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Quantales

Recall that a (unital) quantale is a monoid object in the
category of sup-lattices. More precisely, Q is a quantale if:

For any two elements x and y , there is an element xy . This
multiplication is associative, i.e. (xy)z = x(yz) for all
x , y , z ∈ Q and has an identity, 1.
Given any set of elements {xi |i ∈ I} in Q, there is a least
upper bound

∨
i∈I xi . (This implies that there is also a

greatest lower bound for any set of elements.)
Given any element y , and any set of elements {xi |i ∈ I},
y

(∨
i∈I xi

)
=

∨
i∈I yxi and

(∨
i∈I xi

)
y =

∨
i∈I xiy .
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Examples of Quantales

Any locale is a quantale, with meet as multiplication.
The collection of relations on a set. Multiplication is
given by composition, i.e. x RS y ⇔ (∃z)(x S z ∧ z R y).
Join is given by unions, where relations are viewed as
subsets of X × X .
The collection of subsets of a group. Multiplication is
pointwise – i.e. AB = {ab|a ∈ A, b ∈ B}. Join is union.
The collection of ideals of a C∗-algebra.
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Equivalence Relations

An equivalence relation E on X is a relation such that:

E is reflexive, i.e. 1 6 E in the quantale of relations on X .
E is symmetric, i.e. if xEy then yEx .
E is transitive, i.e. it is idempotent in the quantale of all
relations.
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Subgroups

A subset H of a group G is a subgroup if:

H contains the identity, i.e. 1 6 H in the quantale of all
subsets of G.
H is closed under taking inverses, i.e. if x ∈ H then
x−1 ∈ H.
H is closed under multiplication, i.e. H is idempotent in the
quantale of all subsets of G.
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Embeddings

There are well-known embeddings between lattices of
equivalence relations on a set and lattices of subgroups of a
group.

Given a group G, a subgroup induces an equivalence
relation on the underlying set – relate two elements iff they
are in the same left coset.
Given an equivalence relation E on the set X , we form a
subgroup of the group of permutations of X , namely the
group of permutations that fix the equivalence classes.

Do these embeddings come from some connection between
the quantales of subsets of a group and relations on a set?
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The Construction

Given a category C, we can form a quantale QC as follows:

Elements are sets of morphisms in C.
Joins are unions.
Multiplication is pointwise on elements that compose, i.e.
AB = {fg|f ∈ A, g ∈ B, dom f = cod g}.
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Examples of this Construction

C Q
Discrete category on X Powerset of X

Group G Quantale of subsets of G

Indiscrete category on X Quantale of relations on X
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Questions

Given a quantale Q, under what circumstances can it be
expressed as QC for some category C?

When Q is QC for some category C, how can we
reconstruct the category C?
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Finding the Category

It is obvious that the morphisms of C will be exactly the
indecomposable elements of QC. (i.e. elements that
cannot be expressed as a join of strictly smaller elements.)

We can obtain the objects of C as the identity morphisms,
which are just the indecomposable elements that are 6 1.
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Ordered Categories

In fact it makes sense to generalise this construction to
downsets of morphisms on ordered categories for the following
reasons:

When we construct the quantale from an unordered
category C, the indecomposable elements are all
incomparable. This is an unnecessary extra condition on
the quantale.
There is an obvious embedding of the category of
quantales into the category of ordered categories. This
embedding is right adjoint to our downsets of morphisms
construction.
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Identities

When dealing with ordered categories, we need to be more
careful in identifying which morphisms are identities.
Downsets I generated by identity morphisms satisfy the
following two equivalent conditions:

(∀x ∈ QC)(Ix = I> ∧ x) and (∀x ∈ QC)(xI = >I ∧ x).
(∀x , y ∈ QC)(I(x ∧ y) = Ix ∧ y) and
(∀x , y ∈ QC)((x ∧ y)I = xI ∧ y).

We will call an element of an arbitrary quantale Q objective if it
satisfies these properties. We will denote the collection of
objective elements in Q by IdQ. Where Q is obvious, we will
omit the subscript.
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Theorem
A quantale Q is the quantale of downsets of morphisms of a
partially ordered category, if and only if the following conditions
and their reverses (i.e. the conditions obtained by changing the
order of all multiplications) hold:

1. Q is a frame as a lattice. (Condition 2 then forces Q to be
CCD.)

2. Q is generated by indecomposables as a ∨-semilattice.
3. All indecomposable objects x ∈ Q have the property that

the right adjoint x → _ to x ._ preserves all inhabited joins.
. . .
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Theorem
A quantale Q is the quantale of downsets of morphisms of a
partially ordered category, if and only if the following conditions
and their reverses (i.e. the conditions obtained by changing the
order of all multiplications) hold:

4. The functions >_ : Id // Q and _> : Id // Q have left
adjoints dom and cod respectively.

5. dom and cod satisfy the equations
cod (fg) = cod (f cod (g)) and dom (fg) = dom (dom (f )g).

5’. Equivalently, if g 6 i> and fg 6 j>, for identities, i and j,
then fi 6 j>.

6. Every identity is a join of indecomposable identities.
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Functors

Given a functor C F //D, what does this give between QC and
QD?

It gives a sup-homomorphism QC F∗ // QD, given by
F∗(A) = {F (f )|f ∈ A}. This is a lax quantale
homomorphism (i.e. F∗(A)F∗(B) 6 F∗(AB) and F∗(1) 6 1).

It also gives a lattice homomorphism QD F∗
// QC, given

by F ∗(A) = {f ∈ mor C|F (f ) ∈ A}. This is adjoint to F∗ as
morphisms of ordered sets. It is therefore a colax quantale
homomorphism.

Finally, there is a meet homomorphism QC F !
// QD,

which is adjoint to F ∗. It is given by
F !(A) = {f ∈ mor D|(∀g ∈ mor C)(F (g) = f ⇒ g ∈ A)}.
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Embedding of Subgroups into Equivalence Relations

Given a group G, we have seen that:

The quantale of subsets of G is the quantale of sets of
morphisms of G as a 1-object category.
The quantale of relations on the underlying set of G is the
quantale of sets of morphisms in the indiscrete category
∗\G.

There is a forgetful functor ∗\G F // G. The embedding of
lattices we saw earlier is just F ∗ for this functor, restricted to
subgroups of G.
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Quantale Homomorphisms

Given an order-preserving functor C F //D, when do F∗ and
F ∗ actually preserve the multiplication in their quantales?

F∗ preserves multiplication iff F has the property that given
any composable morphisms f , g ∈ mor C, and any
h 6 F (f )F (g) in mor D, we can find f ′ 6 f and g′ 6 g
composable in mor C, such that h 6 F (f ′g′).
F ∗ preserves multiplication iff F has the property that given
a morphism h ∈ mor C, and a composable pair of
morphisms f , g ∈ mor D, such that F (h) 6 fg, then we can
find composable morphisms f ′, g′ ∈ mor C, such that
h 6 f ′g′, and F (f ′) 6 f , and F (g′) 6 g.

These conditions are related to the ordered Conduché
conditions.

Toby Kenney with R. Paré and R. Wood Equivalence Relations and Subgroups



Factorisation

We can factor any ordered functor F into an ordered
functor F1 such that F1

∗ preserves multiplication, followed
by an ordered functor F2 such that F2∗ preserves
multiplication.
This is related to the factorisation of an adjoint pair of a lax
functor and a colax functor into an adjunction where the
left adjoint is a pseudofunctor, followed by and adjunction
where the right adjoint is a pseudofunctor.
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