Comprehending stuff- and structure-types

Jirgen Koslowski

Department of Theoretical Computer Science
Technical University Braunschweig

CT 2007, Carvoeiro, Portugal, 2007-06-19

http://www.iti.cs.tu-bs.de/“koslowj/RESEARCH

Jurgen Koslowski Comprehending stuff- and structure-types

01. Motivation: References

The initial motivation comes from two papers:

Jurgen Koslowski Comprehending stuff- and structure-types

01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

Jurgen Koslowski Comprehending stuff- and structure-types

01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/"street/ByrneHons . pdf

Jurgen Koslowski Comprehending stuff- and structure-types

01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/"street/ByrneHons . pdf

as well as from various issues of John Baez's semi-regular column
“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of are mentioned.

Jurgen Koslowski Comprehending stuff- and structure-types

01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/"street/ByrneHons . pdf

as well as from various issues of John Baez's semi-regular column
“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of are mentioned.

The main underlying reference is

Jurgen Koslowski Comprehending stuff- and structure-types

01. Motivation: References

The initial motivation comes from two papers:

[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
Diagrams (April 2000), arXiv:math/0004133

[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/"street/ByrneHons . pdf

as well as from various issues of John Baez's semi-regular column
“This Week’s Find in Mathematical Physics”

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1-82

Jurgen Koslowski Comprehending stuff- and structure-types

02. Background

@ In order to “categorify” combinatorics, Joyal begins defining a
F by assigning to each finite set n the
set nF of F-structures that can live on n.

Jurgen Koslowski Comprehending stuff- and structure-types

02. Background

@ In order to “categorify” combinatorics, Joyal begins defining a
F by assigning to each finite set n the
set nF of F-structures that can live on n.

@ Which types F of structures and which functions n—=m
between finite sets should be taken into consideration?

Jurgen Koslowski Comprehending stuff- and structure-types

02. Background

@ In order to “categorify” combinatorics, Joyal begins defining a
F by assigning to each finite set n the
set nF of F-structures that can live on n.

@ Which types F of structures and which functions n—=m
between finite sets should be taken into consideration?

@ To obtain well-behaved liftings nF —F~ mF for all types F of
structures, restricting to n—">m seems appropriate.

Jurgen Koslowski Comprehending stuff- and structure-types

02. Background

@ In order to “categorify” combinatorics, Joyal begins defining a
F by assigning to each finite set n the
set nF of F-structures that can live on n.

@ Which types F of structures and which functions n—=m
between finite sets should be taken into consideration?

@ To obtain well-behaved liftings nF —F~ mF for all types F of
structures, restricting to n—">m seems appropriate.
(Also, no need to consider contravariance!)

Jurgen Koslowski Comprehending stuff- and structure-types

02. Background

@ In order to “categorify” combinatorics, Joyal begins defining a
F by assigning to each finite set n the
set nF of F-structures that can live on n.

@ Which types F of structures and which functions n—=m
between finite sets should be taken into consideration?

@ To obtain well-behaved liftings nF —F~ mF for all types F of
structures, restricting to n—">m seems appropriate.
(Also, no need to consider contravariance!)

Definition
Thus a species of structures is just a functor from the groupoid E
of finite sets and bijections to set .

Jurgen Koslowski Comprehending stuff- and structure-types

03. The Baez-Dolan approach

For a species E £~ set Baez and Dolan construct a gpd -morphism
into E that “contains all the information in the [species]” F:

Jurgen Koslowski Comprehending stuff- and structure-types

03. The Baez-Dolan approach

For a species E £~ set Baez and Dolan construct a gpd -morphism
into E that “contains all the information in the [species]” F:

@ Its domain is the value of a certain functor set — gpd at 1;

Jurgen Koslowski Comprehending stuff- and structure-types

03. The Baez-Dolan approach

For a species E £~ set Baez and Dolan construct a gpd -morphism
into E that “contains all the information in the [species]” F:

@ Its domain is the value of a certain functor set — gpd at 1;

@ This functor is modeled on the analytic functor F* associated
with F, i.e., the of F along E¥i>set:

Jurgen Koslowski Comprehending stuff- and structure-types

03. The Baez-Dolan approach

For a species E £~ set Baez and Dolan construct a gpd -morphism
into E that “contains all the information in the [species]” F:

@ Its domain is the value of a certain functor set — gpd at 1;

@ This functor is modeled on the analytic functor F* associated
with F, i.e., the of F along E¥i>set:

E—F+ set

J F?

set

Jurgen Koslowski Comprehending stuff- and structure-types

03. The Baez-Dolan approach

For a species E £~ set Baez and Dolan construct a gpd -morphism
into E that “contains all the information in the [species]” F:

@ Its domain is the value of a certain functor set — gpd at 1;

@ This functor is modeled on the analytic functor F* associated
with F, i.e., the of F along E¥i>set:

E—F+ set E — > set

suggests I
J F consideration of
set set . 9pd

Jurgen Koslowski Comprehending stuff- and structure-types

03. The Baez-Dolan approach

For a species E £~ set Baez and Dolan construct a gpd -morphism
into E that “contains all the information in the [species]” F:

@ Its domain is the value of a certain functor set — gpd at 1;

@ This functor is modeled on the analytic functor F* associated
with F, i.e., the of F along E¥i>set:

E—F+ set E — > set

suggests I
J F consideration of
set set . 9pd

where set\#gpd is the other obvious inclusion.

Jurgen Koslowski Comprehending stuff- and structure-types

04. The Baez-Dolan approach, continued

The for F

Ny x -

provides the template for both analytic functors F* and (F/)"
(now we think of n! as the permutation group of n):

Jurgen Koslowski Comprehending stuff- and structure-types

04. The Baez-Dolan approach, continued

The for F

Ny x -

a

provides the template for both analytic functors F* and (F/)
(now we think of n! as the permutation group of n):

a ucE
set——~ set, Xr—>/ quX“%Z(anX”)/n!
neN

Jurgen Koslowski Comprehending stuff- and structure-types

04. The Baez-Dolan approach, continued

The for F

Ny x -

provides the template for both analytic functors F* and (F/)"
(now we think of n! as the permutation group of n):

a ucE
set——~ set, Xr—>/ quX“%Z(anX”)/n!
neN

a ucE
set&gpd, X|—>/ quX“%Z(anX")//n!
nelN

Jurgen Koslowski Comprehending stuff- and structure-types

04. The Baez-Dolan approach, continued

The for F

NN, x e

a

provides the template for both analytic functors F* and (F/)
(now we think of n! as the permutation group of n):

a ucE
set——~ set, Xr—>/ quX“%Z(anX”)/n!
neN

a ueFE
set " gpd, X|—>/ quX“%Z(anX”)//n!
nelN

The "weak quotient” |/ is just a glueing construction!

Jurgen Koslowski Comprehending stuff- and structure-types

04. The Baez-Dolan approach, continued

The for F

N, e

provides the template for both analytic functors F* and (F/)"
(now we think of n! as the permutation group of n):

a ucE
set——~ set, Xr—>/ quX“%Z(anX”)/n!
neN

a ueFE
set " gpd, X|—>/ quX“%Z(anX”)//n!
nelN

The "weak quotient” |/ is just a glueing construction!
(FI)* maps X to the groupoid of X-colored F-structured sets.

Jurgen Koslowski Comprehending stuff- and structure-types

05. The Baez-Dolan approach and Byrne's view

@ Baez and Dolan then generalize the obvious forgetful functor
1(FI)*— E to arbitrary gpd-morphisms into E, subject to
an unspecified finiteness condition; these are called stuff types.

Jurgen Koslowski Comprehending stuff- and structure-types

05. The Baez-Dolan approach and Byrne's view

@ Baez and Dolan then generalize the obvious forgetful functor
1(FI)*— E to arbitrary gpd-morphisms into E, subject to
an unspecified finiteness condition; these are called stuff types.

@ Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

Jurgen Koslowski Comprehending stuff- and structure-types

05. The Baez-Dolan approach and Byrne's view

@ Baez and Dolan then generalize the obvious forgetful functor
1(FI)*— E to arbitrary gpd-morphisms into E, subject to
an unspecified finiteness condition; these are called stuff types.

@ Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

@ He then proceeds to construct a stuff type from a species by a
glueing construction.

Jurgen Koslowski Comprehending stuff- and structure-types

05. The Baez-Dolan approach and Byrne's view

@ Baez and Dolan then generalize the obvious forgetful functor
1(FI)*— E to arbitrary gpd-morphisms into E, subject to
an unspecified finiteness condition; these are called stuff types.

@ Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

@ He then proceeds to construct a stuff type from a species by a
glueing construction.

o Conversely, from a stuff type he constructs a “fibre functor”
FE — gpd, and then characterizes those stuff types that will
indeed produce a species in this fashion as the ones:

Jurgen Koslowski Comprehending stuff- and structure-types

05. The Baez-Dolan approach and Byrne's view

@ Baez and Dolan then generalize the obvious forgetful functor
1(FI)*— E to arbitrary gpd-morphisms into E, subject to
an unspecified finiteness condition; these are called stuff types.

@ Byrne [SB] describes stuff (and structure) types as “working in
the opposite direction” of species, by forgetting the structure.

@ He then proceeds to construct a stuff type from a species by a
glueing construction.

o Conversely, from a stuff type he constructs a “fibre functor”
FE — gpd, and then characterizes those stuff types that will

indeed produce a species in this fashion as the ones:
functor G—FE : stuff type
full and faithful functor §G—F : property type

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

XéQlij;QO

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Qﬂ)){ (graph morphism)

XéQlij;QO

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Qﬂ)){ (graph morphism)

XéQlij;QO

X<LQ1%QO x Qo

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Qﬂ)){ (graph morphism)

XéQlij;QO

X<LQ1%QO x Qo

Loy (Qo, Qo)spn

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Qﬂ)){ (graph morphism)

XéQlij;QO

X<LQ1%QO x Qo

Loy (Qo, Qo)spn

X i>3pn (graph morphism)

Jurgen Koslowski Comprehending stuff- and structure-types

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the
different views of () LTSs over a label graph X,

@ as processes, i.e., () graph-morphisms into X , or

@ as systems, i.e., graph-morphisms X — spn (rel).

Viewing labels in a set X as arrows of a single-node graph we get

Qﬂ)){ (graph morphism)

XéQlij;QO

X<LQ1%QO x Qo

Loy (Qo, Qo)spn

X i>3pn (graph morphism)
This also works for general graphs X .

Jurgen Koslowski Comprehending stuff- and structure-types

07. Graph comprehension at the object level

Definition

and Grph denote the (bi)categories of , respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories and Cat, respectively.

Jurgen Koslowski Comprehending stuff- and structure-types

07. Graph comprehension at the object level

Definition

and Grph denote the (bi)categories of , respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Jurgen Koslowski Comprehending stuff- and structure-types

07. Graph comprehension at the object level

Definition

and Grph denote the (bi)categories of , respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem
Every graph X induces an essentially bijective correspondence
between fiber-small processes Q — X and systems X — spn.

Jirgen Koslowski Comprehending stuff- and structure-types

07. Graph comprehension at the object level

Definition

and Grph denote the (bi)categories of , respectively,
locally small graphs and graph morphisms. These have non-full
sub(bi)categories and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem
Every graph X induces an essentially bijective correspondence
between fiber-small processes Q — X and systems X — spn.

If X is a category, this restricts to fiber-small functors Q — X,
respectively, lax functors X — spn.

Jirgen Koslowski Comprehending stuff- and structure-types

08. Graph comprehension at the object level

Sketch of proof

2 {rg} 0
J 0 ()

a {k} {1}
{ao,a1,a0} ——— > {bo,b1}

in @ L%(Lo;x e \/ZO in spn

y

a

X

Jurgen Koslowski Comprehending stuff- and structure-types

08. Graph comprehension at the object level

Sketch of proof

20 {re) 0
] 0 (1)

a {k} {1}
{ao,a1,a0} ——— > {bo,b1}

in @ L%(Lo;x e \/ZO in spn

y

a

X

@ L, is obtained from L by taking inverse images.

Jurgen Koslowski Comprehending stuff- and structure-types

08. Graph comprehension at the object level

Sketch of proof

20 {re) 0
] 0 (1)

a {k} {1}
{ao,a1,a0} ——— > {bo,b1}

in @ L%(Lo;x e \/ZO in spn

y

a

X

@ L, is obtained from L by taking inverse images.

@ In the other direction one employs disjoint unions.

Jurgen Koslowski Comprehending stuff- and structure-types

08. Graph comprehension at the object level

Sketch of proof

20 {re) 0
] 0 (1)

a {k} {1}
{ao,a1,a0} ——— > {bo,b1}

in @ L%(Lo;x e \/ZO in spn

y

a

X

@ L, is obtained from L by taking inverse images.
@ In the other direction one employs disjoint unions.

o If X is a category, laxness of L, equips @ with units and a
composition that are preserved by L, and vica versa. L]

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Modules

L="2>M: in spn

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Modules (mixed assoc.)
L="2M: in spn
uT
xL —>yM

\
ull/ (u;v)ﬂé‘//M
7

yL ﬁzM

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Modules (mixed assoc.) | Lax transforms
L="->M: in spn M=2=+~N: in spn
um
xL —>yM

\
ull/ (u;v)ﬂé‘//M
7

yL ﬁzM

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Modules (mixed assoc.) | Lax transforms
L="->M: in spn M=2=+~N: in spn
XL —— yM yM 275 yN
il | 4/
ﬁ Vv
yL ——zM zZM zN

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax

K="= 1:

-transforms

in spn

Modules (mixed assoc.)
L="2M: in spn

xL i!>yM

\
ull/ (u;v)ﬂ?/M
7

yL ﬁzM

Lax transforms

M=2=+~N: in spn
yM %yN

Y o

zM 4‘>ZN

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax -transforms Modules (mixed assoc.) Lax transforms
K=2>1L: in spn L="->M: in spn M==+~N: in spn
xK xL xL i!>y/W yM %yN
\ »
up L)
S L] B |
yK Vo ylL yL ——>zM zM ——>zN

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax -transforms

K=2>1L: in spn

xK xL
% L
yK yL
ye

Modules (mixed assoc.)
L="2>M: in spn

xL i!>yM

\
ull/ (u;v)ﬂ?/M
7

yL ﬁzM

v

Lax transforms

M==+~N: in spn
yM %yN

Y o

zM 4‘>ZN

@ Lax transforms are closely related to simulations (of N by M).

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax -transforms

K=2>1L: in spn

xK xL
% L
yK yL
ye

Modules (mixed assoc.)
L="2>M: in spn

xL i!>yM

\
ull/ (u;v)ﬂ?/M
7

yL ﬁzM

v

Lax transforms

M==+~N: in spn
yM %yN

Y o

zM 4‘>ZN

@ Lax transforms are closely related to simulations (of N by M).

@ For lax functors from a category X such 1-cells also must be

compatible with the lax structures of their domain and codomain.

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax -transforms

K="= 1:

xK xL
% L
yK yL
ye

in spn

Modules (mixed assoc.)

L="2>M: in spn
xL i!>yM

\
ull/ (u;v)ﬂ?/M
7

yL ﬁzM

v

Lax transforms

M==+~N: in spn
yM %yN

Y o

zM 4‘>ZN

@ Lax transforms are closely related to simulations (of N by M).

@ For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

#
@ We obtain modules K =25~ and M ="=>N by pasting with
the identity module on the codomain, respectively, domain.

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax -transforms Modules (mixed assoc.) Lax transforms
K=2>1L: in spn L="->M: in spn M==+~N: in spn
K 2> XL xL i!>y/W yM %yN
\ »
up L)
S L] B |
yK Vo ylL yL ——>zM zM ——>zN

v

@ Lax transforms are closely related to simulations (of N by M).

@ For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

#
@ We obtain modules K =25~ and M ="=>N by pasting with
the identity module on the codomain, respectively, domain.

@ Modulations provide 2-cells for modules.

Jurgen Koslowski Comprehending stuff- and structure-types

09. Three important types of 1-cells for systems X — spn

Oplax -transforms Modules (mixed assoc.) Lax transforms
K=2>1L: in spn L="->M: in spn M==+~N: in spn
xK xL xL i!>y/W yM %yN
\ »
up L)
S L] B |
yK Vo ylL yL ——>zM zM ——>zN

v

@ Lax transforms are closely related to simulations (of N by M).

@ For lax functors from a category X such 1-cells also must be
compatible with the lax structures of their domain and codomain.

#
@ We obtain modules K =25~ and M ="=>N by pasting with
the identity module on the codomain, respectively, domain.

@ Modulations provide 2-cells for modules. Modifications between
transforms lift faithfully, but in general not fully.

Jurgen Koslowski Comprehending stuff- and structure-types

09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L==>M is a span of
fibre-small functors over X with a natural transformation:

Jurgen Koslowski Comprehending stuff- and structure-types

09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L==>M is a span of
fibre-small functors over X with a natural transformation:

7° in diagram form

P

rp\
=

Q /

X Mm°

o
S\
LO

Jurgen Koslowski Comprehending stuff- and structure-types

09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L==>M is a span of
fibre-small functors over X with a natural transformation:

7° in diagram form Interpretation
p Combine @ and R into a new category over X
1
Q /::]_3>\ with P-objects serving as linking Q-
. with R-objects, and P-arrows serving as
SN linking Q- with R-arrows.

Jurgen Koslowski Comprehending stuff- and structure-types

09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L==>M is a span of
fibre-small functors over X with a natural transformation:

7° in diagram form Interpretation
Py P, Combine @ and R into a new category over X
Q /g\ R with P-objects serving as linking Q-
. with R-objects, and P-arrows serving as
L x M linking Q- with R-arrows.
Old and arrows are composed according to the module 2-cells:
™
xL yM
ull/ (u;v)w?M
ﬁ Vi
yL zM

Jurgen Koslowski Comprehending stuff- and structure-types

09. 1-cells for processes over X : the module case

The process 1-cell corresponding to a module L==>M is a span of
fibre-small functors over X with a natural transformation:

7° in diagram form Interpretation
Py P, Combine @ and R into a new category over X
Q /g\ R with P-objects serving as linking Q-
. with R-objects, and P-arrows serving as
L x M linking Q- with R-arrows.
Old and arrows are composed according to the module 2-cells:
™
xL yM
ull/ (u;v)w?M
ﬁ Vi
yL zM

In particular, P encompasses all new arrows.

Jurgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ;

Jurgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ;

7° in diagram form

Y

’?;/\Y;U
2\

Jurgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ;

7° in diagram form

Po P1
ey

Q 2 "R
\ /
e x Tme

Jurgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ; old and arrows now compose
freely and are then identified according to the 2-cells of 7:

7° in diagram form

Po P1
ey

Q 2 "R
\ /
e x Tme

Jurgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ; old and arrows now compose
freely and are then identified according to the 2-cells of 7:

7° in diagram form Identificaton of new composites
ym
SN, yL yM
Q 4. "R Vﬁ/ z /\/M resp. ”;/ /
\ / v
L x M zL zM
zm ym

Jurgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ; old and arrows now compose
freely and are then identified according to the 2-cells of 7:

7° in diagram form Identificaton of new composites
ym
SN, yL yM
Q 4. "R Vﬁ/ z /\/M resp. ”;/ /
\ / v
L x M zL zM
zm ym

o For L==rM this makes P; (1i>»2)—orthogonal -,

Jirgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ; old and arrows now compose
freely and are then identified according to the 2-cells of 7:

7° in diagram form Identificaton of new composites
ym
SN, yL yM
Q 4. "R Vﬁ/ z /\/M resp. ”;/ /
\ / v
L x M zL zM
zm ym

o For L==rM this makes P; (1i>»2)—orthogonal -,
which turns 7° into a simulation of M° by L° over X .

Jirgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ; old and arrows now compose
freely and are then identified according to the 2-cells of 7:

7° in diagram form Identificaton of new composites
ym
SN, yL yM
Q 4. "R Vﬁ/ z /\/M resp. ”;/ /
\ / v
L x M zL zM
zm ym

o For L==rM this makes P; (1i>»2)—orthogonal -,
which turns 7° into a simulation of M° by L° over X .

o For L==> M this makes Py iso,

Jirgen Koslowski Comprehending stuff- and structure-types

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For L==~M or L=—=M only those show up in P
that live over identities in X ; old and arrows now compose
freely and are then identified according to the 2-cells of 7:

7° in diagram form Identificaton of new composites
ym
SN, yL yM xM
Q 4. "R Vﬁ/ z /\/M resp. ”;/ /
\ / v
L x M zL zM
zT ym

o For L==rM this makes P; (1i>»2)—orthogonal -,
which turns 7° into a simulation of M° by L° over X .

o For L==> M this makes Py iso,
which turns 7° into a functor over X .

Jirgen Koslowski Comprehending stuff- and structure-types

11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

| X,spn|e = Cat @//X with @ € {md, Ix,mp,...}

Jurgen Koslowski Comprehending stuff- and structure-types

11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

| X,spn|e = Cat @//X with @ € {md, Ix,mp,...}

where for fibre-small functors Q*L>X M R the hom-categories
are given by

Jurgen Koslowski Comprehending stuff- and structure-types

11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

| X,spn|e = Cat @//X with @ € {md, Ix,mp,...}

where for fibre-small functors Q*L>X M R the hom-categories
are given by

(L,M)Cat™Y X = Cat/(L/M)
(LM)Cat™) X ={P-L~1/M:Pa=idA(1-2-2) L PO, }
(LM)Cat™)X = {Q—2~L/M: Qa =id}

Jurgen Koslowski Comprehending stuff- and structure-types

11. The main equivalencess

With modulations as 2-cells between modules and modfications as
2-cells between transforms, we obtain equivalences

| X,spn|e = Cat @//X with @ € {md, Ix,mp,...}

where for fibre-small functors Q*L>X M R the hom-categories
are given by

(L,M)Cat™Y X = Cat/(L/M)
(LM)Cat™) X ={P-L~1/M:Pa=idA(1-2-2) L PO, }
(LM)Cat™)X = {Q—2~L/M: Qa =id}

a L/IM 5,
a O\

Ve
M

Ve
where Q = R denotes the comma square.
N

L X

Jurgen Koslowski Comprehending stuff- and structure-types

11. Comprehension

The embeddings of set into cat® into prf, and the
characterization of prf as the bicategory of monads on spn yield

—D —
[X, set] T [X, cat®°] T X, prflmp X, spn) o, o Cat ™/ X

[/ / /

LX, cat®® | ‘r‘np T LX,prf] i‘np I~ X, spn], o Cat ™V X

[/ / /

X, cat® | md T X, prf g & LX, spn],q E Cat md//X

J / /

LX,cat]fy T IX,prfl, = LX,spnl, > Cat ™) X

;oo / /

(LX, cat=e),) 0P (LK, prf iy,) 0P = (LX, spn yp,) %P = (Cat ™7/ X)°00P

Jurgen Koslowski Comprehending stuff- and structure-types

11. Specialization in various directions

Jurgen Koslowski Comprehending stuff- and structure-types

11. Specialization in various directions

° . restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf.

Jurgen Koslowski Comprehending stuff- and structure-types

11. Specialization in various directions

° . restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf.

e Size constraints: restrict to A-small graphs/categories for
some inaccessible cardinal .

Jurgen Koslowski Comprehending stuff- and structure-types

11. Specialization in various directions

° . restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf.

e Size constraints: restrict to A-small graphs/categories for
some inaccessible cardinal .

@ Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a):

Jurgen Koslowski Comprehending stuff- and structure-types

11. Specialization in various directions

° . restrict to faithful processes over X and to
systems into rel ; substitute ord for cat and idl for prf.

e Size constraints: restrict to A-small graphs/categories for
some inaccessible cardinal .

@ Symmetrization: restrict to symmetric graphs and spans,
replace categories by groupoids, this allows modelling
reversible computations, as, e.g., in a):

—

[E,set] T Gpd™zE

~—

—D

[E.gpd] T Gpd™E

~

UE,gpdCOJ@LGdeE

Jurgen Koslowski Comprehending stuff- and structure-types

