
Comprehending stuff- and structure-types

Jürgen Koslowski

Department of Theoretical Computer Science
Technical University Braunschweig

CT 2007, Carvoeiro, Portugal, 2007-06-19

http://www.iti.cs.tu-bs.de/̃ koslowj/RESEARCH

Jürgen Koslowski Comprehending stuff- and structure-types



01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez’s semi-regular column

“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1–82

Jürgen Koslowski Comprehending stuff- and structure-types



01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez’s semi-regular column

“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1–82

Jürgen Koslowski Comprehending stuff- and structure-types



01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez’s semi-regular column

“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1–82

Jürgen Koslowski Comprehending stuff- and structure-types



01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez’s semi-regular column

“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1–82

Jürgen Koslowski Comprehending stuff- and structure-types



01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez’s semi-regular column

“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1–82

Jürgen Koslowski Comprehending stuff- and structure-types



01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez’s semi-regular column

“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1–82

Jürgen Koslowski Comprehending stuff- and structure-types



02. Background

In order to “categorify” combinatorics, Joyal begins defining a
species of structures F by assigning to each finite set n the
set nF of F -structures that can live on n .

Which types F of structures and which functions n
f // m

between finite sets should be taken into consideration?

To obtain well-behaved liftings nF
fF // mF for all types F of

structures, restricting to bijections n
f // m seems appropriate.

(Also, no need to consider contravariance!)

Definition

Thus a species of structures is just a functor from the groupoid E
of finite sets and bijections to set .

Jürgen Koslowski Comprehending stuff- and structure-types



02. Background

In order to “categorify” combinatorics, Joyal begins defining a
species of structures F by assigning to each finite set n the
set nF of F -structures that can live on n .

Which types F of structures and which functions n
f // m

between finite sets should be taken into consideration?

To obtain well-behaved liftings nF
fF // mF for all types F of

structures, restricting to bijections n
f // m seems appropriate.

(Also, no need to consider contravariance!)

Definition

Thus a species of structures is just a functor from the groupoid E
of finite sets and bijections to set .

Jürgen Koslowski Comprehending stuff- and structure-types



02. Background

In order to “categorify” combinatorics, Joyal begins defining a
species of structures F by assigning to each finite set n the
set nF of F -structures that can live on n .

Which types F of structures and which functions n
f // m

between finite sets should be taken into consideration?

To obtain well-behaved liftings nF
fF // mF for all types F of

structures, restricting to bijections n
f // m seems appropriate.

(Also, no need to consider contravariance!)

Definition

Thus a species of structures is just a functor from the groupoid E
of finite sets and bijections to set .

Jürgen Koslowski Comprehending stuff- and structure-types



02. Background

In order to “categorify” combinatorics, Joyal begins defining a
species of structures F by assigning to each finite set n the
set nF of F -structures that can live on n .

Which types F of structures and which functions n
f // m

between finite sets should be taken into consideration?

To obtain well-behaved liftings nF
fF // mF for all types F of

structures, restricting to bijections n
f // m seems appropriate.

(Also, no need to consider contravariance!)

Definition

Thus a species of structures is just a functor from the groupoid E
of finite sets and bijections to set .

Jürgen Koslowski Comprehending stuff- and structure-types



02. Background

In order to “categorify” combinatorics, Joyal begins defining a
species of structures F by assigning to each finite set n the
set nF of F -structures that can live on n .

Which types F of structures and which functions n
f // m

between finite sets should be taken into consideration?

To obtain well-behaved liftings nF
fF // mF for all types F of

structures, restricting to bijections n
f // m seems appropriate.

(Also, no need to consider contravariance!)

Definition

Thus a species of structures is just a functor from the groupoid E
of finite sets and bijections to set .

Jürgen Koslowski Comprehending stuff- and structure-types



03. The Baez-Dolan approach

For a species E
F // set Baez and Dolan construct a gpd -morphism

into E that “contains all the information in the [species]” F :

Its domain is the value of a certain functor set // gpd at 1 ;

This functor is modeled on the analytic functor F a associated
with F , i.e., the left Kan-extension of F along E � J // set :

E

set

set
�� ��
��

Fa

FF
F //

�

J
��1

11
11

11
suggests

consideration of

E

set

set

gpd

�


(FI )a
//

F //
�

J
��1

11
11

11
�

I

��1
11

11
11

where set � I // gpd is the other obvious inclusion.

Jürgen Koslowski Comprehending stuff- and structure-types



03. The Baez-Dolan approach

For a species E
F // set Baez and Dolan construct a gpd -morphism

into E that “contains all the information in the [species]” F :

Its domain is the value of a certain functor set // gpd at 1 ;

This functor is modeled on the analytic functor F a associated
with F , i.e., the left Kan-extension of F along E � J // set :

E

set

set
�� ��
��

Fa

FF
F //

�

J
��1

11
11

11
suggests

consideration of

E

set

set

gpd

�


(FI )a
//

F //
�

J
��1

11
11

11
�

I

��1
11

11
11

where set � I // gpd is the other obvious inclusion.

Jürgen Koslowski Comprehending stuff- and structure-types



03. The Baez-Dolan approach

For a species E
F // set Baez and Dolan construct a gpd -morphism

into E that “contains all the information in the [species]” F :

Its domain is the value of a certain functor set // gpd at 1 ;

This functor is modeled on the analytic functor F a associated
with F , i.e., the left Kan-extension of F along E � J // set :

E

set

set
�� ��
��

Fa

FF
F //

�

J
��1

11
11

11
suggests

consideration of

E

set

set

gpd

�


(FI )a
//

F //
�

J
��1

11
11

11
�

I

��1
11

11
11

where set � I // gpd is the other obvious inclusion.

Jürgen Koslowski Comprehending stuff- and structure-types



03. The Baez-Dolan approach

For a species E
F // set Baez and Dolan construct a gpd -morphism

into E that “contains all the information in the [species]” F :

Its domain is the value of a certain functor set // gpd at 1 ;

This functor is modeled on the analytic functor F a associated
with F , i.e., the left Kan-extension of F along E � J // set :

E

set

set
�� ��
��

Fa

FF
F //

�

J
��1

11
11

11
suggests

consideration of

E

set

set

gpd

�


(FI )a
//

F //
�

J
��1

11
11

11
�

I

��1
11

11
11

where set � I // gpd is the other obvious inclusion.

Jürgen Koslowski Comprehending stuff- and structure-types



03. The Baez-Dolan approach

For a species E
F // set Baez and Dolan construct a gpd -morphism

into E that “contains all the information in the [species]” F :

Its domain is the value of a certain functor set // gpd at 1 ;

This functor is modeled on the analytic functor F a associated
with F , i.e., the left Kan-extension of F along E � J // set :

E

set

set
�� ��
��

Fa

FF
F //

�

J
��1

11
11

11
suggests

consideration of

E

set

set

gpd

�


(FI )a
//

F //
�

J
��1

11
11

11
�

I

��1
11

11
11

where set � I // gpd is the other obvious inclusion.

Jürgen Koslowski Comprehending stuff- and structure-types



03. The Baez-Dolan approach

For a species E
F // set Baez and Dolan construct a gpd -morphism

into E that “contains all the information in the [species]” F :

Its domain is the value of a certain functor set // gpd at 1 ;

This functor is modeled on the analytic functor F a associated
with F , i.e., the left Kan-extension of F along E � J // set :

E

set

set
�� ��
��

Fa

FF
F //

�

J
��1

11
11

11
suggests

consideration of

E

set

set

gpd

�


(FI )a
//

F //
�

J
��1

11
11

11
�

I

��1
11

11
11

where set � I // gpd is the other obvious inclusion.

Jürgen Koslowski Comprehending stuff- and structure-types



04. The Baez-Dolan approach, continued

The exponential generating function for F

IN
|F | // IN, x 7→

∑
n∈IN

(|nF | · xn)/n!

provides the template for both analytic functors F a and (FI )a

(now we think of n! as the permutation group of n ):

set
Fa

// set , X 7→
∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)/n!

set
(FI )a // gpd , X 7→

∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)//n!

The “weak quotient” // is just a glueing construction!
(FI )a maps X to the groupoid of X -colored F -structured sets.

Jürgen Koslowski Comprehending stuff- and structure-types



04. The Baez-Dolan approach, continued

The exponential generating function for F

IN
|F | // IN, x 7→

∑
n∈IN

(|nF | · xn)/n!

provides the template for both analytic functors F a and (FI )a

(now we think of n! as the permutation group of n ):

set
Fa

// set , X 7→
∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)/n!

set
(FI )a // gpd , X 7→

∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)//n!

The “weak quotient” // is just a glueing construction!
(FI )a maps X to the groupoid of X -colored F -structured sets.

Jürgen Koslowski Comprehending stuff- and structure-types



04. The Baez-Dolan approach, continued

The exponential generating function for F

IN
|F | // IN, x 7→

∑
n∈IN

(|nF | · xn)/n!

provides the template for both analytic functors F a and (FI )a

(now we think of n! as the permutation group of n ):

set
Fa

// set , X 7→
∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)/n!

set
(FI )a // gpd , X 7→

∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)//n!

The “weak quotient” // is just a glueing construction!
(FI )a maps X to the groupoid of X -colored F -structured sets.

Jürgen Koslowski Comprehending stuff- and structure-types



04. The Baez-Dolan approach, continued

The exponential generating function for F

IN
|F | // IN, x 7→

∑
n∈IN

(|nF | · xn)/n!

provides the template for both analytic functors F a and (FI )a

(now we think of n! as the permutation group of n ):

set
Fa

// set , X 7→
∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)/n!

set
(FI )a // gpd , X 7→

∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)//n!

The “weak quotient” // is just a glueing construction!
(FI )a maps X to the groupoid of X -colored F -structured sets.

Jürgen Koslowski Comprehending stuff- and structure-types



04. The Baez-Dolan approach, continued

The exponential generating function for F

IN
|F | // IN, x 7→

∑
n∈IN

(|nF | · xn)/n!

provides the template for both analytic functors F a and (FI )a

(now we think of n! as the permutation group of n ):

set
Fa

// set , X 7→
∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)/n!

set
(FI )a // gpd , X 7→

∫ u∈E

uF × X u ∼=
∑
n∈IN

(nF × X n)//n!

The “weak quotient” // is just a glueing construction!
(FI )a maps X to the groupoid of X -colored F -structured sets.

Jürgen Koslowski Comprehending stuff- and structure-types



05. The Baez-Dolan approach and Byrne’s view

Baez and Dolan then generalize the obvious forgetful functor
1(FI )a // E to arbitrary gpd -morphisms into E , subject to
an unspecified finiteness condition; these are called stuff types.

Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

He then proceeds to construct a stuff type from a species by a
glueing construction.

Conversely, from a stuff type he constructs a “fibre functor”
E // gpd , and then characterizes those stuff types that will
indeed produce a species in this fashion as the faithful ones:

functor G // E : stuff type

faithful functor G // E : structure type

full and faithful functor G // E : property type

Jürgen Koslowski Comprehending stuff- and structure-types



05. The Baez-Dolan approach and Byrne’s view

Baez and Dolan then generalize the obvious forgetful functor
1(FI )a // E to arbitrary gpd -morphisms into E , subject to
an unspecified finiteness condition; these are called stuff types.

Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

He then proceeds to construct a stuff type from a species by a
glueing construction.

Conversely, from a stuff type he constructs a “fibre functor”
E // gpd , and then characterizes those stuff types that will
indeed produce a species in this fashion as the faithful ones:

functor G // E : stuff type

faithful functor G // E : structure type

full and faithful functor G // E : property type

Jürgen Koslowski Comprehending stuff- and structure-types



05. The Baez-Dolan approach and Byrne’s view

Baez and Dolan then generalize the obvious forgetful functor
1(FI )a // E to arbitrary gpd -morphisms into E , subject to
an unspecified finiteness condition; these are called stuff types.

Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

He then proceeds to construct a stuff type from a species by a
glueing construction.

Conversely, from a stuff type he constructs a “fibre functor”
E // gpd , and then characterizes those stuff types that will
indeed produce a species in this fashion as the faithful ones:

functor G // E : stuff type

faithful functor G // E : structure type

full and faithful functor G // E : property type

Jürgen Koslowski Comprehending stuff- and structure-types



05. The Baez-Dolan approach and Byrne’s view

Baez and Dolan then generalize the obvious forgetful functor
1(FI )a // E to arbitrary gpd -morphisms into E , subject to
an unspecified finiteness condition; these are called stuff types.

Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

He then proceeds to construct a stuff type from a species by a
glueing construction.

Conversely, from a stuff type he constructs a “fibre functor”
E // gpd , and then characterizes those stuff types that will
indeed produce a species in this fashion as the faithful ones:

functor G // E : stuff type

faithful functor G // E : structure type

full and faithful functor G // E : property type

Jürgen Koslowski Comprehending stuff- and structure-types



05. The Baez-Dolan approach and Byrne’s view

Baez and Dolan then generalize the obvious forgetful functor
1(FI )a // E to arbitrary gpd -morphisms into E , subject to
an unspecified finiteness condition; these are called stuff types.

Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

He then proceeds to construct a stuff type from a species by a
glueing construction.

Conversely, from a stuff type he constructs a “fibre functor”
E // gpd , and then characterizes those stuff types that will
indeed produce a species in this fashion as the faithful ones:

functor G // E : stuff type

faithful functor G // E : structure type

full and faithful functor G // E : property type

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of (traditional) LTSs over a label graph X ,

as processes, i.e., (faithful) graph-morphisms into X , or

as systems, i.e., graph-morphisms X // spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Q
L:=〈!,`〉 // X (graph morphism)

X oo `
Q1

s //
t

// Q0

X oo `
Q1

〈s,t〉 // Q0 × Q0

X
L◦ // 〈Q0,Q0〉spn

X
L◦ // spn (graph morphism)

This also works for general graphs X .

Jürgen Koslowski Comprehending stuff- and structure-types



07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories cat and Cat , respectively.

We call a Grph -morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence
between fiber-small processes Q // X and systems X // spn .

If X is a category, this restricts to fiber-small functors Q // X ,
respectively, lax functors X // spn .

Jürgen Koslowski Comprehending stuff- and structure-types



07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories cat and Cat , respectively.

We call a Grph -morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence
between fiber-small processes Q // X and systems X // spn .

If X is a category, this restricts to fiber-small functors Q // X ,
respectively, lax functors X // spn .

Jürgen Koslowski Comprehending stuff- and structure-types



07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories cat and Cat , respectively.

We call a Grph -morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence
between fiber-small processes Q // X and systems X // spn .

If X is a category, this restricts to fiber-small functors Q // X ,
respectively, lax functors X // spn .

Jürgen Koslowski Comprehending stuff- and structure-types



07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories cat and Cat , respectively.

We call a Grph -morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence
between fiber-small processes Q // X and systems X // spn .

If X is a category, this restricts to fiber-small functors Q // X ,
respectively, lax functors X // spn .

Jürgen Koslowski Comprehending stuff- and structure-types



08. Graph comprehension at the object level

Sketch of proof

a2

a1

a0 b0

b1

wvutpqrs onmlhijk
{a0,a1,a2} {b0,b1}


{f ,g} ∅
∅ {h}

{k} {l}



x y

in Q
in X

in spn

f ((g^^^^^^ ..̂^^^^^

h
**k

88

l
77

� ,2

u
//

�

L∼=(L◦)◦ ��?
??

??

? L◦

??�����

L◦ is obtained from L by taking inverse images.

In the other direction one employs disjoint unions.

If X is a category, laxness of L◦ equips Q with units and a
composition that are preserved by L , and vica versa.

Jürgen Koslowski Comprehending stuff- and structure-types



08. Graph comprehension at the object level

Sketch of proof

a2

a1

a0 b0

b1

wvutpqrs onmlhijk
{a0,a1,a2} {b0,b1}


{f ,g} ∅
∅ {h}

{k} {l}



x y

in Q
in X

in spn

f ((g^^^^^^ ..̂^^^^^

h
**k

88

l
77

� ,2

u
//

�

L∼=(L◦)◦ ��?
??

??

? L◦

??�����

L◦ is obtained from L by taking inverse images.

In the other direction one employs disjoint unions.

If X is a category, laxness of L◦ equips Q with units and a
composition that are preserved by L , and vica versa.

Jürgen Koslowski Comprehending stuff- and structure-types



08. Graph comprehension at the object level

Sketch of proof

a2

a1

a0 b0

b1

wvutpqrs onmlhijk
{a0,a1,a2} {b0,b1}


{f ,g} ∅
∅ {h}

{k} {l}



x y

in Q
in X

in spn

f ((g^^^^^^ ..̂^^^^^

h
**k

88

l
77

� ,2

u
//

�

L∼=(L◦)◦ ��?
??

??

? L◦

??�����

L◦ is obtained from L by taking inverse images.

In the other direction one employs disjoint unions.

If X is a category, laxness of L◦ equips Q with units and a
composition that are preserved by L , and vica versa.

Jürgen Koslowski Comprehending stuff- and structure-types



08. Graph comprehension at the object level

Sketch of proof

a2

a1

a0 b0

b1

wvutpqrs onmlhijk
{a0,a1,a2} {b0,b1}


{f ,g} ∅
∅ {h}

{k} {l}



x y

in Q
in X

in spn

f ((g^^^^^^ ..̂^^^^^

h
**k

88

l
77

� ,2

u
//

�

L∼=(L◦)◦ ��?
??

??

? L◦

??�����

L◦ is obtained from L by taking inverse images.

In the other direction one employs disjoint unions.

If X is a category, laxness of L◦ equips Q with units and a
composition that are preserved by L , and vica versa.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. Three important types of 1-cells for systems X //spn

Oplax map-transforms

K
ϕ +3 L: in spn

yK yL

xK xL

qqqq
4<uϕ

yϕ

xϕ

uK
M�
 



uLM�
 



//

//

Modules (mixed assoc.)

L
π � ,2M: in spn

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

uL
M�
 



(u;v)π

11

q��
11 vMM�
 




Lax transforms

M
σ � ,N: in spn

zM zN

yM yN

qqqqt|
vσ

zσ

� ,2

yσ � ,2

vM
M�
 



vNM�
 



Lax transforms are closely related to simulations (of N by M ).

For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

We obtain modules K
ϕ# � ,2L and M

σ# � ,2N by pasting with
the identity module on the codomain, respectively, domain.

Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jürgen Koslowski Comprehending stuff- and structure-types



09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L
π � ,2M is a span of

fibre-small functors over X with a natural transformation:

π◦ in diagram form

P

Q R

X

____ +3P
P1

L◦
%%LLL

L

M◦yyrrr
r

P0
yyrrr

r
%%LLL

L

Interpretation

Combine Q and R into a new category over X
with P -objects serving as new arrows linking Q -
with R -objects, and P -arrows serving as new
commutative squares linking Q - with R -arrows.

Old and new arrows are composed according to the module 2-cells:

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

(u;v)π

11

q��
11

uL
M�
 



vMM�
 



In particular, P encompasses all new arrows.

Jürgen Koslowski Comprehending stuff- and structure-types



09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L
π � ,2M is a span of

fibre-small functors over X with a natural transformation:

π◦ in diagram form

P

Q R

X

____ +3P
P1

L◦
%%LLL

L

M◦yyrrr
r

P0
yyrrr

r
%%LLL

L

Interpretation

Combine Q and R into a new category over X
with P -objects serving as new arrows linking Q -
with R -objects, and P -arrows serving as new
commutative squares linking Q - with R -arrows.

Old and new arrows are composed according to the module 2-cells:

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

(u;v)π

11

q��
11

uL
M�
 



vMM�
 



In particular, P encompasses all new arrows.

Jürgen Koslowski Comprehending stuff- and structure-types



09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L
π � ,2M is a span of

fibre-small functors over X with a natural transformation:

π◦ in diagram form

P

Q R

X

____ +3P
P1

L◦
%%LLL

L

M◦yyrrr
r

P0
yyrrr

r
%%LLL

L

Interpretation

Combine Q and R into a new category over X
with P -objects serving as new arrows linking Q -
with R -objects, and P -arrows serving as new
commutative squares linking Q - with R -arrows.

Old and new arrows are composed according to the module 2-cells:

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

(u;v)π

11

q��
11

uL
M�
 



vMM�
 



In particular, P encompasses all new arrows.

Jürgen Koslowski Comprehending stuff- and structure-types



09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L
π � ,2M is a span of

fibre-small functors over X with a natural transformation:

π◦ in diagram form

P

Q R

X

____ +3P
P1

L◦
%%LLL

L

M◦yyrrr
r

P0
yyrrr

r
%%LLL

L

Interpretation

Combine Q and R into a new category over X
with P -objects serving as new arrows linking Q -
with R -objects, and P -arrows serving as new
commutative squares linking Q - with R -arrows.

Old and new arrows are composed according to the module 2-cells:

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

(u;v)π

11

q��
11

uL
M�
 



vMM�
 



In particular, P encompasses all new arrows.

Jürgen Koslowski Comprehending stuff- and structure-types



09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L
π � ,2M is a span of

fibre-small functors over X with a natural transformation:

π◦ in diagram form

P

Q R

X

____ +3P
P1

L◦
%%LLL

L

M◦yyrrr
r

P0
yyrrr

r
%%LLL

L

Interpretation

Combine Q and R into a new category over X
with P -objects serving as new arrows linking Q -
with R -objects, and P -arrows serving as new
commutative squares linking Q - with R -arrows.

Old and new arrows are composed according to the module 2-cells:

yL zM

xL yM
qqqqt|

qqqq
4<

vπ

� ,2

uπ � ,2

(u;v)π

11

q��
11

uL
M�
 



vMM�
 



In particular, P encompasses all new arrows.

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L
π � ,M or L

π +3 M only those new arrows show up in P
that live over identities in X ; old and new arrows now compose
freely and are then identified according to the 2-cells of π :

π◦ in diagram form

P

Q R

X

P1

L◦
%%JJJ

J

M◦yyttt
t

P0
yyttt

t
%%JJJ

J
id +3

Identificaton of new composites

zL zM

yL yM

qqqqt|
vπ

zπ

� ,2

yπ � ,2

vL
M�
 



vMM�
 



resp.

yL yM

xL xM

qqqq
4<uπ

yπ
//

xπ //

uL
M�
 



uMM�
 



For L
π � ,M this makes P1 (1

0 // 2)-orthogonal ? ,
which turns π◦ into a simulation of M◦ by L◦ over X .

For L
π +3 M this makes P0 iso,

which turns π◦ into a functor over X .

Jürgen Koslowski Comprehending stuff- and structure-types



11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

bbX , spncc@ ∼= Cat @//X with @ ∈ {md, lx,mp, . . . }

where for fibre-small functors Q
L // X oo M

R the hom-categories
are given by

〈L,M〉Cat md//X = Cat/(L/M)

〈L,M〉Cat lx//X = {P
P // L/M : Pα = id ∧ (1

0 // 2) ⊥ P∂1 }
〈L,M〉Cat mp//X = {Q

Q // L/M : Qα = id }

where

L/M

Q R

X

____ +3α
∂1

L
%%LLL

L

M
yyrrr

r

∂0
yyrr %%LL

denotes the comma square.

Jürgen Koslowski Comprehending stuff- and structure-types



11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

bbX , spncc@ ∼= Cat @//X with @ ∈ {md, lx,mp, . . . }

where for fibre-small functors Q
L // X oo M

R the hom-categories
are given by

〈L,M〉Cat md//X = Cat/(L/M)

〈L,M〉Cat lx//X = {P
P // L/M : Pα = id ∧ (1

0 // 2) ⊥ P∂1 }
〈L,M〉Cat mp//X = {Q

Q // L/M : Qα = id }

where

L/M

Q R

X

____ +3α
∂1

L
%%LLL

L

M
yyrrr

r

∂0
yyrr %%LL

denotes the comma square.

Jürgen Koslowski Comprehending stuff- and structure-types



11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

bbX , spncc@ ∼= Cat @//X with @ ∈ {md, lx,mp, . . . }

where for fibre-small functors Q
L // X oo M

R the hom-categories
are given by

〈L,M〉Cat md//X = Cat/(L/M)

〈L,M〉Cat lx//X = {P
P // L/M : Pα = id ∧ (1

0 // 2) ⊥ P∂1 }
〈L,M〉Cat mp//X = {Q

Q // L/M : Qα = id }

where

L/M

Q R

X

____ +3α
∂1

L
%%LLL

L

M
yyrrr

r

∂0
yyrr %%LL

denotes the comma square.

Jürgen Koslowski Comprehending stuff- and structure-types



11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

bbX , spncc@ ∼= Cat @//X with @ ∈ {md, lx,mp, . . . }

where for fibre-small functors Q
L // X oo M

R the hom-categories
are given by

〈L,M〉Cat md//X = Cat/(L/M)

〈L,M〉Cat lx//X = {P
P // L/M : Pα = id ∧ (1

0 // 2) ⊥ P∂1 }
〈L,M〉Cat mp//X = {Q

Q // L/M : Qα = id }

where

L/M

Q R

X

____ +3α
∂1

L
%%LLL

L

M
yyrrr

r

∂0
yyrr %%LL

denotes the comma square.

Jürgen Koslowski Comprehending stuff- and structure-types



11. Comprehension

The embeddings of set into catco into prf , and the
characterization of prf as the bicategory of monads on spn yield

[X , set ] [X , catco] bX , prf cnmp bX , spncmp Cat mp/X

bbX , catcoccnmp

bbX , catcoccnmd

bbX , catcoccnlx

(
bbX , catcoccnmp

)
coop

bbX , prf ccnmp bbX , spnccmp Cat mp//X

bbX , prf ccnmd bbX , spnccmd Cat md//X

bbX , prf ccnlx bbX , spncclx Cat lx//X

(
bbX , prf ccnmp

)
coop

(
bbX , spnccmp

)
coop (Cat mp//X )coop

..
>nn

..
>mm

--
>mm

--
>mm

--
>mm

v

∼=
		��
��

∼= ∼=

∼=∼=

∼= ∼=

∼= ∼=

∼=∼=

v

		��
��

v

		��
��

v

		��
��

v

		��
��

v

		��
��

v

		��
��

6

II���� 6

II����

v

		��
��

6

II����

v

		��
��

6

II����

6

II���� 6

II���� 6

II����
6

II����

Jürgen Koslowski Comprehending stuff- and structure-types



11. Specialization in various directions

Posettal collapse: restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf .
Size constraints: restrict to λ-small graphs/categories for
some inaccessible cardinal λ .
Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a quantum computer):

[E , set ] Gpd mp/ffE

[E , gpd ] Gpd mp/E

bbE , gpd cocc@ Gpd @//E

,,
>

ll

,,
>

ll

++
>

jj

Jürgen Koslowski Comprehending stuff- and structure-types



11. Specialization in various directions

Posettal collapse: restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf .
Size constraints: restrict to λ-small graphs/categories for
some inaccessible cardinal λ .
Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a quantum computer):

[E , set ] Gpd mp/ffE

[E , gpd ] Gpd mp/E

bbE , gpd cocc@ Gpd @//E

,,
>

ll

,,
>

ll

++
>

jj

Jürgen Koslowski Comprehending stuff- and structure-types



11. Specialization in various directions

Posettal collapse: restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf .
Size constraints: restrict to λ-small graphs/categories for
some inaccessible cardinal λ .
Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a quantum computer):

[E , set ] Gpd mp/ffE

[E , gpd ] Gpd mp/E

bbE , gpd cocc@ Gpd @//E

,,
>

ll

,,
>

ll

++
>

jj

Jürgen Koslowski Comprehending stuff- and structure-types



11. Specialization in various directions

Posettal collapse: restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf .
Size constraints: restrict to λ-small graphs/categories for
some inaccessible cardinal λ .
Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a quantum computer):

[E , set ] Gpd mp/ffE

[E , gpd ] Gpd mp/E

bbE , gpd cocc@ Gpd @//E

,,
>

ll

,,
>

ll

++
>

jj

Jürgen Koslowski Comprehending stuff- and structure-types



11. Specialization in various directions

Posettal collapse: restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf .
Size constraints: restrict to λ-small graphs/categories for
some inaccessible cardinal λ .
Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a quantum computer):

[E , set ] Gpd mp/ffE

[E , gpd ] Gpd mp/E

bbE , gpd cocc@ Gpd @//E

,,
>

ll

,,
>

ll

++
>

jj

Jürgen Koslowski Comprehending stuff- and structure-types


