Topological spaces, categorically

Dirk Hofmann
dirk@mat.ua.pt
University of Aveiro

CT 2007

The talk is based on joint work with M.M. Clementino and W. Tholen.

Motivation

"The kinds of structures which actually arise in the practice of geometry and analysis are far from being 'arbitrary' ..., as concentrated in the thesis that fundamental structures are themselves categories."

屋 F. William Lawvere.
Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135-166 (1974), 1973. Also in: Repr. Theory Appl. Categ. 1:1-37, 2002.

Examples

Metric spaces, $\quad\left(P_{+}=[0, \infty]^{\text {op }},+, 0\right)$

X with $d: X \times X \longrightarrow \mathrm{P}_{+}$such that

$$
0 \geq d(x, x), \quad d(x, y)+d(y, z) \geq d(x, z) .
$$

Categories, (Set, $\times, 1$)

X with hom : $X \times X \longrightarrow$ Set such that
$1 \longrightarrow \operatorname{hom}(x, x), \quad \operatorname{hom}(x, y) \times \operatorname{hom}(y, z) \longrightarrow \operatorname{hom}(x, z)$ and ... (commutative diagrams in Set).

Examples

Metric spaces, $\quad\left(P_{+}=[0, \infty]^{\text {op }},+, 0\right)$
X with $d: X \times X \longrightarrow \mathrm{P}_{+}$such that

$$
0 \geq d(x, x), \quad d(x, y)+d(y, z) \geq d(x, z) .
$$

Categories,
 (Set, $\times, 1$)

X with hom : $X \times X \longrightarrow$ Set such that
$1 \longrightarrow \operatorname{hom}(x, x), \quad \operatorname{hom}(x, y) \times \operatorname{hom}(y, z) \longrightarrow \operatorname{hom}(x, z)$ and ... (commutative diagrams in Set).

Ordered sets, $\quad(2=\{$ false, true $\}, \&$, true $)$
X with $\leq: X \times X \longrightarrow 2$ such that

$$
\text { true } \vDash(x \leq x), \quad(x \leq y \& y \leq z) \vDash x \leq z .
$$

The ordered category V-Rel

Quantale

$\mathrm{V}=(\mathrm{V}, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv$ hom $\left(u_{,}\right)$.

The ordered category V-Rel

Quantale

$\mathrm{V}=(\mathrm{V}, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv$ hom $\left(u_{,}\right)$.

V-Rel

- Objects: sets X, Y, \ldots

The ordered category V-Rel

Quantale

$\mathrm{V}=(\mathrm{V}, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv$ hom $\left(u_{,}\right)$.

V-Rel

- Objects: sets X, Y, \ldots
- Morphisms: V-relations $r: X \times Y \longrightarrow \mathrm{~V}$; we write $r: X \rightarrow Y$

The ordered category V-Rel

Quantale

$\mathrm{V}=(\mathrm{V}, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv$ hom $\left(u_{,}\right)$.

V-Rel

- Objects: sets X, Y, \ldots
- Morphisms: V-relations $r: X \times Y \longrightarrow \mathrm{~V}$; we write $r: X \rightarrow Y$
- Composition: (with s: $Y \rightarrow Z$)

$$
s \cdot r(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

The ordered category V-Rel

Quantale

$\mathrm{V}=(\mathrm{V}, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv$ hom $\left(u_{,}\right)$.

V-Rel

- Objects: sets X, Y, \ldots
- Morphisms: V-relations $r: X \times Y \longrightarrow \mathrm{~V}$; we write $r: X \rightarrow Y$
- Composition: (with $s: Y \rightarrow Z$)

$$
s \cdot r(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

- Involution: $r^{\circ}: Y \rightarrow X$ where $r^{\circ}(y, x)=r(x, y)$ for $r: X \mapsto Y$.

The ordered category V-Rel

Quantale

$\mathrm{V}=(\mathrm{V}, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv$ hom $\left(u_{,}\right)$.

V-Rel

- Objects: sets X, Y, \ldots
- Morphisms: V-relations $r: X \times Y \longrightarrow \mathrm{~V}$; we write $r: X \mapsto Y$
- Composition: (with $s: Y \rightarrow Z$)

$$
s \cdot r(x, z)=\bigvee_{y \in Y} r(x, y) \otimes s(y, z)
$$

- Involution: $r^{\circ}: Y \rightarrow X$ where $r^{\circ}(y, x)=r(x, y)$ for $r: X \mapsto Y$.
- For each Set-map $f: f \dashv f^{\circ}$.

V-Cat

V-categories

A V-category is a pair $(X, a: X \rightarrow X)$ such that

$$
k \leq a(x, x) \quad a(x, y) \otimes a(y, z) \leq a(x, z)
$$

respectively

$$
\operatorname{id}_{x} \leq a \quad a \cdot a \leq a
$$

V-Cat

V-categories

A V-category is a pair $(X, a: X \rightarrow X)$ such that

$$
k \leq a(x, x) \quad a(x, y) \otimes a(y, z) \leq a(x, z)
$$

respectively

$$
\operatorname{id}_{x} \leq a \quad a \cdot a \leq a
$$

V-functors

A V-functor $f:(X, a) \longrightarrow(Y, b)$ is a Set-map such that

$$
a\left(x, x^{\prime}\right) \leq b\left(f(x), f\left(x^{\prime}\right)\right) \quad \text { respectively } \quad f \cdot a \leq b \cdot f
$$

M. Barr 1970

Topological spaces
 $2=(2, \&$, true $), \quad \mathbb{U}=(U, e, m)$

X with $\longrightarrow: U X \rightarrow X$ such that

$$
\text { true } \vDash(\dot{x} \longrightarrow x), \quad(\mathfrak{X} \longrightarrow x \& x \longrightarrow x) \vDash m_{x}(\mathfrak{X}) \longrightarrow x .
$$

Here $\longrightarrow: U X \rightarrow X$ is naturally extended to $\longrightarrow: U U X \rightarrow U X$.

M. Barr 1970

Topological spaces
 $2=(2, \&$, true $), \quad \mathbb{U}=(U, e, m)$

X with $\longrightarrow: U X \rightarrow X$ such that

$$
\text { true } \vDash(\dot{x} \longrightarrow x), \quad(\mathfrak{X} \longrightarrow \mathfrak{x} \& x \longrightarrow x) \vDash m_{x}(\mathfrak{F}) \longrightarrow x .
$$

Here $\rightarrow: U X \rightarrow X$ is naturally extended to $\longrightarrow: U U X \rightarrow U X$.
In fact, $U:$ Set \longrightarrow Set can be extended to a functor $U:$ Rel \longrightarrow Rel such that e and m become oplax.

Some facts about V-categories

1. V-Cat is a monoidal closed category.

Some facts about V-categories

1. V-Cat is a monoidal closed category.
2. $\mathrm{V}=(\mathrm{V}, \mathrm{hom})$ is a (complete) V -category.

Some facts about V-categories

1. V-Cat is a monoidal closed category.
2. $\mathrm{V}=(\mathrm{V}, \mathrm{hom})$ is a (complete) V -category.
3. $\varphi: X \rightarrow Y$ is a V-module iff $\varphi: X^{\mathrm{op}} \otimes Y \longrightarrow \mathrm{~V}$ is a \checkmark-functor.

Some facts about V-categories

1. V-Cat is a monoidal closed category.
2. $\mathrm{V}=(\mathrm{V}, \mathrm{hom})$ is a (complete) V -category.
3. $\varphi: X \rightarrow Y$ is a V-module iff $\varphi: X^{\mathrm{op}} \otimes Y \longrightarrow \mathrm{~V}$ is a V-functor.
4. In particular a : $X^{\mathrm{op}} \otimes X \longrightarrow \mathrm{~V}$ is a V -functor. Its mate $y=\ulcorner a\urcorner: X \longrightarrow \mathrm{~V}^{X \circ p}$ is fully faithful. More general, we have

$$
[y(x), \varphi]=\varphi(x)
$$

5. ...

Topological theory

Definition

A topological theory \mathcal{T} is a triple $\mathcal{T}=(\mathbb{T}, \mathrm{V}, \xi)$ consisting of a monad $\mathbb{T}=(T, e, m)$, a quantale $V=(V, \otimes, k)$ and a map $\xi: T V \longrightarrow V$
such that

Topological theory

Definition

A topological theory \mathcal{T} is a triple $\mathcal{T}=(\mathbb{T}, \mathrm{V}, \xi)$ consisting of a monad $\mathbb{T}=(T, e, m)$, a quantale $\mathrm{V}=(\mathrm{V}, \otimes, k)$ and a map $\xi: T V \longrightarrow \mathrm{~V}$
such that
$\left(\mathrm{M}_{\mathrm{e}}\right) \mathrm{id}_{\mathrm{V}} \leq \xi \cdot e_{\mathrm{V}}$,
$\left(\mathrm{M}_{\mathrm{m}}\right) \quad \xi \cdot T \xi \leq \xi \cdot m_{\mathrm{V}}$,
$\left(\mathrm{Q}_{\otimes}\right) \quad T(\mathrm{~V} \times \mathrm{V}) \xrightarrow{T(\otimes)} T \mathrm{~V}$
$\begin{aligned}\left\langle\xi \cdot T_{1}, \xi \cdot T_{\pi_{2}}\right\rangle & \leq \\ \vee & \times \mathrm{V} \xrightarrow{\downarrow} \underset{\mathrm{V}}{\downarrow},\end{aligned}$
$\left(Q_{k}\right)$

$$
\begin{aligned}
& T 1 \xrightarrow{T k} T V \\
& \begin{array}{l}
\downarrow \\
1 \xrightarrow[k]{ } \stackrel{V}{V} \text {, }
\end{array}
\end{aligned}
$$

$\left(\mathrm{Q}_{V}\right)\left(\xi_{x}\right)_{X}: P_{\mathrm{V}} \longrightarrow P_{\mathrm{V}} T$ is a natural transformation.

Examples

- $J_{V}=\left(\mathbb{I}, V, i_{V}\right)$ is a strict topological theory.

Examples

- $J_{V}=\left(\mathbb{I}, V, \mathrm{id}_{V}\right)$ is a strict topological theory.
- $\mathcal{U}_{2}=\left(\mathbb{U}, 2, \xi_{2}\right)$ is a strict topological theory.

Examples

- $J_{V}=\left(\mathbb{I}, V, \mathrm{id}_{V}\right)$ is a strict topological theory.
- $\mathcal{U}_{2}=\left(\mathbb{U}, 2, \xi_{2}\right)$ is a strict topological theory.
- $U_{P_{+}}=\left(\mathbb{U}, P_{+}, \xi_{P_{+}}\right)$is a strict topological theory, where

$$
\xi_{P_{+}}: U P_{+} \longrightarrow P_{+}, x \longmapsto \inf \left\{v \in P_{+} \mid x \in T([0, v])\right\} .
$$

Examples

- $J_{V}=\left(\mathbb{I}, V, i_{V}\right)$ is a strict topological theory.
- $\mathcal{U}_{2}=\left(\mathbb{U}, 2, \xi_{2}\right)$ is a strict topological theory.
- $U_{P_{+}}=\left(\mathbb{U}, P_{+}, \xi_{P_{+}}\right)$is a strict topological theory, where

$$
\xi_{P_{+}}: U P_{+} \longrightarrow P_{+}, x \longmapsto \inf \left\{v \in P_{+} \mid x \in T([0, v])\right\} .
$$

- $\mathcal{T}_{\mathrm{V}}=\left(\mathbb{T}, \mathrm{V}, \xi_{\mathrm{V}}\right)$ where T satisfies $(\mathrm{BC}), \mathrm{V}$ is (ccd) and

$$
\xi_{V}: T V \longrightarrow \bigvee, x \longmapsto \bigvee\{v \in \bigvee \mid x \in T(\uparrow v)\}
$$

Examples

- $J_{V}=\left(\mathbb{I}, V, \mathrm{id}_{V}\right)$ is a strict topological theory.
- $\mathcal{U}_{2}=\left(\mathbb{U}, 2, \xi_{2}\right)$ is a strict topological theory.
- $\mathcal{U}_{P_{+}}=\left(\mathbb{U}, P_{+}, \xi_{P_{+}}\right)$is a strict topological theory, where

$$
\xi_{P_{+}}: U P_{+} \longrightarrow P_{+}, x \longmapsto \inf \left\{v \in P_{+} \mid x \in T([0, v])\right\} .
$$

- $\mathcal{T}_{V}=\left(\mathbb{T}, \mathrm{V}, \xi_{V}\right)$ where T satisfies (BC), V is (ccd) and

$$
\xi_{V}: T V \longrightarrow \bigvee, x \longmapsto \bigvee\{v \in \mathrm{~V} \mid x \in T(\uparrow v)\}
$$

- $\mathcal{L}_{\mathrm{V}}^{\otimes}=\left(\mathbb{L}, \mathrm{V}, \xi_{\otimes}\right)$ is a strict topological theory where

$$
\xi_{\otimes}: L V \longrightarrow V, \quad\left(v_{1}, \ldots, v_{n}\right) \longmapsto v_{1} \otimes \ldots \otimes v_{n} .
$$

Extending T : Set \longrightarrow Set to V-Rel

We define $T_{\varepsilon}:$ V-Rel \longrightarrow V-Rel as follows:

Extending T : Set \longrightarrow Set to V-Rel

We define $T_{\xi}: V$-Rel \longrightarrow V-Rel as follows:
Given $r: X \times Y \longrightarrow \mathrm{~V}$, we put

$$
\begin{aligned}
T_{\xi} r: T X \times T Y & \longrightarrow V \\
(\mathfrak{x}, \mathfrak{y}) & \longmapsto \bigvee\{\xi \cdot \operatorname{Tr}(\mathfrak{w}) \mid \mathfrak{w} \in T(X \times Y), \mathfrak{w} \longmapsto x, \mathfrak{y}\},
\end{aligned}
$$

that is,

$$
T(X \times Y) \xrightarrow[\tau_{X, Y}]{\tau_{\mathcal{L}}} T X \times T Y
$$

Properties of T_{ε}

Theorem
The following statements hold.

1. For each V-relation $r: X \longrightarrow Y, T_{\xi}\left(r^{\circ}\right)=T_{\xi}(r)^{\circ}$.

Properties of T_{ε}

Theorem

The following statements hold.

1. For each V-relation $r: X \rightarrow Y, T_{\xi}\left(r^{\circ}\right)=T_{\xi}(r)^{\circ}$.
2. For each function $f: X \longrightarrow Y$, $T f \leq T_{\xi} f$ and $T f^{\circ} \leq T_{\xi} f^{\circ}$.

Properties of T_{ε}

Theorem

The following statements hold.

1. For each V-relation $r: X \rightarrow Y, T_{\xi}\left(r^{\circ}\right)=T_{\xi}(r)^{\circ}$.
2. For each function $f: X \longrightarrow Y, T f \leq T_{\xi} f$ and $T f^{\circ} \leq T_{\xi} f^{\circ}$.
3. $T_{\xi} s \cdot T_{\xi} r \leq T_{\xi}(s \cdot r)$ provided that T satisfies (BC), and $T_{\xi} s \cdot T_{\xi} r \geq T_{\xi}(s \cdot r)$ provided that $\left(Q_{\otimes}^{=}\right)$holds.

Properties of T_{ε}

Theorem

The following statements hold.

1. For each V-relation $r: X \rightarrow Y, T_{\xi}\left(r^{\circ}\right)=T_{\xi}(r)^{\circ}$.
2. For each function $f: X \longrightarrow Y, T f \leq T_{\xi} f$ and $T f^{\circ} \leq T_{\xi} f^{\circ}$.
3. $T_{\xi} s \cdot T_{\xi} r \leq T_{\xi}(s \cdot r)$ provided that T satisfies (BC), and $T_{\xi} s \cdot T_{\xi} r \geq T_{\xi}(s \cdot r)$ provided that $\left(Q_{\otimes}^{=}\right)$holds.
4. The natural transformations e and m become op-lax, that is, for every V-relation $r: X \rightarrow Y$ we have the inequalities:

Kleisli convolution

\mathcal{T}-Rel

- objects: sets X, Y, \ldots

Kleisli convolution

T-Rel

- objects: sets X, Y, \ldots
- morphisms: \mathcal{T}-relations $a: X \mapsto Y$, i.e. V-relations $a: T X \mapsto Y$.

Kleisli convolution

T-Rel

- objects: sets X, Y, \ldots
- morphisms: \mathcal{T}-relations $a: X ゅ Y$, i.e. V-relations $a: T X \mapsto Y$.
- The Kleisli convolution of $a: X \mapsto Y$ and $b: Y ゅ Z$ is defined as

$$
b \circ a=b \cdot T_{\xi} a \cdot m_{x}^{\circ} .
$$

Kleisli convolution

\mathcal{T}-Rel

- objects: sets X, Y, \ldots
- morphisms: \mathcal{T}-relations $a: X ゅ Y$, i.e. V-relations $a: T X+Y$.
- The Kleisli convolution of $a: X \mapsto Y$ and $b: Y ゅ Z$ is defined as

$$
b \circ a=b \cdot T_{\xi} a \cdot m_{x}^{\circ} .
$$

Some properties

We have

- $a \circ e_{X}^{\circ} \geq a$ and $e_{Y}^{\circ} \circ a \geq a$.

Kleisli convolution

T-Rel

- objects: sets X, Y, \ldots
- morphisms: \mathcal{T}-relations $a: X \mapsto Y$, i.e. V-relations $a: T X \mapsto Y$.
- The Kleisli convolution of $a: X \mapsto Y$ and $b: Y ゅ Z$ is defined as

$$
b \circ a=b \cdot T_{\xi} a \cdot m_{x}^{\circ}
$$

Some properties

We have

- $a \circ e_{X}^{\circ} \geq a$ and $e_{Y}^{\circ} \circ a \geq a$.
- $a \circ(b \circ c) \geq a \circ b \circ c \leq(a \circ b) \circ c$.

Kleisli convolution

\mathcal{T}-Rel

- objects: sets X, Y, \ldots
- morphisms: \mathcal{T}-relations $a: X \mapsto Y$, i.e. V-relations $a: T X \mapsto Y$.
- The Kleisli convolution of $a: X \mapsto Y$ and $b: Y \mapsto Z$ is defined as

$$
b \circ a=b \cdot T_{\xi} a \cdot m_{x}^{\circ}
$$

Some properties

We have

- $a \circ e_{X}^{\circ} \geq a$ and $e_{Y}^{\circ} \circ a \geq a$.
- $a \circ(b \circ c) \geq a \circ b \circ c \leq(a \circ b) \circ c$.
- If \mathcal{T} is a strict theory, then Kleisli convolution is associative.

V-Rel vs. T-Rel

We call $a: X \mapsto Y$ unitary if $e_{Y}^{\circ} \circ a=a$ and $a \circ e_{X}^{\circ}=a$.

V-Rel vs. T-Rel

We call $a: X \mapsto Y$ unitary if $e_{Y}^{\circ} \circ a=a$ and $a \circ e_{X}^{\circ}=a$.

We consider now
$(-) \#$ V-Rel $\longrightarrow \mathcal{T}$-Rel, $\quad r: X \longrightarrow Y \longmapsto r_{\#}=e_{Y} \cdot T_{\xi} r: X \mapsto Y$

V-Rel vs. T-Rel

We call $a: X+Y$ unitary if $e_{Y}^{\circ} \circ a=a$ and $a \circ e_{X}^{\circ}=a$.

We consider now
$(-) \#:$ V-Rel $\longrightarrow \mathcal{T}$-Rel, $\quad r: X \longrightarrow Y \longmapsto r_{\#}=e_{Y} \cdot T_{\xi} r: X \mapsto Y$

We have

- $\left(1_{Y}\right)_{\#} \circ a=e_{Y}^{\circ} \circ a$ and $a \circ\left(1_{X}\right)_{\#}=a \circ e_{X}^{\circ}$.

V-Rel vs. T-Rel

We call $a: X+Y$ unitary if $e_{Y}^{\circ} \circ a=a$ and $a \circ e_{X}^{\circ}=a$.

We consider now
$(-) \#:$ V-Rel $\longrightarrow \mathcal{T}$-Rel, $\quad r: X \longrightarrow Y \longmapsto r_{\#}=e_{Y} \cdot T_{\xi} r: X \mapsto Y$

We have

- $\left(1_{Y}\right)_{\#} \circ a=e_{Y}^{\circ} \circ a$ and $a \circ\left(1_{X}\right) \#=a \circ e_{X}^{\circ}$.
- $r_{\#}$ is unitary.

V-Rel vs. T-Rel

We call $a: X+Y$ unitary if $e_{Y}^{\circ} \circ a=a$ and $a \circ e_{X}^{\circ}=a$.

We consider now
$(-) \#:$ V-Rel $\longrightarrow \mathcal{T}$-Rel, $\quad r: X \longrightarrow Y \longmapsto r_{\#}=e_{Y} \cdot T_{\varepsilon} r: X \mapsto Y$

We have

- $\left(1_{Y}\right)_{\#} \circ a=e_{Y}^{\circ} \circ a$ and $a \circ\left(1_{X}\right) \#=a \circ e_{X}^{\circ}$.
- $r_{\#}$ is unitary.
- T satisfies $(B C) \Rightarrow s_{\#} \circ r_{\#} \leq(s \cdot r)_{\#}$.
- $\left(Q_{\otimes}^{=}\right) \Rightarrow s_{\#} \circ r_{\#} \geq(s \cdot r)_{\#}$.

T-Cat

T-category

A \mathcal{T}-category is a pair $(X, a: T X \rightarrow X)$ such that
$k \leq a\left(e_{X}(x), x\right), \quad T_{\varepsilon} a(\mathfrak{X}, \mathfrak{x}) \otimes a(x, x) \leq a\left(m_{X}(\mathfrak{X}), x\right) \quad$ respectively

$$
\mathrm{id}_{X} \leq a \cdot e_{X}, \quad a \cdot T_{\xi} a \leq a \cdot m_{X} \quad \text { respectively }
$$

$$
e_{x}^{\circ} \leq a, \quad a \circ a \leq a
$$

T-Cat

T-category

A T-category is a pair $(X, a: T X \rightarrow X)$ such that
$k \leq a\left(e_{X}(x), x\right), \quad T_{\varepsilon} a(\mathfrak{X}, x) \otimes a(x, x) \leq a\left(m_{X}(\mathfrak{X}), x\right) \quad$ respectively

$$
\begin{gathered}
\text { id } d_{X} \leq a \cdot e_{X}, \quad a \cdot T_{\xi} a \leq a \cdot m_{X} \\
e_{X}^{\circ} \leq a, \quad a \circ a \leq a .
\end{gathered}
$$

T-functor
A map $f:(X, a) \longrightarrow(Y, b)$ is a \mathcal{T}-functor if

$$
a(x, x) \leq b(T f(x), f(x)) \quad \text { respectively } \quad f \cdot a \leq b \cdot T f .
$$

Examples

- For each quantale $\mathrm{V}, \mathcal{J}_{\mathrm{V}}$-Cat $\cong \mathrm{V}$-Cat.

Examples

- For each quantale V, \mathcal{J}_{v}-Cat \cong V-Cat.
- In particular, $\mathcal{J}_{2}-$ Cat \cong Ord and $\mathcal{J}_{P_{+}}-$Cat \cong Met.

Examples

- For each quantale V, \mathcal{J}_{v}-Cat \cong V-Cat.
- In particular, $\mathcal{J}_{2}-$ Cat \cong Ord and $\mathcal{J}_{P_{+}}-$Cat \cong Met.
- \mathcal{U}_{2}-Cat \cong Top.

Examples

- For each quantale $\mathrm{V}, \mathcal{J}_{\mathrm{V}}$-Cat $\cong \mathrm{V}$-Cat.
- In particular, $\mathcal{J}_{2}-$ Cat \cong Ord and $\mathcal{J}_{P_{+}}-$Cat \cong Met.
- U_{2}-Cat \cong Top.
- $\mathcal{U}_{P_{+}}$-Cat \cong App.

Examples

- For each quantale $\mathrm{V}, \mathcal{J}_{\mathrm{V}}$-Cat $\cong \mathrm{V}$-Cat.
- In particular, $\mathcal{J}_{2}-$ Cat \cong Ord and $\mathcal{J}_{P_{+}}-$Cat \cong Met.
- U_{2}-Cat \cong Top.
- $\mathcal{U}_{P_{+}}$-Cat \cong App.
- $\mathcal{L}_{\mathrm{v}}^{\otimes}$-Cat \cong V-MultiCat.

Examples

- For each quantale $\mathrm{V}, \mathcal{J}_{\mathrm{V}}$-Cat $\cong \mathrm{V}$-Cat.
- In particular, $\mathcal{J}_{2}-$ Cat \cong Ord and $\mathcal{J}_{P_{+}}-$Cat \cong Met.
- \mathcal{U}_{2}-Cat \cong Top.
- $\mathcal{U}_{P_{+}}$-Cat \cong App.
- $\mathcal{L}_{\mathrm{v}}^{\otimes}$-Cat \cong V-MultiCat.

From now on we consider a strict theory $\mathcal{T}=(\mathbb{T}, \mathrm{V}, \xi)$.

Some functors

We have an embedding Set $^{T} \hookrightarrow \mathcal{T}$-Cat and put $|X|=\left(T X, m_{X}\right)$.

Some functors

We have an embedding Set ${ }^{T} \hookrightarrow \mathcal{T}$-Cat and put $|X|=\left(T X, m_{X}\right)$.
We have (_)\# + S where

$$
\begin{aligned}
\text { S : T-Cat } & \longrightarrow \text { V-Cat, } & (-) \#: \text { V-Cat } \longrightarrow \mathcal{T} \text {-Cat. } \\
(X, a) & \longmapsto\left(X, a \cdot e_{X}\right) & X=(X, r) \longmapsto X_{\#}=\left(X, r_{\#}\right)
\end{aligned}
$$

Some functors

We have an embedding Set ${ }^{T} \hookrightarrow \mathcal{T}$-Cat and put $|X|=\left(T X, m_{X}\right)$.
We have (-) \dagger S where

$$
\begin{aligned}
\text { S : T-Cat } & \longrightarrow \text { V-Cat, } & (-) \#: \text { V-Cat } \longrightarrow \mathcal{T} \text {-Cat. } \\
(X, a) & \longmapsto\left(X, a \cdot e_{X}\right) & X=(X, r) \longmapsto X_{\#}=\left(X, r_{\#}\right)
\end{aligned}
$$

T_{ξ} induces an endofunctor

$$
T_{\xi}: \text { V-Cat } \longrightarrow \text { V-Cat, } \quad(X, r) \longmapsto\left(T X, T_{\xi} r\right)
$$

Some functors

We have an embedding Set $^{T} \hookrightarrow \mathcal{T}$-Cat and put $|X|=\left(T X, m_{X}\right)$.
We have ($($) $\#+S$ where

$$
\begin{array}{rlrl}
\text { S : }: \mathcal{T} \text {-Cat } & \longrightarrow \text { V-Cat, } & (-) \#: \text { V-Cat } \longrightarrow \mathcal{T} \text {-Cat. } \\
(X, a) \longmapsto\left(X, a \cdot e_{X}\right) & X=(X, r) \longmapsto X_{\#}=\left(X, r_{\#}\right)
\end{array}
$$

T_{ξ} induces an endofunctor

$$
T_{\xi}: \text { V-Cat } \longrightarrow \text { V-Cat, } \quad(X, r) \longmapsto\left(T X, T_{\varepsilon} r\right)
$$

and we have
where M : T-Cat \longrightarrow V-Cat, $(X, a) \longmapsto\left(T X, T T_{\xi} a \cdot m_{X}^{\circ}\right)$.

The \mathcal{T}-category V

We define

$$
\operatorname{hom}_{\xi}: T \vee \times \vee \longrightarrow \vee,(\mathfrak{v}, v) \longmapsto \operatorname{hom}(\xi(\mathfrak{v}), v)
$$

Then $\mathrm{V}=\left(\mathrm{V}\right.$, hom $\left._{\xi}\right)$ is a \mathcal{T}-category.

The \mathcal{T}-category V

We define

$$
\operatorname{hom}_{\xi}: T \vee \times \vee \longrightarrow \mathrm{V},(\mathfrak{v}, v) \longmapsto \operatorname{hom}(\xi(\mathfrak{v}), v) .
$$

Then $\mathrm{V}=\left(\mathrm{V}\right.$, hom $\left._{\xi}\right)$ is a \mathcal{T}-category.

Some maps

1. $\bigwedge: \mathrm{V}^{\prime} \longrightarrow \mathrm{V}$ is a \mathfrak{T}-functor.

The \mathcal{T}-category V

We define

$$
\operatorname{hom}_{\xi}: T \vee \times \vee \longrightarrow \vee,(\mathfrak{v}, v) \longmapsto \operatorname{hom}(\xi(\mathfrak{v}), v)
$$

Then $\mathrm{V}=\left(\mathrm{V}\right.$, hom $\left._{\xi}\right)$ is a \mathcal{T}-category.

Some maps

1. $\bigwedge: \mathrm{V}^{\prime} \longrightarrow \mathrm{V}$ is a \mathfrak{T}-functor.
2. $\operatorname{hom}\left(v,,_{-}\right): \mathrm{V} \longrightarrow \mathrm{V}$ is a \mathcal{T}-functor for each $v \in \mathrm{~V}$ which satisfies $\xi \cdot T v \geq v \cdot!$.

The \mathcal{T}-category V

We define

$$
\operatorname{hom}_{\xi}: T \vee \times \vee \longrightarrow \vee,(\mathfrak{v}, v) \longmapsto \operatorname{hom}(\xi(\mathfrak{v}), v)
$$

Then $\mathrm{V}=\left(\mathrm{V}\right.$, hom $\left._{\xi}\right)$ is a \mathcal{T}-category.

Some maps

1. $\bigwedge: \mathrm{V}^{\prime} \longrightarrow \mathrm{V}$ is a \mathfrak{T}-functor.
2. $\operatorname{hom}\left(v,,_{-}\right): \mathrm{V} \longrightarrow \mathrm{V}$ is a \mathcal{T}-functor for each $v \in \mathrm{~V}$ which satisfies $\xi \cdot T v \geq v \cdot!$.
3. $v \otimes_{-}: \mathrm{V} \longrightarrow \mathrm{V}$ is a \mathcal{T}-functor for each $v \in \mathrm{~V}$ which satisfies $\xi \cdot T v \leq v \cdot!$.

Compatible monoidal structures on V

We assume that a monoidal structure (V, \oplus, I) on V is given such that

1. $\left(u_{1} \oplus v_{1}\right) \otimes\left(u_{2} \oplus v_{2}\right) \leq\left(u_{1} \otimes u_{2}\right) \oplus\left(v_{1} \otimes v_{2}\right)$,
2. $I \otimes I \leq I$ and $k \leq k \oplus k$,

Compatible monoidal structures on V

We assume that a monoidal structure (V, \oplus, I) on V is given such that

$$
\begin{aligned}
& \text { 1. }\left(u_{1} \oplus v_{1}\right) \otimes\left(u_{2} \oplus v_{2}\right) \leq\left(u_{1} \otimes u_{2}\right) \oplus\left(v_{1} \otimes v_{2}\right) \text {, } \\
& \text { 2. } I \otimes I \leq I \text { and } k \leq k \oplus k \text {, }
\end{aligned}
$$

Compatible monoidal structures on V

We assume that a monoidal structure (V, \oplus, I) on V is given such that

1. $\left(u_{1} \oplus v_{1}\right) \otimes\left(u_{2} \oplus v_{2}\right) \leq\left(u_{1} \otimes u_{2}\right) \oplus\left(v_{1} \otimes v_{2}\right)$,
2. $I \otimes I \leq I$ and $k \leq k \oplus k$,

Examples

- $\oplus=\otimes$ (since \mathcal{T} is strict).
- $\oplus=\wedge$.

Monoidal structures on V-Rel

Extending \oplus to V-Rel

- For sets X and Y we put $X \oplus Y=X \times Y$.
- For V-relations $r: X \mapsto X^{\prime}$ and $s: Y \mapsto Y^{\prime}$ we define $r \oplus s: X \times Y \rightarrow X^{\prime} \times Y^{\prime}$ by

$$
r \oplus s\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=r\left(x, x^{\prime}\right) \oplus s\left(y, y^{\prime}\right)
$$

Then $\oplus: V$-Rel $\times \mathrm{V}$-Rel $\longrightarrow \mathrm{V}$-Rel is a lax functor, is associative and with $I: 1 \rightarrow 1$ as neutral element.

Monoidal structures on V-Rel

Extending \oplus to V-Rel

- For sets X and Y we put $X \oplus Y=X \times Y$.
- For V-relations $r: X \mapsto X^{\prime}$ and $s: Y \mapsto Y^{\prime}$ we define $r \oplus s: X \times Y \rightarrow X^{\prime} \times Y^{\prime}$ by

$$
r \oplus s\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=r\left(x, x^{\prime}\right) \oplus s\left(y, y^{\prime}\right)
$$

Then $\oplus:$ V-Rel $\times \mathrm{V}$-Rel $\longrightarrow \mathrm{V}$-Rel is a lax functor, is associative and with $I: 1 \rightarrow 1$ as neutral element.

Of course, we obtain a monoidal structure on V-Cat where $(X, a) \oplus(Y, b)=(X \times Y, a \oplus b)$ with neutral element $E=(1, l)$.

I. Moerdijk, 1999

Hopf monad

A Hopf monad on a monoidal category E is a monad $\mathbb{T}=(T, e, m)$ on E equipped with a natural transformation

$$
\tau: T\left(\otimes_{-}\right) \longrightarrow T\left(\left(_{-}\right) \otimes T()_{-}\right)
$$

and a map $\theta: T(N) \longrightarrow N$ such that \ldots

I. Moerdijk, 1999

Hopf monad

A Hopf monad on a monoidal category E is a monad $\mathbb{T}=(T, e, m)$ on E equipped with a natural transformation

$$
\tau: T\left(\otimes_{-}\right) \longrightarrow T\left(\left(_{-}\right) \otimes T()_{-}\right)
$$

and a map $\theta: T(N) \longrightarrow N$ such that \ldots

Theorem

There is a bijective correspondence between such structures τ, θ on \mathbb{T} and liftings of the monoidal structure on E to $\mathrm{E}^{\mathbb{T}}$.

Here:

$$
(X, \alpha) \otimes(Y, \beta)=\left(X \otimes Y,(\alpha \otimes \beta) \cdot \tau_{X, Y}\right)
$$

Lax Hopf monad

With $\tau_{X, Y}: T(X \times Y) \longrightarrow T X \times T Y$ and ! : $T 1 \longrightarrow 1$, in our situation we have

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

making $\left(T_{\varepsilon}, e, m\right)$ a lax Hopf monad on V-Rel.

Extending \oplus to \mathfrak{T}-Rel. . .

Let $r: X \mapsto X^{\prime}$ and $s: Y \multimap Y^{\prime}$ be \mathcal{T}-relations. We put

$$
r \boxplus s=(r \oplus s) \cdot \tau_{X, Y}
$$

and $!: 1 \downarrow 1$ as the composite $T 1 \xrightarrow{!} 1 \stackrel{!}{\xrightarrow{l}} 1$.

Extending \oplus to \mathfrak{T}-Rel. . .

Let $r: X \mapsto X^{\prime}$ and $s: Y \multimap Y^{\prime}$ be \mathcal{T}-relations. We put

$$
r \boxplus s=(r \oplus s) \cdot \tau_{X, Y} .
$$

and $I_{!}: 1 \multimap 1$ as the composite $T 1 \xrightarrow{!} 1 \xrightarrow{!} 1$. Then

- $e_{X}^{\circ} \boxplus e_{Y}^{\circ} \geq e_{X \times Y}^{\circ}$,
- $\left(r^{\prime} \boxplus s^{\prime}\right) \circ(r \boxplus s) \leq\left(r^{\prime} \circ r\right) \boxplus\left(s^{\prime} \circ s\right)$.

Extending \oplus to \mathfrak{T}-Rel. . .

Let $r: X \mapsto X^{\prime}$ and $s: Y ゅ Y^{\prime}$ be \mathcal{T}-relations. We put

$$
r \boxplus s=(r \oplus s) \cdot \tau_{X, Y} .
$$

and $I!1+1$ as the composite $T 1 \xrightarrow{!} 1 \xrightarrow{!} 1$.Then

- $e_{X}^{\circ} \boxplus e_{Y}^{\circ} \geq e_{X \times Y}^{\circ}$,
- $\left(r^{\prime} \boxplus s^{\prime}\right) \circ(r \boxplus s) \leq\left(r^{\prime} \circ r\right) \boxplus\left(s^{\prime} \circ s\right)$.

For (_)\#: V-Rel $\longrightarrow \mathcal{T}$-Rel we have

- $\left(r \oplus r^{\prime}\right)_{\#} \leq r_{\#} \boxplus r_{\#}^{\prime}$.
- $I_{\#} \leq l_{!}$.

. . . and to \mathcal{T}-Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with \mathcal{T} defines a monoidal structure on \mathfrak{T}-Cat where $(X, a) \oplus(Y, b)=(X \times Y, a \boxplus b)$ with neutral element $E=\left(1, l_{!}\right)$.

... and to \mathfrak{T}-Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with \mathcal{T} defines a monoidal structure on \mathcal{T}-Cat where $(X, a) \oplus(Y, b)=(X \times Y, a \not \square b)$ with neutral element $E=(1,!!)$.

- For (-)\# : V-Cat $\longrightarrow \mathcal{T}$-Cat we have \mathcal{T}-functors

$$
(X \oplus Y)_{\#} \longrightarrow X_{\#} \oplus Y_{\#} \quad \text { and } \quad E_{\#} \longrightarrow E .
$$

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with \mathcal{T} defines a monoidal structure on \mathcal{T}-Cat where $(X, a) \oplus(Y, b)=(X \times Y, a \boxplus b)$ with neutral element $E=(1,!!)$.

- For (-)\# : V-Cat $\longrightarrow \mathcal{T}$-Cat we have \mathcal{T}-functors

$$
(X \oplus Y)_{\#} \longrightarrow X_{\#} \oplus Y_{\#} \quad \text { and } \quad E_{\#} \longrightarrow E .
$$

- For S: \mathcal{T}-Cat \longrightarrow V-Cat we have \mathcal{T}-isomorphisms $\mathrm{S}(X \oplus Y) \longrightarrow \mathrm{S}(X) \oplus \mathrm{S}(Y) \quad$ and $\quad \mathrm{S}(E) \longrightarrow E$.

. . . and to \mathcal{T}-Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with \mathcal{T} defines a monoidal structure on \mathcal{T}-Cat where
$(X, a) \oplus(Y, b)=(X \times Y, a \boxplus b)$ with neutral element $E=(1,!!)$.

- For (O) : V-Cat $\longrightarrow \mathcal{T}$-Cat we have \mathcal{T}-functors

$$
(X \oplus Y)_{\#} \longrightarrow X_{\#} \oplus Y_{\#} \quad \text { and } \quad E_{\#} \longrightarrow E
$$

- For S: \mathcal{T}-Cat \longrightarrow V-Cat we have \mathcal{T}-isomorphisms

$$
\mathrm{S}(X \oplus Y) \longrightarrow \mathrm{S}(X) \oplus \mathrm{S}(Y) \quad \text { and } \quad \mathrm{S}(E) \longrightarrow E .
$$

- For $\mathrm{M}: \mathcal{T}$-Cat $\longrightarrow \mathrm{V}$-Cat we have \mathcal{T}-functors

$$
\tau_{X, Y}: M(X \oplus Y) \longrightarrow M(X) \oplus M(Y) \text { and }!: M(E) \longrightarrow E .
$$

Closedness of \mathfrak{T}-Gph

Assume now that $u \oplus_{-}: \mathrm{V} \rightarrow \mathrm{V}$ has right adjoint $u \multimap_{-}: \mathrm{V} \rightarrow \mathrm{V}$.

Closedness of \mathfrak{T}-Gph

Assume now that $u \oplus_{-}: \mathrm{V} \rightarrow \mathrm{V}$ has right adjoint $u \multimap_{-}: \mathrm{V} \rightarrow \mathrm{V}$.

Let $X=(X, a), Y=(Y, b)$ be \mathcal{T}-graphs. Then

$$
X \multimap Y=\{f: X \longrightarrow Y \mid f: X \oplus G \longrightarrow Y \text { is a } \mathcal{T} \text {-functor }\}
$$

(where $G=\left(1, e_{X}^{\circ}\right)$)

Closedness of \mathfrak{T}-Gph

Assume now that $u \oplus_{-}: \mathrm{V} \rightarrow \mathrm{V}$ has right adjoint $u \multimap_{-}: \mathrm{V} \rightarrow \mathrm{V}$.

Let $X=(X, a), Y=(Y, b)$ be \mathcal{T}-graphs. Then

$$
X \multimap Y=\{f: X \longrightarrow Y \mid f: X \oplus G \longrightarrow Y \text { is a } \mathcal{T} \text {-functor }\}
$$

(where $G=\left(1, e_{X}^{\circ}\right)$) with structure

$$
a \multimap b(\mathfrak{p}, h)=\bigwedge_{\substack{q \in T(X \times(X \rightarrow \mathfrak{q} \nmid) \\ \mathfrak{q}), x \in X}}(a(T \pi x(\mathfrak{q}), x) \multimap b(\operatorname{Tev}(\mathfrak{q}), h(x))) .
$$

is a \mathcal{T}-graph as well. In fact, $X \oplus_{-} \nmid X \multimap{ }_{-}$.

Closed \mathfrak{T}-categories

Lemma

$$
\begin{aligned}
& T(\mathrm{~V} \times \mathrm{V}) \xrightarrow{T(\oplus)} T V \quad T(X \times Y) \xrightarrow{\tau_{X, Y}} T X \times T Y \\
& \left\langle\xi \cdot T \pi_{1}, \xi \cdot T \pi_{2}\right\rangle \downarrow \quad \downarrow \xi \Rightarrow T_{\xi}(r \oplus s) \downarrow \quad{ }^{2} \quad \tau_{\xi} r \oplus T_{\xi} s \\
& \mathrm{~V} \times \mathrm{V} \longrightarrow \mathrm{~V} \quad T\left(X^{\prime} \times Y^{\prime}\right)_{\overline{\tau X^{\prime}, Y^{\prime}}} T X^{\prime} \times T Y^{\prime} .
\end{aligned}
$$

Closed \mathfrak{T}-categories

Lemma

$$
\begin{aligned}
& T(V \times V) \xrightarrow{T(\oplus)} T V \quad T(X \times Y) \xrightarrow{\tau_{X, Y}} T X \times T Y
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V} \times \mathrm{V} \longrightarrow \mathrm{~V} \quad T\left(X^{\prime} \times Y^{\prime}\right)_{\overline{\tau X^{\prime}, Y^{\prime}}} T X^{\prime} \times T Y^{\prime} .
\end{aligned}
$$

Theorem

$(\mathrm{V}, \oplus, \mathrm{I})$ closed, strictly compatible with $\mathcal{T} ; X=(X, a) \in \mathcal{T}$-Cat.

1. $a \multimap b$ is transitive for each \mathcal{T}-category $Y=(Y, b)$ if
(*) $\bigvee_{x \in T X}\left(T_{\xi} a(\mathfrak{F}, x) \oplus u\right) \otimes\left(a\left(x, x_{0}\right) \oplus v\right) \geq a\left(m_{X}(\mathfrak{F}), x_{0}\right) \oplus(u \otimes v)$.

Closed \mathfrak{T}-categories

Lemma

Theorem

$(\mathrm{V}, \oplus, \mathrm{I})$ closed, strictly compatible with $\mathcal{T} ; X=(X, a) \in \mathcal{T}$-Cat.

1. $a \multimap b$ is transitive for each \mathcal{T}-category $Y=(Y, b)$ if
(*) $\bigvee_{x \in T X}\left(T_{\xi} a(\mathfrak{F}, x) \oplus u\right) \otimes\left(a\left(x, x_{0}\right) \oplus v\right) \geq a\left(m_{X}(\mathfrak{F}), x_{0}\right) \oplus(u \otimes v)$.
2. If $a \rightarrow$ hom $_{\xi}$ is transitive, then (*) for all $\mathfrak{X} \in T^{2} X, x_{0} \in X$ and $u, v \in \mathrm{~V}$ with $\xi \cdot T u=u!$ and $\xi \cdot T v \leq v!!$.

Closed \mathfrak{T}-categories

Corollary

Consider $\oplus=\otimes$. Let $X=(X, a)$ be a \mathcal{T}-category. Then

1. If $a \cdot T_{\varepsilon} a=a \cdot m_{X}$, then hom (a, b) is transitive for each \mathcal{T}-category $Y=(Y, b)$.
2. $a \cdot T_{\xi} a=a \cdot m_{X}$ provided that hom $\left(a\right.$, hom $\left._{\xi}\right)$ is transitive.

Closed \mathfrak{T}-categories

Corollary

Consider $\oplus=\otimes$. Let $X=(X, a)$ be a \mathcal{T}-category. Then

1. If $a \cdot T_{\varepsilon} a=a \cdot m_{X}$, then hom (a, b) is transitive for each \mathcal{T}-category $Y=(Y, b)$.
2. $a \cdot T_{\xi} a=a \cdot m_{X}$ provided that hom $\left(a\right.$, hom $\left._{\xi}\right)$ is transitive.
3. Each Eilenberg-Moore algebra (X, α) is closed in \mathcal{T}-Cat.

Closed \mathfrak{T}-categories

Corollary

Consider $\oplus=\otimes$. Let $X=(X, a)$ be a \mathcal{T}-category. Then

1. If $a \cdot T_{\epsilon} a=a \cdot m_{X}$, then hom (a, b) is transitive for each \mathcal{T}-category $Y=(Y, b)$.
2. $a \cdot T_{\xi} a=a \cdot m_{X}$ provided that hom $\left(a\right.$, hom $\left._{\xi}\right)$ is transitive.
3. Each Eilenberg-Moore algebra (X, α) is closed in \mathfrak{T}-Cat.
4. If $T e_{X} \cdot e_{X}=m_{X}^{\circ} \cdot e_{X}$, then $X_{\#}=\left(X, r_{\#}\right)$ is closed for each V-category $X=(X, r)$.

Compactness

- Degree of compactness: $\operatorname{comp}(X)=\bigwedge_{x \in T X} \bigvee_{x \in X} a(x, x)$.

Compactness

- Degree of compactness: $\operatorname{comp}(X)=\bigwedge_{x \in T X} \bigvee_{x \in X} a(x, x)$.
- X is \oplus-compact if $\operatorname{comp}(X) \geq I$

Compactness

- Degree of compactness: $\operatorname{comp}(X)=\bigwedge_{x \in T X} \bigvee_{x \in X} a(x, x)$.
- X is \oplus-compact if $\operatorname{comp}(X) \geq I$

Theorem

Let $X=(X, a)$ be a \mathcal{T}-category. TFAE.
(i). X is \oplus-compact.
(ii). $V:(X \multimap \mathrm{~V}) \longrightarrow \mathrm{V}$ is a \mathcal{T}-functor (where $X \oplus_{-} \nmid X \multimap{ }_{-}$).
(iii). $\gamma:|X|_{I} \longrightarrow \mathrm{~V}, \mathfrak{x} \longmapsto V_{x \in X} a(x, x)$ is a \mathcal{T}-functor.

Compactness

- Degree of compactness: $\operatorname{comp}(X)=\bigwedge_{x \in T X} \bigvee_{x \in X} a(x, x)$.
- X is \oplus-compact if $\operatorname{comp}(X) \geq I$

Theorem

Let $X=(X$, a) be a T-category. TFAE.
(i). X is \oplus-compact.
(ii). $V:(X \multimap \mathrm{~V}) \longrightarrow \mathrm{V}$ is a \mathcal{T}-functor (where $X \oplus_{-} \nmid X \multimap{ }_{-}$).
(iii). $\gamma:|X|_{I} \longrightarrow \mathrm{~V}, \mathfrak{x} \longmapsto V_{x \in X} a(x, x)$ is a \mathcal{T}-functor.

Corollary

A T-category $X=(X, a)$ is \oplus-compact iff $\pi_{Y}: Y \oplus X \longrightarrow Y$ is closed for each \mathcal{T}-category $Y=(Y, b)$.

T-modules

A \mathcal{T}-module $\varphi:(X, a) \rightarrow(Y, b)$ is a \mathcal{T}-relation $\varphi: X \multimap Y$ such that

$$
b \circ \varphi \leq \varphi \quad \text { and } \quad \varphi \circ a \leq \varphi .
$$

\mathfrak{T}-modules

A \mathcal{T}-module $\varphi:(X, a) \multimap(Y, b)$ is a \mathcal{T}-relation $\varphi: X \multimap Y$ such that

$$
b \circ \varphi \leq \varphi \quad \text { and } \quad \varphi \circ a \leq \varphi .
$$

Each \mathcal{T}-functor $f:(X, a) \longrightarrow(Y, b)$ defines \mathcal{T}-modules $f_{*}-f^{*}$:

$$
\begin{aligned}
& f_{*}:(X, a) \multimap(Y, b) ; f_{*}(x, y)=b(T f(x), y) \\
& f^{*}:(Y, b)-(X, a) ; f^{*}(\mathfrak{y}, x)=b(\mathfrak{y}, f(x))
\end{aligned}
$$

\mathfrak{T}-modules

A \mathcal{T}-module $\varphi:(X, a) \multimap(Y, b)$ is a \mathcal{T}-relation $\varphi: X \multimap Y$ such that

$$
b \circ \varphi \leq \varphi \quad \text { and } \quad \varphi \circ a \leq \varphi .
$$

Each \mathcal{T}-functor $f:(X, a) \longrightarrow(Y, b)$ defines \mathcal{T}-modules $f_{*}-f^{*}$:

$$
\begin{aligned}
& f_{*}:(X, a) \multimap(Y, b) ; f_{*}(x, y)=b(T f(x), y) \\
& \left.f^{*}:(Y, b) \multimap(X, a) ; f^{*}(\mathfrak{y}, x)=b(\mathfrak{y}), f(x)\right)
\end{aligned}
$$

$f:(X, a) \longrightarrow(Y, b)$ is fully faithful iff $a=\left(\mathrm{id}_{X}\right)_{*}=f^{*} \circ f_{*}$.

Liftings and extensions

In V-Rel

For $\psi: X \rightarrow Z$, the composition maps

$$
\begin{aligned}
-\cdot \psi: \operatorname{V}-\operatorname{Rel}(Z, Y) & \longrightarrow \operatorname{V}-\operatorname{Rel}(X, Y) \quad \text { and } \\
& \psi \cdot: \operatorname{V-Rel}(Y, X) \longrightarrow \operatorname{V}-\operatorname{Rel}(Y, Z)
\end{aligned}
$$

have respective right adjoints

$$
\begin{aligned}
& -\psi: \operatorname{V}-\operatorname{Rel}(X, Y) \longrightarrow \operatorname{V}-\operatorname{Rel}(Z, Y) \quad \text { and } \\
& \psi \rightarrow-: V-\operatorname{Rel}(Y, Z) \longrightarrow \operatorname{V}-\operatorname{Rel}(Y, X) \text {. } \\
& \text { (extension) } \\
& \text { and } \\
& \text { (lifting) }
\end{aligned}
$$

Liftings and extensions

In \mathcal{T}-Rel

For $\psi: X \multimap Z$, the composition maps _o ψ still has a right adjoint but $\psi \circ$ _ in general not.

Liftings and extensions

In \mathcal{T}-Rel

For $\psi: X \multimap Z$, the composition maps _o ψ still has a right adjoint but $\psi \circ$ _ in general not. We pass from

to
(in \mathcal{T}-Rel)
(in V-Rel)
and define $\varphi \circ-\psi=\varphi \bullet\left(T_{\xi} \psi \cdot m_{X}^{\circ}\right)$.

Modules as functors

The dual \mathcal{T}-category $X^{\text {op }}$ of $X=(X, a)$ is defined as

$$
X^{\mathrm{op}}=\left(\mathrm{M}(X)^{\mathrm{op}}\right)_{\#} .
$$

Modules as functors

The dual \mathcal{T}-category $X^{\text {op }}$ of $X=(X, a)$ is defined as

$$
X^{\mathrm{op}}=\left(\mathrm{M}(X)^{\mathrm{op}}\right)_{\#} .
$$

Theorem

For \mathcal{T}-categories (X, a) and (Y, b), and a \mathcal{T}-relation $\psi: X \mapsto Y$, the following assertions are equivalent.
i. $\psi:(X, a) \sim(Y, b)$ is a \mathcal{T}-module.
ii. Both $\psi:|X| \otimes Y \longrightarrow \mathrm{~V}$ and $\psi: X^{\mathrm{op}} \otimes Y \longrightarrow \mathrm{~V}$ are \mathcal{T}-functors.

L-separatedness/L-completeness

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathcal{T}-categories. We consider

$$
\begin{aligned}
\alpha_{Y, X}: \mathcal{T}-\operatorname{Cat}(Y, X) & \longrightarrow \mathcal{T}-M a p(Y, X) . \\
f & \longmapsto f_{*}
\end{aligned}
$$

L-separatedness/L-completeness

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathcal{T}-categories. We consider

$$
\begin{aligned}
\alpha_{Y, X}: \mathcal{T}-\operatorname{Cat}(Y, X) & \longrightarrow \mathcal{T}-M a p(Y, X) . \\
f & \longmapsto f_{*}
\end{aligned}
$$

We call a \mathcal{T}-category X

- L-separated if $\alpha_{Y, X}$ is injective, for all \mathcal{T}-categories Y.

L-separatedness/L-completeness

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathcal{T}-categories. We consider

$$
\begin{aligned}
\alpha_{Y, X}: \mathcal{T}-\operatorname{Cat}(Y, X) & \longrightarrow \mathcal{T}-M a p(Y, X) . \\
f & \longmapsto f_{*}
\end{aligned}
$$

We call a \mathcal{T}-category X

- L-separated if $\alpha_{Y, X}$ is injective, for all \mathcal{T}-categories Y.
- L-complete if $\alpha_{Y, X}$ is surjective, for all \mathcal{T}-categories Y.

L-separatedness/L-completeness

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathcal{T}-categories. We consider

$$
\begin{aligned}
\alpha_{Y, X}: \mathcal{T}-\operatorname{Cat}(Y, X) & \longrightarrow \mathcal{T}-M a p(Y, X) . \\
f & \longmapsto f_{*}
\end{aligned}
$$

We call a \mathcal{T}-category X

- L-separated if $\alpha_{Y, X}$ is injective, for all \mathcal{T}-categories Y.
- L-complete if $\alpha_{Y, X}$ is surjective, for all \mathcal{T}-categories Y.

Note: It is enough to consider $Y=G=\left(1, e_{1}^{\circ}\right)$.

L-separatedness/L-completeness

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathcal{T}-categories. We consider

$$
\begin{aligned}
\alpha_{Y, X}: \mathcal{T}-\operatorname{Cat}(Y, X) & \longrightarrow \mathcal{T}-M a p(Y, X) . \\
f & \longmapsto f_{*}
\end{aligned}
$$

We call a \mathcal{T}-category X

- L-separated if $\alpha_{Y, X}$ is injective, for all \mathcal{T}-categories Y.
- L-complete if $\alpha_{Y, X}$ is surjective, for all \mathcal{T}-categories Y.

Note: It is enough to consider $Y=G=\left(1, e_{1}^{\circ}\right)$.

Examples

- In Met: L-complete=Cauchy-complete.

L-separatedness/L-completeness

Let $X=(X, a)$ and $Y=(Y, b)$ be \mathcal{T}-categories. We consider

$$
\begin{aligned}
\alpha_{Y, X}: \mathcal{T}-\operatorname{Cat}(Y, X) & \longrightarrow \mathcal{T}-M a p(Y, X) . \\
f & \longmapsto f_{*}
\end{aligned}
$$

We call a \mathcal{T}-category X

- L-separated if $\alpha_{Y, X}$ is injective, for all \mathcal{T}-categories Y.
- L-complete if $\alpha_{Y, X}$ is surjective, for all \mathcal{T}-categories Y.

Note: It is enough to consider $Y=G=\left(1, e_{1}^{\circ}\right)$.

Examples

- In Met: L-complete=Cauchy-complete.
- In Top: L-complete=weakly sober.

Example: Top

Let X be a topological space. Then

- $M(X)=(U X, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\bar{x} \subseteq \mathfrak{y}$.

Example: Top

Let X be a topological space. Then

- $M(X)=(U X, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\bar{x} \subseteq \mathfrak{y}$.
- $\varphi: 1 \multimap X$ is essentially a closed subset $A \subseteq X$.

Example: Top

Let X be a topological space. Then

- $M(X)=(U X, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\bar{x} \subseteq \mathfrak{y}$.
- $\varphi: 1 \multimap X$ is essentially a closed subset $A \subseteq X$.
- $\psi: X \rightarrow 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq U X$.

Example: Top

Let X be a topological space. Then

- $M(X)=(U X, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\bar{x} \subseteq \mathfrak{y}$.
- $\varphi: 1 \multimap X$ is essentially a closed subset $A \subseteq X$.
- $\psi: X \rightarrow 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq U X$.
$-\varphi \dashv \psi \Longleftrightarrow \mathcal{A}=\{x \in U X \mid \forall x \in A . x \rightarrow x\} \& \exists x \in \mathcal{A} . A \in \mathfrak{x}$

Example: Top

Let X be a topological space. Then

- $M(X)=(U X, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\bar{x} \subseteq \mathfrak{y}$.
- $\varphi: 1 \multimap X$ is essentially a closed subset $A \subseteq X$.
- $\psi: X \rightarrow 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq U X$.
$-\varphi \dashv \psi \Longleftrightarrow \mathcal{A}=\{x \in U X \mid \forall x \in A . \mathfrak{x} \rightarrow x\} \& \exists x \in \mathcal{A} . A \in x$

Therefore
φ is left adjoint $\Longleftrightarrow \exists x \in U X .(A \in \mathfrak{x} \& x \rightarrow A)$
$\Longleftrightarrow A$ is irreducible.

Example: Top

Let X be a topological space. Then

- $M(X)=(U X, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\bar{x} \subseteq \mathfrak{y}$.
- $\varphi: 1 \multimap X$ is essentially a closed subset $A \subseteq X$.
- $\psi: X \rightarrow 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq U X$.
$-\varphi \dashv \psi \Longleftrightarrow \mathcal{A}=\{x \in U X \mid \forall x \in A . x \rightarrow x\} \& \exists x \in \mathcal{A} . A \in x$

Therefore
φ is left adjoint $\Longleftrightarrow \exists \mathfrak{x} \in U X .(A \in \mathfrak{x} \& \mathfrak{x} \rightarrow A)$ $\Longleftrightarrow A$ is irreducible.
and
φ is representable by $x \Longleftrightarrow A=\overline{\{x\}}$.

The Yoneda Lemma

For a \mathcal{T}-category $X=(X, a)$, both

$$
\mathrm{a}:|X| \otimes X \longrightarrow \mathrm{~V} \quad \text { and } \quad a: X^{\mathrm{op}} \otimes X \longrightarrow \mathrm{~V}
$$

are \mathcal{T}-functors.

The Yoneda Lemma

For a \mathcal{T}-category $X=(X, a)$, both

$$
a:|X| \otimes X \longrightarrow \mathrm{~V} \quad \text { and } \quad a: X^{\mathrm{op}} \otimes X \longrightarrow \mathrm{~V}
$$

are \mathcal{T}-functors. Hence we have the Yoneda functor $y: X \longrightarrow \mathrm{~V}^{|X|}$ (and - less important - also $y_{w}: X \longrightarrow \mathrm{~V}^{X^{\mathrm{op}}}$).

The Yoneda Lemma

For a \mathcal{T}-category $X=(X, a)$, both

$$
\mathrm{a}:|X| \otimes X \longrightarrow \mathrm{~V} \quad \text { and } \quad a: X^{\mathrm{op}} \otimes X \longrightarrow \mathrm{~V}
$$

are \mathcal{T}-functors. Hence we have the Yoneda functor $y: X \longrightarrow V^{|X|}$ (and - less important - also $y_{w}: X \longrightarrow \mathrm{~V}^{X^{\mathrm{op}}}$).

Theorem

Let $X=(X, a)$ be a \mathcal{T}-category. Then

1. For all $x \in T X$ and $\psi \in V^{|X|}, \llbracket T y(x), \psi \rrbracket \leq \psi(x)$.

The Yoneda Lemma

For a \mathcal{T}-category $X=(X, a)$, both

$$
a:|X| \otimes X \longrightarrow \mathrm{~V} \quad \text { and } \quad a: X^{\mathrm{op}} \otimes X \longrightarrow \mathrm{~V}
$$

are \mathcal{T}-functors. Hence we have the Yoneda functor $y: X \longrightarrow \mathrm{~V}^{|X|}$ (and - less important - also $y_{w}: X \longrightarrow \mathrm{~V}^{X^{\mathrm{op}}}$).

Theorem

Let $X=(X, a)$ be a \mathcal{T}-category. Then

1. For all $\mathfrak{x} \in T X$ and $\psi \in \mathrm{V}^{|X|}, \llbracket T y(\mathfrak{x}), \psi \rrbracket \leq \psi(\mathfrak{x})$.
2. Let $\psi \in \mathrm{V}^{|X|}$. Then

$$
\forall x \in T X . \psi(x) \leq \llbracket T y(x), \psi \rrbracket \Longleftrightarrow \psi: X^{\mathrm{op}} \longrightarrow \mathrm{~V} \text { is a } \mathcal{T} \text {-functor. }
$$

The Yoneda embedding

We put $\hat{X}=(\hat{X}, \hat{a})$ where

$$
\hat{X}=\left\{\psi \in V^{|X|} \mid \psi: X^{\mathrm{op}} \longrightarrow \mathrm{~V} \text { is a J-functor }\right\}
$$

considered as a subcategory of $\mathrm{V}^{|X|}$.
If $T 1=1$, we have a fully faithful functor $y: X \longrightarrow \hat{X}$.

The Yoneda embedding

We put $\hat{X}=(\hat{X}, \hat{a})$ where

$$
\hat{X}=\left\{\psi \in V^{|X|} \mid \psi: X^{\text {op }} \longrightarrow \mathrm{V} \text { is a } \mathcal{T} \text {-functor }\right\}
$$

considered as a subcategory of $\mathrm{V}^{|X|}$.
If $T 1=1$, we have a fully faithful functor $y: X \longrightarrow \hat{X}$.

Remarks

- In V-Cat we have $\hat{X}=V^{X P P}$.

The Yoneda embedding

We put $\hat{X}=(\hat{X}, \hat{a})$ where

$$
\hat{X}=\left\{\psi \in V^{|X|} \mid \psi: X^{\text {op }} \longrightarrow \mathrm{V} \text { is a } \mathcal{T} \text {-functor }\right\}
$$

considered as a subcategory of $\mathrm{V}^{|X|}$.
If $T 1=1$, we have a fully faithful functor $y: X \longrightarrow \hat{X}$.

Remarks

- In V-Cat we have $\hat{X}=V^{X P}$.
- However, $y_{w}: X \longrightarrow \mathrm{~V}^{X \text { Op }}$ is not fully faithful in Top.

The Yoneda embedding

We put $\hat{X}=(\hat{X}, \hat{a})$ where

$$
\hat{X}=\left\{\psi \in V^{|X|} \mid \psi: X^{\mathrm{op}} \longrightarrow \mathrm{~V} \text { is a J-functor }\right\}
$$

considered as a subcategory of $\mathrm{V}^{|X|}$.
If $T 1=1$, we have a fully faithful functor $y: X \longrightarrow \hat{X}$.

Remarks

- In V-Cat we have $\hat{X}=V^{X P D}$.
- However, $y_{w}: X \longrightarrow \mathrm{~V}^{X \text { Op }}$ is not fully faithful in Top.

From now on we assume $T 1=1$.

L-closure

Definition

Let $X=(X, a)$ be a \mathcal{T}-category. For $M \subseteq X$ we define

$$
\bar{M}=\left\{x \in X \mid i^{*} \circ x_{*}+x^{*} \circ i_{*}\right\} .
$$

and call \bar{M} the L-closure of M.

L-closure

Definition

Let $X=(X, a)$ be a \mathcal{T}-category. For $M \subseteq X$ we define

$$
\bar{M}=\left\{x \in X \mid i^{*} \circ x_{*} \nvdash x^{*} \circ i_{*}\right\} .
$$

and call \bar{M} the L-closure of M.

Theorem

Then the following assertions are equivalent.
i. $x \in \bar{M}$.
ii. For all \mathcal{T}-functors $\varphi, \psi: X \longrightarrow Y$ with L-separated codomain: if $\left.\varphi\right|_{M}=\left.\psi\right|_{M}$, then $\varphi(x)=\psi(x)$.
iii. For all \mathcal{T}-functors $\varphi, \psi: X \longrightarrow \mathrm{~V}$: if $\left.\varphi\right|_{M}=\left.\psi\right|_{M}$, then $\varphi(x)=\psi(x)$.

L-closure

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_{*} \circ f^{*}=\left(\text { id }_{Y}\right)_{*}=b$.

L-closure

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_{*} \circ f^{*}=\left(\text { id }_{Y}\right)_{*}=b$.
- X L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.

L-closure

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_{*} \circ f^{*}=\left(\operatorname{id}_{Y}\right)_{*}=b$.
- X L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.

L-closure

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_{*} \circ f^{*}=\left(\operatorname{id}_{Y}\right)_{*}=b$.
- X L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.
- \hat{X} is closed in $\mathrm{V}^{|X|}$.

L-closure

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_{*} \circ f^{*}=\left(\text { id }_{Y}\right)_{*}=b$.
- X L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.
- \hat{X} is closed in $\mathrm{V}^{|X|}$.

Proposition

$\psi \in \hat{X}$ is a right adjoint \mathcal{T}-module if and only if $\psi \in \overline{y[X]}$.

L-closure

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_{*} \circ f^{*}=\left(\text { id }_{Y}\right)_{*}=b$.
- X L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.
- \hat{X} is closed in $\mathrm{V}^{|X|}$.

Proposition

$\psi \in \hat{X}$ is a right adjoint \mathcal{T}-module if and only if $\psi \in \overline{y[X]}$.

Proof.

$\ldots \varphi=\left(\mathrm{id}_{X}\right)_{*} \circ-\psi$ and observe that $\varphi(x)=\hat{a}\left(e_{\hat{x}}(\psi) y(x)\right)$ and

$$
\xi \cdot T \varphi(x)=T_{\xi} \hat{a}\left(T e_{\hat{X}} \cdot e_{\hat{x}}(\psi), T_{y}(\mathfrak{x})\right) \ldots
$$

L-completeness

We put $\tilde{X}=\overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

L-completeness

We put $\tilde{X}=\overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.
i. X is L-complete.
ii. X is injective with respect to fully faithful dense \mathcal{T}-functor.
iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathcal{T}-functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_{x}$.

L-completeness

We put $\tilde{X}=\overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.
i. X is L-complete.
ii. X is injective with respect to fully faithful dense \mathcal{T}-functor.
iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathcal{T}-functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_{x}$.

- V is injective w.r.t. fully faithful \mathcal{T}-functors.

L-completeness

We put $\tilde{X}=\overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.
i. X is L-complete.
ii. X is injective with respect to fully faithful dense \mathcal{T}-functor.
iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathcal{T}-functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_{x}$.

- V is injective w.r.t. fully faithful \mathcal{T}-functors.
- X with $a \cdot T_{\xi} a=a \cdot m_{X}, Y$ L-complete $\Rightarrow Y^{X}$ L-complete.

L-completeness

We put $\tilde{X}=\overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.
i. X is L-complete.
ii. X is injective with respect to fully faithful dense \mathcal{T}-functor.
iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathcal{T}-functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_{x}$.

- V is injective w.r.t. fully faithful \mathcal{T}-functors.
- X with $a \cdot T_{\xi} a=a \cdot m_{X}, Y$ L-complete $\Rightarrow Y^{X}$ L-complete.
- $V^{|X|}, \hat{X}, \tilde{X}$ are L-complete.

