corresponding subcategories of proper 2-types

PR+[ΣR+
]−1, PR+[ΣN]−1.
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Two objects X, Y have the same type if they are isomorphic in the corre-
sponding category of fractions

type(X) =type(Y ) .

Example 2.1 X = R2 , Y = R3:
2-type(X) =2-type (Y )

N-2-type(X) 6= N-2-type(Y ), R+-2-type(X) 6= R+-2-type(Y )

Example 2.2 X = R+ t (tnS3))/n ∼ ∗n , Y = R+:
2-type(X) =2-type (Y )

N-2-type(X) = N-2-type(Y ), R+-2-type(X) 6= R+-2-type(Y )

Example 2.3 X = R+ t (tnS1))/n ∼ ∗n , Y = R+:
2-type(X) 6=2-type (Y )

N-2-type(X) 6= N-2-type(Y ), R+-2-type(X) = R+-2-type(Y )
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3. Categorical groups

A monoidal category G = (G,⊗, a, I, l, r) consists of a category G, a
functor (tensor product) ⊗ : G × G → G, an object I (unit) and natural
isomorphisms called, respectively, the associativity, left-unit and right-unit
constraints

a = a
α,β,ω

: (α⊗ β)⊗ ω ∼−→ α⊗ (β ⊗ ω) ,

l = l
α

: I ⊗ α ∼−→ α , r = r
α

: α⊗ I ∼−→ α ,

which satisfy that the following diagrams are commutative

((α⊗ β)⊗ ω)⊗ τ a⊗1 //

a
��

(α⊗ (β ⊗ ω))⊗ τ
a

��

(α⊗ β)⊗ (ω ⊗ τ )

a **VVVVVVVVVVVVVVVVV
α⊗ ((β ⊗ ω)⊗ τ )

1⊗atthhhhhhhhhhhhhhhhh

α⊗ (β ⊗ (ω ⊗ τ )) ,
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(α⊗ I)⊗ β a //

r⊗1 ((QQQQQQQQQQQQ
α⊗ (I ⊗ β)

1⊗lvvmmmmmmmmmmmm

α⊗ β .
A categorical group is a monoidal groupoid, where every object has an
inverse with respect to the tensor product in the following sense:
For each object α there is an inverse object α∗ and canonical isomorphisms

(γr)α:α⊗ α∗ → I

(γl)α:α∗ ⊗ α→ I

CG categorical groups



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4. The small category E(E(4̄)×EC(∆/2)).
Realization and categorical group of a
presheaf

Objective: To give a more geometric version of the well known equivalence
between 2-types and categorical groups up to weak equivalences, which can
be adapted to exterior 2-types.

Find a small category S and the induced presheaf notion

(pointed spaces) adjunction (presheaves) adjuntion (categorical groups)

4.1. The small category

∆/2 is the 2-truncation of the usual category ∆ whose objects are ordered
sets [q] = {0 < 1 · · · < q} and monotone maps.

Now we can construct the pushouts

[0]
δ1 //

δ0
��

[1]

in r��

[1]
in l

// [1] +[0] [1]

[1]
in l //

in r
��

[1] +[0] [1]

��

[1] +[0] [1] // [1] +[0] [1] +[0] [1]
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C(∆/2) is the extension of the category ∆/2 given by the objects

[1] +[0] [1], [1] +[0] [1] +[0] [1]

and all the natural maps induced by these pushouts.

In order to have vertical composition and inverses up to homotopy we extend
this category with some additional maps and relations:
V : [2]→ [1] , V δ2 = id , V δ1 = δ1ε0 , (V δ0)

2 = id,
K: [2]→ [1] +[0] [1], Kδ2 = in l , Kδ0 = in r,
A: [2]→ [1] +[0] [1] +[0] [1], Aδ2 = (Kδ1 + id)Kδ1 , Aδ1 = (id +Kδ1)Kδ1,
Aδ0 = Aδ1δ0ε0.
The new extended category will be denoted by EC(∆/2) .

With the objective of obtaining a tensor product with a unit object and
inverses, we take the small category 4̄ generated by the object 1 and the
induced coproducts 0, 1, 2, 3, 4, all the natural maps induced by coproducts
and three additonal maps:
e0: 1→ 0, ν: 1→ 1 and µ: 1→ 2.
This gives a category E(4̄) .
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Consider the product category E(4̄)× EC(∆/2) .

The object (i, [j]), and morphisms idi× g , f × id[j] will be denoted by i[j]
and g , f , respectively.

We extend again this category by adding new maps:
a: 1[1] → 3[0] , r: 1[1] → 1[0] , l: 1[1] → 1[0] , γr: 1[1] → 1[0], γl: 1[1] →
1[0], t: 1[2]→ 2[0], p: 1[2]→ 4[0],
satisfying adequate relations to induce asociativity, identity and inverse iso-
morphisms for the associated categorical group structure. The commuta-
tivity of the pentagonal and triangular diagrams of a categorical group will
be a consequence of the maps and properties of p and t.
The new extended category will be denoted by

E(E(4̄)× EC(∆/2))
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4.2. The functor S ∧∆+: E(E(4̄)× EC(∆/2))→ Top∗

Now we take the covariant functors:
S:E(4̄) → Top∗, preserving coproducts and such that S(1) = S1,
S(µ):S1 → S1 ∨ S1 is the co-multiplication and S(ν):S1 → S1 gives
the inverse loop.
∆: ∆/2→ Top is given by ∆[p] = ∆p and extends to C(∆/2) preserving
pushouts, ∆([1] +[0] [1]) = ∆1 ∪∆0

∆1, et cetera.
We also consider adequate maps: ∆(V ), ∆(K) , ∆(A) that will give vertical
inverses, vertical composition and associativity properties. Then, one has
an induced functor ∆:EC(∆/2)→ Top.
Taking the functors ()+: Top → Top∗, X+ = X t {∗}, and the smash
∧: Top∗ ×Top∗ → Top∗, we construct an induced functor

S ∧∆+:E(4̄)× EC(∆/2))→ Top∗.
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Finally, we can give maps (S ∧ ∆+)(a), (S ∧ ∆+)(r), (S ∧ ∆+)(l), (S ∧
∆+)(γr), (S ∧ ∆+)(γl), (S ∧ ∆+)(p), (S ∧ ∆+)(t) to obtain the desired
functor

S ∧∆+: E(E(4̄)× EC(∆/2))→ Top∗.

S ∧∆+(1[0]) S ∧∆+(1[1]) S ∧∆+(1[2])
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4.3. Singular and realization functors. The categorical

group of a presheaf

S ∧∆+: E(E(4̄)× EC(∆/2))→ Top∗ induces a pair of adjoint functors

Sing: Top∗ → SetE(E(4̄)×EC(∆/2)))op

| · |: SetE(E(4̄)×EC(∆/2)))op → Top∗

We will denote by
SetE(E(4̄)×EC(∆/2)))op

pp

the category of presheaves X : (E(E(4̄) × EC(∆/2)))op → Set such that
X(i,−) transforms the pushouts of C(∆/2) in pullbacks and X(−, [j])
transforms the coproducts of 4̄ in products.
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Given a presheaf X in SetE(E(4̄)×EC(∆/2)))op
pp one can define its fundamental

categorical group G(X) as a quotient object. This gives a functor

G: SetE(E(4̄)×EC(∆/2)))op
pp → CG

Proposition 4.1 The functor G: SetE(E(4̄)×EC(∆/2)))op
pp → CG is left ad-

joint to the forgetful functor U : CG→ SetE(E(4̄)×EC(∆/2)))op
pp .

The composites ρ2 = G Sing , B = | · |U

ρ2: Top∗ → CG

B: CG→ Top∗

will be called the fundamental categorical group and classifying functors.
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5. The categorical groups ρ2, ρ
N
2 , ρ

R+
2 and

long exact sequences

For a given pointed topological space X , we can consider its fundamental
categorical group

ρ2(X) = G Sing(X)

and its higher dimensional analogues ρq+2(X) = G Sing Ωq(X), where Ω is
the loop functor.
Given an object (X,λ) in the category ER+, one has the pointed spaces
(XR+, λ) , (XN, λ|N) and the restriction fibration res: XR+ → XN, res(µ) =
µ|N . The fibre is the space

Fres = {µ ∈ XR+| µ|N = λ|N}
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Denote µi = µ|[i,i+1] . The maps ϕ: (Fres, λ)→ Ω(XN, λ), φ: Ω(XN, λ)→
(Fres, λ), given by ϕ(µ) = (µ0λ

−1
0 , µ1λ

−1
1 , · · ·) for µ ∈ Fres and φ(α) =

(α0λ0, α1λ1, · · ·) for α ∈ Ω(XN, λ), determine a pointed homotopy equiv-
alence.
Therefore, the pointed map res: XR+ → XN induces the fibre sequence

· · · → Ω2(XN)→ Ω2(XN)→ Ω(XR+)→ Ω(XN)→ Ω(XN)→ XR+ → XN

We define the R+-fundamental exterior categorical group by

ρR+

2 (X) = ρ2(X
R+)

and the N-fundamental exterior categorical group by

ρN
2 (X) = ρ2(X

N) .

In the obvious way we have the higher analogues and we can consider fun-
damental groupoids for the one dimensional cases

ρR+

1 (X) = ρ1(X
R+), ρR+

1 (X) = ρ1(X
R+).

All these exterior homotopy invariants are related as follows:
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Theorem 5.1 Given an exterior space X with a base ray λ: R+ → X
there is a long exact sequence

· · · → ρR+
q (X)→ ρN

q (X)→ ρN
q (X)→ ρR+

q−1(X)→

· · · → ρR+

3 (X)→ ρN
3 (X)→ ρN

3 (X)→ ρR+

2 (X)→ ρN
2 (X)→ ρN

2 (X)→
ρR+

1 (X)→ ρN
1 (X)

which satifies the following properties:

1. ρN
1 (X), ρR+

1 (X) have the structure of a groupoid.

2. ρN
2 (X), ρR+

2 (X) have the structure of a categorical group.

3. ρN
3 (X), ρR+

3 (X) have the structure of a braided categorical group.

4. ρN
q (X), ρR+

q (X) have the structure of a symmetric categorical group for
q ≥ 4 .
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6. Exterior N-2-types and global towers
of categorical groups

C
pro C pro-objects X in C (X : J → C functor, J left-filtering small cate-
gory)

pro+C global pro-objects Y in C (Y :K → C functor, K left-filtering
small category with final object, pro-morphisms compatible with the final
object)

tow C towers X in C (X : N→ C functor, N natural numbers)

tow+C global towers Y in C (Y : N → C functor, N natural numbers
with the final object 0)

For Top∗ and CG, we have

pro+Top∗, pro+CG, tow+Top∗, tow+CG
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The fundamental categorical group and classifying functors

ρ2: Top∗ → CG, B: CG→ Top∗

induce

pro+ρ2: pro+Top∗ → pro+CG, tow+ρ2: tow+Top∗ → tow+CG

pro+B: pro+CG→ pro+Top∗, tow+B: tow+CG→ tow+Top∗
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Given a exterior space (X,λ) ∈ ER+ the externology εX can be seen as a
left-filtering category with a final object and we can consider the functor

ε(X): εX → Top∗, ε(X)(E) = (E ∪ [0,∞)/t ∼ λ(t), 0), t ∈ λ–1(E)

This induces a full embedding

ε: ER+ → pro+Top∗

An exterior space is said to be first countable at infinity if there is a countable
base of the externology

X = E0 ⊃ E1 ⊃ E2 ⊃ · · ·

ER+
fc rayed spaces first countable at infinity. There is an induced functor

ε: ER+

fc → tow+Top∗
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We also can consider the Telescopic construction Tel: tow+Top∗ → ER+

fc
Using all these functors one can prove

Theorem 6.1 The functors tow+ρ2ε and Tel tow+B induce an equiva-
lence of categories

ER+

fc [ΣN]−1 → tow+CG[Σ]−1

where Σ is the class of maps in tow+CG given by the closure of the level
weak equivalences.
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7. Exterior R+-2-types and the R+-
fundamental exterior categorical
group

Consider the functor p: Top∗ → ER+ given by

p(X) = R+×̄X

The functor p induces a covariant functor

p(S ∧∆+):E(E(4̄)× EC(∆/2))→ ER+

and the corresponding singular an realization functors

SingR+: ER+ → SetE(E(4̄)×EC(∆/2)))op
pp

| · |R+: SetE(E(4̄)×EC(∆/2)))op
pp → ER+
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On the other hand, we also have the adjunction

G: SetE(E(4̄)×EC(∆/2)))op
pp → CG

U : CG→ SetE(E(4̄)×EC(∆/2)))op
pp

Taking the composites GSingR+ ∼= ρR+

2 and BR+ = | · |R+U , one has that

Theorem 7.1 The functors ρR+

2 and BR+ induce an equivalence of cate-
gories

ER+[ΣR+
]−1 → CG[Σ]−1

where Σ is the class weak equivalences (equivalences) in CG .
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8. Exterior N-2-types and the N-
fundamental exterior categorical
group

Consider the functor c: Top∗ → ER+ given by

c(X) = (R+ t (tnX))/n ∼ ∗n

where n ≥ 0 is a natural number and ∗n denotes the base point of the
corresponding copy of X .
The functor c induces the covariant functor

c(S ∧∆+):E(E(4̄)× EC(∆/2))→ ER+

and the corresponding singular an realization functors

SN: ER+ → SetE(E(4̄)×EC(∆/2)))op
pp

RN: SetE(E(4̄)×EC(∆/2)))op
pp → ER+

but the composites G SN ∼= ρN
2 and RNU does not induce an equivalence

of exterior N-2-types and categorical groups up to equivalence.
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Take an exterior rayed space X (for example, X = R+×̄S1 ) such that

limtow π1ε(X) 6= 1

We can prove that the space RNUρN
2 (X) satisfies that

limtow π1ε(X) = 1

This implies that X and RNUρN
2 (X) have different N-1-type and then dif-

ferent N-2-type.
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Open question: Is it possible to modify the notion of categorical group
to obtain an new algebraic model for N-2-types?

A partial answer is obtained by taking a monoid M of endomorphisms of the
exterior space R+ t (tnS1))/n ∼ ∗n, and a new extension of the category
4̄ obtained by adding an arrow for each element of the monoid. This gives
a new type of presheaf that will induce a categorical group enriched with
an action of the monoid M .

We think that the new enriched categorical group and realization functors
will give an equivalence of a large class of exterior N-2-types and the cor-
responding M-categorical groups. This class of exterior N-2-types contains
the subcategory of proper N-2-types. Consequently, we will obtain a cate-
gory of algebraic models for proper N-2-types.
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