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Motivation

“The kinds of structures which actually arise in the practice of
geometry and analysis are far from being ‘arbitrary’ . . . , as
concentrated in the thesis that fundamental structures are
themselves categories.”

F. William Lawvere.
Metric spaces, generalized logic, and closed categories.
Rend. Sem. Mat. Fis. Milano, 43:135–166 (1974), 1973.
Also in: Repr. Theory Appl. Categ. 1:1–37, 2002.



Examples

Metric spaces, (P+ = [0,∞]op,+,0)

X with d : X × X −→ P+ such that

0 ≥ d(x , x), d(x , y) + d(y , z) ≥ d(x , z).

Categories, (Set,×,1)

X with hom : X × X −→ Set such that

1 −→ hom(x , x), hom(x , y) × hom(y , z) −→ hom(x , z)

and . . . (commutative diagrams in Set).

Ordered sets, (2 = {false, true},&, true)

X with ≤: X × X −→ 2 such that

true |= (x ≤ x), (x ≤ y & y ≤ z) |= x ≤ z.
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The ordered category V-Rel

Quantale
V = (V,⊗, k ) commutative unital quantale with u ⊗ a hom(u, ).

V-Rel

I Objects: sets X , Y ,. . .
I Morphisms: V-relations r : X × Y −→ V; we write

r : X−→7 Y
I Composition: (with s : Y−→7 Z)

s · r(x , z) =
∨
y∈Y

r(x , y) ⊗ s(y , z)

I Involution: r◦ : Y−→7 X where r◦(y , x) = r(x , y) for
r : X−→7 Y .

I For each Set-map f : f a f◦.
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V-Cat

V-categories

A V-category is a pair (X ,a : X−→7 X ) such that

k ≤ a(x , x) a(x , y) ⊗ a(y , z) ≤ a(x , z)

respectively

idX ≤ a a · a ≤ a

V-functors
A V-functor f : (X ,a) −→ (Y ,b) is a Set-map such that

a(x , x′) ≤ b(f (x), f (x′)) respectively f · a ≤ b · f .
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M. Barr 1970

Topological spaces 2 = (2,&, true), U = (U,e,m)

X with −→: UX−→7 X such that

true |= (
�
x −→ x), (X −→ x& x −→ x) |= mX (X) −→ x.

Here −→: UX−→7 X is naturally extended to −→: UUX−→7 UX .

In fact, U : Set −→ Set can be extended to a functor
U : Rel −→ Rel such that e and m become oplax.
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Some facts about V-categories

1. V-Cat is a monoidal closed category.

2. V = (V,hom) is a (complete) V-category.
3. ϕ : X−→◦ Y is a V-module iff ϕ : Xop

⊗ Y −→ V is a
V-functor.

4. In particular a : Xop
⊗ X −→ V is a V-functor. Its mate

y = paq : X −→ VXop
is fully faithful. More general, we have

[y(x), ϕ] = ϕ(x).

5. . . .



Some facts about V-categories

1. V-Cat is a monoidal closed category.
2. V = (V,hom) is a (complete) V-category.

3. ϕ : X−→◦ Y is a V-module iff ϕ : Xop
⊗ Y −→ V is a

V-functor.
4. In particular a : Xop

⊗ X −→ V is a V-functor. Its mate
y = paq : X −→ VXop

is fully faithful. More general, we have

[y(x), ϕ] = ϕ(x).

5. . . .



Some facts about V-categories

1. V-Cat is a monoidal closed category.
2. V = (V,hom) is a (complete) V-category.
3. ϕ : X−→◦ Y is a V-module iff ϕ : Xop

⊗ Y −→ V is a
V-functor.

4. In particular a : Xop
⊗ X −→ V is a V-functor. Its mate

y = paq : X −→ VXop
is fully faithful. More general, we have

[y(x), ϕ] = ϕ(x).

5. . . .



Some facts about V-categories

1. V-Cat is a monoidal closed category.
2. V = (V,hom) is a (complete) V-category.
3. ϕ : X−→◦ Y is a V-module iff ϕ : Xop

⊗ Y −→ V is a
V-functor.

4. In particular a : Xop
⊗ X −→ V is a V-functor. Its mate

y = paq : X −→ VXop
is fully faithful. More general, we have

[y(x), ϕ] = ϕ(x).

5. . . .



Topological theory

Definition
A topological theory T is a triple T = (T,V, ξ) consisting of

a monad T = (T ,e,m), a quantale V = (V,⊗, k ) and
a map ξ : TV −→ V

such that

(Me) idV ≤ ξ · eV, (Mm) ξ · Tξ ≤ ξ ·mV,

(Q⊗) T (V × V)
T (⊗) //

〈ξ·Tπ1,ξ·Tπ2〉

��
≤

TV

ξ
��

V × V
⊗

// V,

(Qk) T1

!
��

Tk //

≤

TV

ξ
��

1 k
// V,

(Q∨) (ξX )X : PV −→ PVT is a natural transformation.
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Examples

I IV = (I,V, idV) is a strict topological theory.

I U2 = (U,2, ξ2) is a strict topological theory.
I UP+ = (U,P+ , ξP+ ) is a strict topological theory, where

ξP+ : UP+ −→ P+ , x 7−→ inf{v ∈ P+ | x ∈ T ([0, v])}.

I TV = (T,V, ξV ) where T satisfies (BC), V is (ccd) and

ξV : TV −→ V, x 7−→
∨
{v ∈ V | x ∈ T (↑v)}.

I L⊗V = (L,V, ξ⊗) is a strict topological theory where

ξ⊗ : LV −→ V, (v1, . . . , vn) 7−→ v1 ⊗ . . . ⊗ vn.
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Extending T : Set −→ Set to V-Rel

We define Tξ : V-Rel −→ V-Rel as follows:

Given r : X × Y −→ V, we put

Tξr : TX × TY −→ V

(x, y) 7−→
∨{

ξ · Tr(w)
∣∣∣∣ w ∈ T (X × Y ),w 7−→ x, y

}
,

that is,

T (X × Y )

ξ·Tr
$$III

III
III

I

τX ,Y // TX × TY

T
ξ
r

zz
V

≤
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Properties of Tξ

Theorem
The following statements hold.

1. For each V-relation r : X−→7 Y, Tξ(r
◦) = Tξ(r)◦.

2. For each function f : X −→ Y, Tf ≤ Tξ f and Tf◦ ≤ Tξ f
◦.

3. Tξs · Tξr ≤ Tξ(s · r) provided that T satisfies (BC), and
Tξs · Tξr ≥ Tξ(s · r) provided that (Q=

⊗
) holds.

4. The natural transformations e and m become op-lax, that
is, for every V-relation r : X−→7 Y we have the inequalities:

X
eX //

_r
��

≤

TX
_T

ξ
r

��
Y eY

// TY

TTX
mX //

_T
ξ
T
ξ
r

��
≤

TX
_T

ξ
r

��
TTY mY

// TY
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Kleisli convolution

T-Rel

I objects: sets X , Y , . . .

I morphisms: T-relations a : X −⇀7 Y , i.e. V-relations
a : TX−→7 Y .

I The Kleisli convolution of a : X −⇀7 Y and b : Y −⇀7 Z is
defined as

b ◦ a = b · Tξa ·m
◦

X .

Some properties

We have
I a ◦ e◦X ≥ a and e◦Y ◦ a ≥ a.
I a ◦ (b ◦ c) ≥ a ◦ b ◦ c ≤ (a ◦ b) ◦ c.
I If T is a strict theory, then Kleisli convolution is associative.
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V-Rel vs. T-Rel

We call a : X −⇀7 Y unitary if e◦Y ◦ a = a and a ◦ e◦X = a.

We consider now

( )# : V-Rel −→ T-Rel, r : X−→7 Y 7−→ r# = eY · Tξr : X −⇀7 Y

We have
I (1Y )# ◦ a = e◦Y ◦ a and a ◦ (1X )# = a ◦ e◦X .
I r# is unitary.
I T satisfies (BC) ⇒ s# ◦ r# ≤ (s · r)#.
I (Q=

⊗
) ⇒ s# ◦ r# ≥ (s · r)#.
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T-Cat

T-category

A T–category is a pair (X ,a : TX−→7 X ) such that

k ≤ a(eX (x), x), Tξa(X, x) ⊗ a(x, x) ≤ a(mX (X), x) respectively

idX ≤ a · eX , a · Tξa ≤ a ·mX respectively

e◦X ≤ a, a ◦ a ≤ a.

T-functor
A map f : (X ,a) −→ (Y ,b) is a T-functor if

a(x, x) ≤ b(Tf (x), f (x)) respectively f · a ≤ b · Tf .
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Examples

I For each quantale V, IV-Cat � V-Cat.

I In particular, I2-Cat � Ord and IP+
-Cat � Met.

I U2-Cat � Top.
I UP+

-Cat � App.

I L
⊗

V
-Cat � V-MultiCat.

From now on we consider a strict theory T = (T,V, ξ).
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Some functors

We have an embedding SetT ↪→ T-Cat and put |X | = (TX ,mX ).

We have ( )# a S where

S : T-Cat −→ V-Cat, ( )# : V-Cat −→ T-Cat.
(X ,a) 7−→ (X ,a · eX ) X = (X , r) 7−→ X# = (X , r#)

Tξ induces an endofunctor

Tξ : V-Cat −→ V-Cat, (X , r) 7−→ (TX ,Tξr)

and we have
T-Cat

M
&&MMMMM

V-Cat

( )# 88qqqqq

T
ξ

// V-Cat

where M : T-Cat −→ V-Cat, (X ,a) 7−→ (TX ,Tξa ·m
◦

X ).
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The T-category V

We define

homξ : TV × V −→ V, (v, v) 7−→ hom(ξ(v), v).

Then V = (V,homξ) is a T-category.

Some maps

1.
∧

: VI
−→ V is a T-functor.

2. hom(v , ) : V −→ V is a T-functor for each v ∈ V which
satisfies ξ · Tv ≥ v ·!.

3. v ⊗ : V −→ V is a T-functor for each v ∈ V which satisfies
ξ · Tv ≤ v ·!.
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Compatible monoidal structures on V

We assume that a monoidal structure (V,⊕, l) on V is given
such that

1. (u1 ⊕ v1) ⊗ (u2 ⊕ v2) ≤ (u1 ⊗ u2) ⊕ (v1 ⊗ v2),
2. l ⊗ l ≤ l and k ≤ k ⊕ k ,

3. T (V × V)
T (⊕) //

〈ξ·Tπ1,ξ·Tπ2〉

��
≥

TV

ξ
��

V × V
⊕

// V,

and T1

!
��

Tl //

≥

TV

ξ
��

1 l
// V.

Examples

I ⊕ = ⊗ (since T is strict).
I ⊕ = ∧.
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Monoidal structures on V-Rel

Extending ⊕ to V-Rel

I For sets X and Y we put X ⊕ Y = X × Y .
I For V-relations r : X−→7 X ′ and s : Y−→7 Y ′ we define

r ⊕ s : X × Y−→7 X ′ × Y ′ by

r ⊕ s((x , y), (x′, y′)) = r(x , x′) ⊕ s(y , y′).

Then ⊕ : V-Rel × V-Rel −→ V-Rel is a lax functor, is associative
and with l : 1−→7 1 as neutral element.

Of course, we obtain a monoidal structure on V-Cat where
(X ,a) ⊕ (Y ,b) = (X × Y ,a ⊕ b) with neutral element E = (1, l).
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I. Moerdijk, 1999

Hopf monad

A Hopf monad on a monoidal category E is a monad
T = (T ,e,m) on E equipped with a natural transformation

τ : T ( ⊗ ) −→ T ( ) ⊗ T ( )

and a map θ : T (N) −→ N such that . . .

Theorem
There is a bijective correspondence between such structures τ,
θ on T and liftings of the monoidal structure on E to ET.

Here:
(X , α) ⊗ (Y , β) = (X ⊗ Y , (α ⊗ β) · τX ,Y ).
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Lax Hopf monad

With τX ,Y : T (X × Y ) −→ TX × TY and ! : T1 −→ 1, in our
situation we have

T (X ⊕ Y )

_T
ξ

(r⊕s)
��

τX ,Y //

≤

TX ⊕ TY
_T

ξ
r⊕T

ξ
s

��
T (X ′ ⊕ Y ′) τX′ ,Y′

// TX ′ ⊕ TY ′

and T1
! //

_T
ξ
l

��
≤

1
_l
��

T1 !
// 1

making (Tξ ,e,m) a lax Hopf monad on V-Rel.



Extending ⊕ to T-Rel. . .

Let r : X −⇀7 X ′ and s : Y −⇀7 Y ′ be T-relations. We put
X � Y = X × Y and define r � s : X × Y −⇀7 X ′ × Y ′ as

r � s = (r ⊕ s) · τX ,Y .

and l! : 1−⇀7 1 as the composite T1 !
−→ 1 l

−→7 1.

Then
I e◦X � e◦Y ≥ e◦X×Y ,
I (r ′ � s′) ◦ (r � s) ≤ (r ′ ◦ r) � (s′ ◦ s).

For ( )# : V-Rel −→ T-Rel we have
I (r ⊕ r ′)# ≤ r# � r ′#.
I l# ≤ l!.
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. . . and to T-Cat

Theorem
Each monoidal structure (V,⊕, l) on V compatible with T defines
a monoidal structure on T-Cat where
(X ,a) ⊕ (Y ,b) = (X × Y ,a � b) with neutral element E = (1, l!).

I For ( )# : V-Cat −→ T-Cat we have T-functors

(X ⊕ Y )# −→ X# ⊕ Y# and E# −→ E.

I For S : T-Cat −→ V-Cat we have T-isomorphisms

S(X ⊕ Y ) −→ S(X ) ⊕ S(Y ) and S(E) −→ E.

I For M : T-Cat −→ V-Cat we have T-functors

τX ,Y : M(X ⊕ Y ) −→ M(X ) ⊕M(Y ) and ! : M(E) −→ E.
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Closedness of T-Gph

Assume now that u ⊕ : V→ V has right adjoint u( : V→ V.

Let X = (X ,a), Y = (Y ,b) be T-graphs. Then

X ( Y = {f : X −→ Y | f : X ⊕G −→ Y is a T-functor}

(where G = (1,e◦X )) with structure

a ( b(p,h) =
∧

q∈T (X×(X(Y )),x∈X
q7−→p

(a(TπX (q), x)( b(Tev(q),h(x))).

is a T-graph as well. In fact, X ⊕ a X ( .
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Closed T-categories

Lemma

T (V × V)
T (⊕) //

〈ξ·Tπ1,ξ·Tπ2〉 ��

TV
ξ ⇒

��
V × V

⊕

// V

T (X × Y )
_T

ξ
(r⊕s)

��

τX ,Y // TX × TY
_T

ξ
r⊕T

ξ
s

��
T (X ′ × Y ′)τX′ ,Y′

// TX ′ × TY ′.

Theorem
(V,⊕, l) closed, strictly compatible with T; X = (X ,a) ∈ T-Cat.

1. a ( b is transitive for each T-category Y = (Y ,b) if

(∗)
∨
x∈TX

(Tξa(X, x) ⊕ u) ⊗ (a(x, x0) ⊕ v) ≥ a(mX (X), x0) ⊕ (u ⊗ v).

2. If a ( homξ is transitive, then (∗) for all X ∈ T2X, x0 ∈ X
and u, v ∈ V with ξ · Tu = u·! and ξ · Tv ≤ v ·!.
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Closed T-categories

Corollary

Consider ⊕ = ⊗. Let X = (X ,a) be a T-category. Then
1. If a · Tξa = a ·mX , then hom(a,b) is transitive for each

T-category Y = (Y ,b).
2. a · Tξa = a ·mX provided that hom(a,homξ) is transitive.

3. Each Eilenberg-Moore algebra (X , α) is closed in T-Cat.
4. If TeX · eX = m◦X · eX , then X# = (X , r#) is closed for each

V-category X = (X , r).
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Compactness

I Degree of compactness: comp(X ) =
∧
x∈TX
∨

x∈X a(x, x).

I X is ⊕-compact if comp(X ) ≥ l

Theorem
Let X = (X ,a) be a T-category. TFAE.
(i). X is ⊕-compact.
(ii).
∨

: (X ( V) −→ V is a T-functor (where X ⊕ a X ( ).
(iii). γ : |X |l −→ V, x 7−→

∨
x∈X a(x, x) is a T-functor.

Corollary

A T-category X = (X ,a) is ⊕-compact iff πY : Y ⊕ X −→ Y is
closed for each T-category Y = (Y ,b).
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T-modules

A T-module ϕ : (X ,a)−⇀◦ (Y ,b) is a T-relation ϕ : X −⇀7 Y such
that

b ◦ ϕ ≤ ϕ and ϕ ◦ a ≤ ϕ.

Each T-functor f : (X ,a) −→ (Y ,b) defines T-modules f∗ a f ∗:

f∗ : (X ,a)−⇀◦ (Y ,b); f∗(x, y) = b(Tf (x), y)

f ∗ : (Y ,b)−⇀◦ (X ,a); f ∗(y, x) = b(y, f (x))

f : (X ,a) −→ (Y ,b) is fully faithful iff a = (idX )∗ = f ∗ ◦ f∗.
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Liftings and extensions

In V-Rel
For ψ : X−→7 Z , the composition maps

· ψ : V-Rel(Z ,Y ) −→ V-Rel(X ,Y ) and
ψ · : V-Rel(Y ,X ) −→ V-Rel(Y ,Z)

have respective right adjoints

� ψ : V-Rel(X ,Y ) −→ V-Rel(Z ,Y ) and
ψ� : V-Rel(Y ,Z) −→ V-Rel(Y ,X ).

X �ϕ //

_ψ
��

Y

Z

>
ϕ�ψ

⇑

?? and Z Y�ϕoo

>
ψ�ϕ

⇑

��
X

_ψ

OO

(extension) (lifting)



Liftings and extensions

In T-Rel
For ψ : X −⇀7 Z , the composition maps ◦ ψ still has a right
adjoint but ψ ◦ in general not.

We pass from

X �ϕ /

_ψ
�

Y

Z

to TX �ϕ //

_m◦X
��

Y

TTX
_T

ξ
ψ

��
TZ

(in T-Rel) (in V-Rel)

and define ϕ� ψ = ϕ� (Tξψ ·m
◦

X ).



Liftings and extensions

In T-Rel
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Modules as functors

The dual T-category Xop of X = (X ,a) is defined as

Xop = (M(X )op)#.

Theorem
For T-categories (X ,a) and (Y ,b), and a T-relation ψ : X −⇀7 Y,
the following assertions are equivalent.

i. ψ : (X ,a)−⇀◦ (Y ,b) is a T-module.
ii. Both ψ : |X | ⊗Y −→ V and ψ : Xop

⊗Y −→ V are T-functors.
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L-separatedness/L-completeness

Let X = (X ,a) and Y = (Y ,b) be T-categories. We consider

αY ,X : T-Cat(Y ,X ) −→ T-Map(Y ,X ).
f 7−→ f∗

We call a T-category X
I L-separated if αY ,X is injective, for all T-categories Y .
I L-complete if αY ,X is surjective, for all T-categories Y .

Note: It is enough to consider Y = G = (1,e◦1).

Examples

I In Met: L-complete=Cauchy-complete.
I In Top: L-complete=weakly sober.
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Example: Top

Let X be a topological space. Then
I M(X ) = (UX ,≤) where x ≤ y if x ⊆ y.

I ϕ : 1−⇀◦ X is essentially a closed subset A ⊆ X .
I ψ : X −⇀◦ 1 is essentially a Zariski- and down-closed subset
A ⊆ UX .

I ϕ a ψ ⇐⇒ A = {x ∈ UX | ∀x ∈ A . x→ x} & ∃x ∈ A .A ∈ x

Therefore
ϕ is left adjoint ⇐⇒ ∃x ∈ UX . (A ∈ x& x→ A )

⇐⇒ A is irreducible.
and

ϕ is representable by x ⇐⇒ A = {x}.
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The Yoneda Lemma

For a T-category X = (X ,a), both

a : |X | ⊗ X −→ V and a : Xop
⊗ X −→ V

are T-functors.

Hence we have the Yoneda functor y : X −→ V|X |

(and – less important – also yw : X −→ VXop
).

Theorem
Let X = (X ,a) be a T-category. Then

1. For all x ∈ TX and ψ ∈ V|X |, ~Ty(x), ψ� ≤ ψ(x).
2. Let ψ ∈ V|X |. Then

∀x ∈ TX . ψ(x) ≤ ~Ty(x), ψ� ⇐⇒ ψ : Xop
−→ V is a T-functor.
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The Yoneda embedding

We put X̂ = (X̂ , â) where

X̂ = {ψ ∈ V|X | | ψ : Xop
−→ V is a T-functor}

considered as a subcategory of V|X |.

If T1 = 1, we have a fully faithful functor y : X −→ X̂ .

Remarks

I In V-Cat we have X̂ = VXop
.

I However, yw : X −→ VXop
is not fully faithful in Top.

From now on we assume T1 = 1.
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L-closure

Definition
Let X = (X ,a) be a T-category. For M ⊆ X we define

M = {x ∈ X | i∗ ◦ x∗ a x∗ ◦ i∗}.

and call M the L-closure of M.

Theorem
Then the following assertions are equivalent.

i. x ∈ M.
ii. For all T-functors ϕ,ψ : X −→ Y with L-separated

codomain: if ϕ|M = ψ|M, then ϕ(x) = ψ(x).
iii. For all T-functors ϕ,ψ : X −→ V: if ϕ|M = ψ|M, then

ϕ(x) = ψ(x).
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L-closure

Further properties

I f : X −→ Y is L-dense iff f∗ ◦ f ∗ = (idY )∗ = b.

I X L-complete, M ⊆ X L-closed⇒ M is L-complete.
I X L-separated, M ⊆ X L-complete⇒ M is L-closed.
I X̂ is closed in V|X |.

Proposition

ψ ∈ X̂ is a right adjoint T-module if and only if ψ ∈ y[X ].

Proof.
. . .ϕ = (idX )∗ � ψ and observe that ϕ(x) = â(eX̂ (ψ) y(x)) and

ξ · Tϕ(x) = Tξ â(TeX̂ · eX̂ (ψ),Ty(x)) . . . �
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L-completeness

We put X̃ = y[X ], then y : X −→ X̃ is fully faithful and dense.

Theorem
The following assertions are equivalent.

i. X is L-complete.
ii. X is injective with respect to fully faithful dense T-functor.
iii. y : X −→ X̃ has a left inverse T-functor R : X̃ −→ X, i.e.

R · y � idX .

I V is injective w.r.t. fully faithful T-functors.
I X with a · Tξa = a ·mX , Y L-complete⇒ YX L-complete.
I V|X |, X̂ , X̃ are L-complete.
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