Comprehending stuff- and structure-types

Jürgen Koslowski

Department of Theoretical Computer Science Technical University Braunschweig

CT 2007, Carvoeiro, Portugal, 2007-06-19

http://www.iti.cs.tu-bs.de/~koslowj/RESEARCH

・ 同・ ・ ヨ・

The initial motivation comes from two papers:

- [BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
- [SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column

"This Week's Find in Mathematical Physics"

available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles, *Adv. Math.* **42** (1981), 1–82

The initial motivation comes from two papers:

- [BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
- [SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column

"This Week's Find in Mathematical Physics"

available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE] André Joyal: Une théorie combinatoire des séries formelles, *Adv. Math.* **42** (1981), 1–82

Image: A = A

The initial motivation comes from two papers:

- [BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
- [SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column

'This Week's Find in Mathematical Physics"

available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

The initial motivation comes from two papers:

- [BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
- [SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column

"This Week's Find in Mathematical Physics"

available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

The initial motivation comes from two papers:

- [BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
- [SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column

"This Week's Find in Mathematical Physics"

available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

The initial motivation comes from two papers:

- [BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
- [SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column

"This Week's Find in Mathematical Physics"

available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set nF of F-structures that can live on n.
- Which types F of structures and which functions n → m between finite sets should be taken into consideration?
- To obtain well-behaved liftings nF → mF for all types F of structures, restricting to bijections n → m seems appropriate. (Also, no need to consider contravariance!)

Definition

02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set nF of F-structures that can live on n.
- Which types F of structures and which functions n → m between finite sets should be taken into consideration?
- To obtain well-behaved liftings nF → mF for all types F of structures, restricting to bijections n → m seems appropriate. (Also, no need to consider contravariance!)

Definition

02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set nF of F-structures that can live on n.
- Which types F of structures and which functions n → m between finite sets should be taken into consideration?
- To obtain well-behaved liftings nF → mF for all types F of structures, restricting to bijections n → m seems appropriate. (Also, no need to consider contravariance!)

Definition

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set nF of F-structures that can live on n.
- Which types F of structures and which functions n → m between finite sets should be taken into consideration?
- To obtain well-behaved liftings nF → mF for all types F of structures, restricting to bijections n → m seems appropriate. (Also, no need to consider contravariance!)

Definition

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set nF of F-structures that can live on n.
- Which types F of structures and which functions n → m between finite sets should be taken into consideration?
- To obtain well-behaved liftings nF → mF for all types F of structures, restricting to bijections n → m seems appropriate. (Also, no need to consider contravariance!)

Definition

- Its domain is the value of a certain functor $set \longrightarrow gpd$ at 1;
- This functor is modeled on the analytic functor F^{a} associated with F, *i.e.*, the left Kan-extension of F along $E \xrightarrow{J} set$:

where $set \stackrel{\prime}{\longrightarrow} gpd$ is the other obvious inclusion.

- Its domain is the value of a certain functor $set \longrightarrow gpd$ at 1;
- This functor is modeled on the analytic functor F^{a} associated with F, *i.e.*, the left Kan-extension of F along $E \xrightarrow{J} set$:

where $set \stackrel{\prime}{\longrightarrow} gpd$ is the other obvious inclusion.

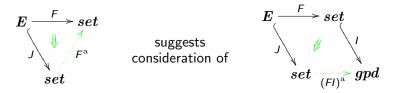
- Its domain is the value of a certain functor $set \longrightarrow gpd$ at 1;
- This functor is modeled on the analytic functor F^{a} associated with F, *i.e.*, the left Kan-extension of F along $E \xrightarrow{J} set$:

where $set \xrightarrow{l} gpd$ is the other obvious inclusion.

- Its domain is the value of a certain functor $set \longrightarrow gpd$ at 1;
- This functor is modeled on the analytic functor F^{a} associated with F, *i.e.*, the left Kan-extension of F along $E \xrightarrow{J} set$:

where $set \stackrel{l}{\longrightarrow} gpd$ is the other obvious inclusion.

- Its domain is the value of a certain functor $set \longrightarrow gpd$ at 1;
- This functor is modeled on the analytic functor F^{a} associated with F, *i.e.*, the left Kan-extension of F along $E \xrightarrow{J} set$:



where $set \xrightarrow{l} gpd$ is the other obvious inclusion.

- Its domain is the value of a certain functor $set \longrightarrow gpd$ at 1;
- This functor is modeled on the analytic functor F^{a} associated with F, *i.e.*, the left Kan-extension of F along $E \xrightarrow{J} set$:

where $set \xrightarrow{l} gpd$ is the other obvious inclusion.

The exponential generating function for F

$$N \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in \mathbb{N}} (|nF| \cdot x^n)/n!$$

provides the template for both analytic functors F^{a} and $(FI)^{a}$ (now we think of n! as the permutation group of n):

$$set \xrightarrow{F^{a}} set, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$
$$set \xrightarrow{(FI)^{a}} gpd, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$

The exponential generating function for F

$$N \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in \mathbb{N}} (|nF| \cdot x^n)/n!$$

provides the template for both analytic functors F^{a} and $(FI)^{a}$ (now we think of n! as the permutation group of n):

$$set \xrightarrow{F^{a}} set, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$
$$vet \xrightarrow{(FI)^{a}} gpd, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$

The exponential generating function for F

$$N \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in \mathbb{N}} (|nF| \cdot x^n)/n!$$

provides the template for both analytic functors F^{a} and $(FI)^{a}$ (now we think of n! as the permutation group of n):

$$set \xrightarrow{F^{a}} set, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$
$$set \xrightarrow{(FI)^{a}} gpd, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$

The exponential generating function for F

$$N \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in \mathbb{N}} (|nF| \cdot x^n)/n!$$

provides the template for both analytic functors F^{a} and $(FI)^{a}$ (now we think of n! as the permutation group of n):

$$set \xrightarrow{F^{a}} set, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$
$$set \xrightarrow{(FI)^{a}} gpd, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$

The exponential generating function for F

$$N \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in \mathbb{N}} (|nF| \cdot x^n)/n!$$

provides the template for both analytic functors F^{a} and $(FI)^{a}$ (now we think of n! as the permutation group of n):

$$set \xrightarrow{F^{a}} set, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$
$$set \xrightarrow{(FI)^{a}} gpd, \quad X \mapsto \int^{u \in E} uF \times X^{u} \cong \sum_{n \in \mathbb{N}} (nF \times X^{n})/n!$$

- Baez and Dolan then generalize the obvious forgetful functor 1(FI)^a → E to arbitrary gpd-morphisms into E, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $E \longrightarrow gpd$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:

functor
$$\mathcal{G} \longrightarrow E$$
 : stuff type
faithful functor $\mathcal{G} \longrightarrow E$: structure type
full and faithful functor $\mathcal{G} \longrightarrow E$: property type

- Baez and Dolan then generalize the obvious forgetful functor 1(FI)^a → E to arbitrary gpd-morphisms into E, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $E \longrightarrow gpd$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:

functor
$$\mathcal{G} \longrightarrow E$$
 : stuff type
faithful functor $\mathcal{G} \longrightarrow E$: structure type
full and faithful functor $\mathcal{G} \longrightarrow E$: property type

- Baez and Dolan then generalize the obvious forgetful functor 1(FI)^a → E to arbitrary gpd-morphisms into E, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $E \longrightarrow gpd$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:

functor
$$\ensuremath{ G} \to E$$
 : stuff type
faithful functor $\ensuremath{ G} \to E$: structure type
full and faithful functor $\ensuremath{ G} \to E$: property type

- Baez and Dolan then generalize the obvious forgetful functor 1(FI)^a → E to arbitrary gpd-morphisms into E, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $E \longrightarrow gpd$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:

$$\begin{array}{rcl} \mbox{functor} & \mathcal{G} \longrightarrow \pmb{E} & : & \mbox{stuff type} \\ & \mbox{faithful functor} & \mathcal{G} \longrightarrow \pmb{E} & : & \mbox{structure type} \\ & \mbox{full and faithful functor} & \mathcal{G} \longrightarrow \pmb{E} & : & \mbox{property type} \end{array}$$

- Baez and Dolan then generalize the obvious forgetful functor 1(FI)^a → E to arbitrary gpd-morphisms into E, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $E \longrightarrow gpd$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:

functor
$$\mathcal{G} \longrightarrow \mathbf{E}$$
 : stuff type
faithful functor $\mathcal{G} \longrightarrow \mathbf{E}$: structure type
full and faithful functor $\mathcal{G} \longrightarrow \mathbf{E}$: property type

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- ullet as processes, *i.e.*, (faithful) graph-morphisms into $oldsymbol{X}$, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

ullet as processes, *i.e.*, (faithful) graph-morphisms into $oldsymbol{X}$, or

• as systems, *i.e.*, graph-morphisms $X \longrightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- ullet as processes, *i.e.*, (faithful) graph-morphisms into $oldsymbol{X}$, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

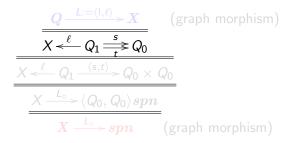
- ullet as processes, *i.e.*, (faithful) graph-morphisms into $oldsymbol{X}$, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- as processes, *i.e.*, (faithful) graph-morphisms into X, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

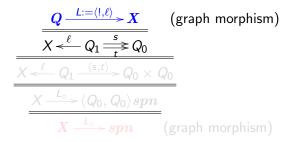
Viewing labels in a set X as arrows of a single-node graph we get



The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- as processes, *i.e.*, (faithful) graph-morphisms into X, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

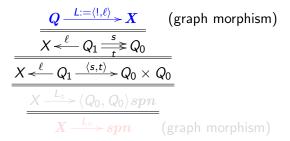
Viewing labels in a set X as arrows of a single-node graph we get



The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- as processes, *i.e.*, (faithful) graph-morphisms into X, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

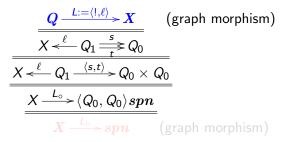
Viewing labels in a set X as arrows of a single-node graph we get



The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- as processes, *i.e.*, (faithful) graph-morphisms into X, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get



06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- as processes, *i.e.*, (faithful) graph-morphisms into X, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get

 $\frac{Q \xrightarrow{L:=\langle !,\ell \rangle} X}{X \xleftarrow{\ell} Q_1 \xrightarrow{s} Q_0} \quad (\text{graph morphism})$ $\frac{X \xleftarrow{\ell} Q_1 \xrightarrow{s} Q_0}{X \xleftarrow{\ell} Q_1 \xrightarrow{\langle s,t \rangle} Q_0 \times Q_0}$ $\frac{X \xrightarrow{L_{\circ}} \langle Q_0, Q_0 \rangle spn}{X \xrightarrow{L_{\circ}} spn} \quad (\text{graph morphism})$

This also works for general graphs $\, X$.

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph X,

- ullet as processes, *i.e.*, (faithful) graph-morphisms into $oldsymbol{X}$, or
- as systems, *i.e.*, graph-morphisms $X \rightarrow spn(rel)$.

Viewing labels in a set X as arrows of a single-node graph we get

 $\frac{Q \xrightarrow{L:=\langle |, \ell \rangle} X}{X \xleftarrow{\ell} Q_1 \xrightarrow{s} Q_0} \quad (\text{graph morphism})$ $\frac{X \xleftarrow{\ell} Q_1 \xrightarrow{s} Q_0}{X \xleftarrow{\ell} Q_1 \xrightarrow{\langle s, t \rangle} Q_0 \times Q_0}$ $\frac{X \xrightarrow{L_{\circ}} \langle Q_0, Q_0 \rangle spn}{X \xrightarrow{L_{\circ}} spn} \quad (\text{graph morphism})$

This also works for general graphs $\, X$.

grph and *Grph* denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories *cat* and *Cat*, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow spn$.

If |X| is a category, this restricts to fiber-small functors $Q \longrightarrow X$, respectively, lax functors $X \longrightarrow spn$.

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow spn$.

If |X| is a category, this restricts to fiber-small functors $Q \longrightarrow X$, respectively, lax functors $X \longrightarrow spn$.

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph X induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow spn$.

If X is a category, this restricts to fiber-small functors $Q \longrightarrow X$, respectively, lax functors $X \longrightarrow spn$.

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.

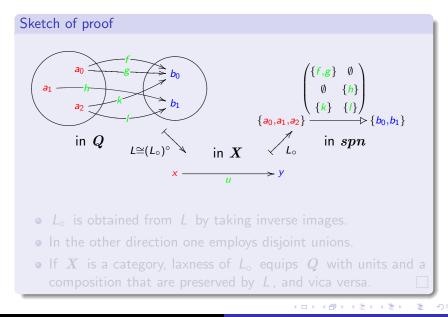
We call a Grph-morphism fiber-small, if each fibre is small ;-)

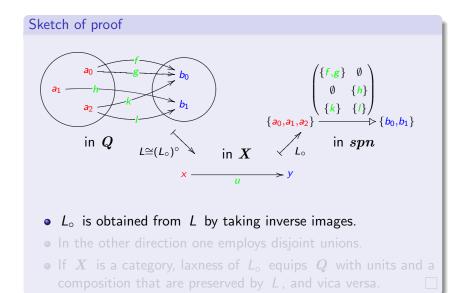
Theorem

Every graph X induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow spn$.

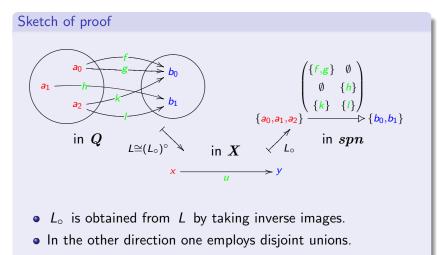
If X is a category, this restricts to fiber-small functors $Q \longrightarrow X$, respectively, lax functors $X \longrightarrow spn$.

A (1) > A (2) > A



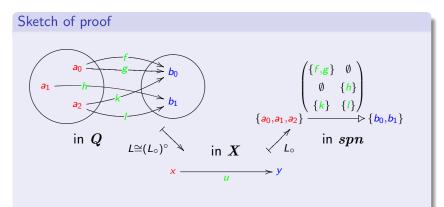


< ロト < 同ト < 三ト <



If X is a category, laxness of L_o equips Q with units and a composition that are preserved by L, and vica versa.

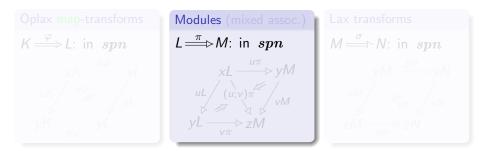
▲□ ► ▲ □ ► ▲



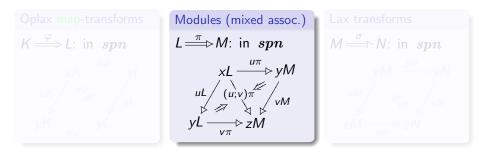
- L_{\circ} is obtained from L by taking inverse images.
- In the other direction one employs disjoint unions.
- If X is a category, laxness of L_{\circ} equips Q with units and a composition that are preserved by L, and vica versa.

< A > < 3

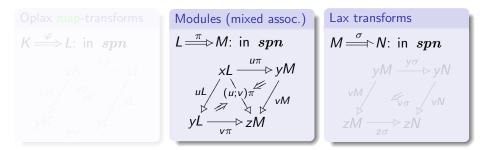
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.



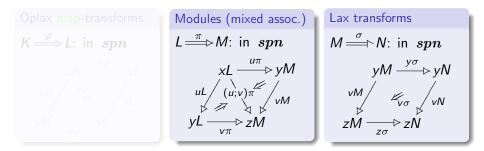
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.



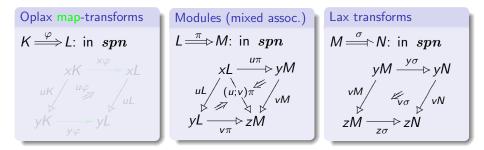
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.



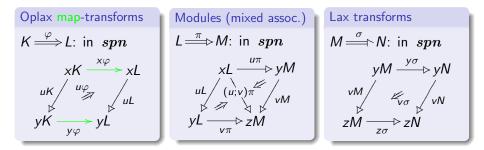
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.



- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

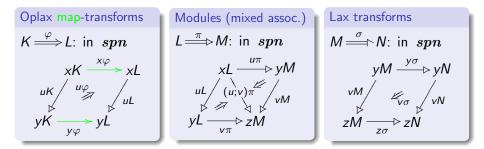


- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.



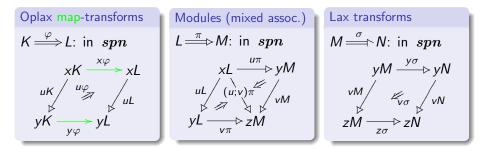
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

・ロト ・同ト ・ヨト ・ヨト



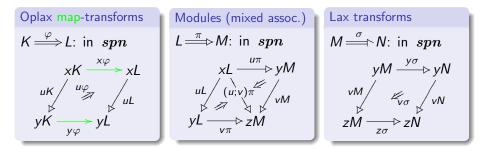
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

コト (得) (ヨ) (ヨ)



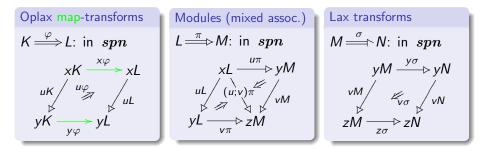
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\pi}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

日本《圖》《圖》《圖》



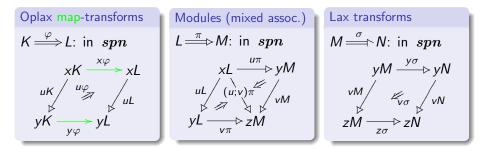
- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ …



- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

3



- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

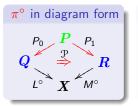
The process 1-cell corresponding to a module $L \xrightarrow{\pi} M$ is a span of fibre-small functors over X with a natural transformation:

Interpretation

Combine Q and R into a new category over Xwith P-objects serving as *new arrows* linking Qwith R-objects, and P-arrows serving as new commutative squares linking Q- with R-arrows.

Old and new arrows are composed according to the module 2-cells:

The process 1-cell corresponding to a module $L \xrightarrow{\pi} M$ is a span of fibre-small functors over X with a natural transformation:

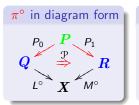


Interpretation

Combine Q and R into a new category over X with P-objects serving as *new arrows* linking Q-with R-objects, and P-arrows serving as new commutative squares linking Q- with R-arrows.

Old and new arrows are composed according to the module 2-cells:

The process 1-cell corresponding to a module $L \xrightarrow{\pi} M$ is a span of fibre-small functors over X with a natural transformation:

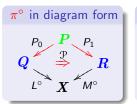


Interpretation

Combine Q and R into a new category over Xwith P-objects serving as *new arrows* linking Qwith R-objects, and P-arrows serving as new commutative squares linking Q- with R-arrows.

Old and new arrows are composed according to the module 2-cells:

The process 1-cell corresponding to a module $L \xrightarrow{\pi} M$ is a span of fibre-small functors over X with a natural transformation:



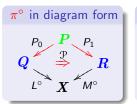
Interpretation

Combine Q and R into a new category over Xwith P-objects serving as *new arrows* linking Qwith R-objects, and P-arrows serving as new commutative squares linking Q- with R-arrows.

Old and new arrows are composed according to the module 2-cells:



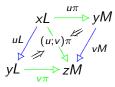
The process 1-cell corresponding to a module $L \xrightarrow{\pi} M$ is a span of fibre-small functors over X with a natural transformation:



Interpretation

Combine Q and R into a new category over Xwith P-objects serving as *new arrows* linking Qwith R-objects, and P-arrows serving as new commutative squares linking Q- with R-arrows.

Old and new arrows are composed according to the module 2-cells:



10. 1-cells for processes over X: the transform case

Differences compared to the module case

- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.

10. 1-cells for processes over X: the transform case

Differences compared to the module case

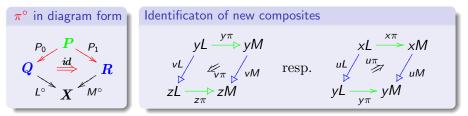
- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.

10. 1-cells for processes over X: the transform case

Differences compared to the module case

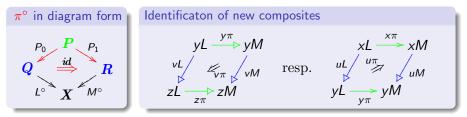
- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.

- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.



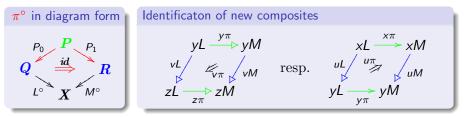
- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X

For $L \xrightarrow{\pi} M$ or $L \xrightarrow{\pi} M$ only those new arrows show up in P that live over identities in X; old and new arrows now compose freely and are then identified according to the 2-cells of π :

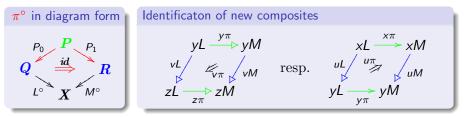


• For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.

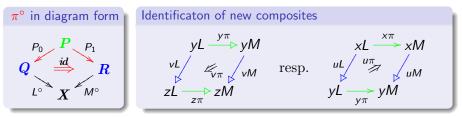
• For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.



- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.



- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_0 iso, which turns π° into a functor over X.



- For $L \xrightarrow{\pi} M$ this makes P_1 $(1 \xrightarrow{0} 2)$ -orthogonal*, which turns π° into a simulation of M° by L° over X.
- For $L \xrightarrow{\pi} M$ this makes P_0 iso, which turns π° into a functor over X.

With modulations as 2-cells between modules and modifications as 2-cells between transforms, we obtain equivalences

$$[\![\boldsymbol{X}, \boldsymbol{\mathit{spn}}]\!]_{\boldsymbol{\mathbb{Q}}} \cong \boldsymbol{\mathit{Cat}}^{\boldsymbol{\mathbb{Q}}} \!/\!\!/ \boldsymbol{X} \qquad \text{with } \boldsymbol{\mathbb{Q}} \in \{\mathrm{md}, \mathrm{lx}, \mathrm{mp}, \dots \}$$

where for fibre-small functors $Q \xrightarrow{L} X \xleftarrow{M} R$ the hom-categories are given by

where

With modulations as 2-cells between modules and modifications as 2-cells between transforms, we obtain equivalences

$$[\![\boldsymbol{X}, \boldsymbol{\mathit{spn}}]\!]_{\boldsymbol{\mathbb{O}}} \cong \boldsymbol{\mathit{Cat}}^{\boldsymbol{\mathbb{O}}}\!/\!\!/ \boldsymbol{X} \qquad \text{with } \boldsymbol{\mathbb{O}} \in \{\mathrm{md}, \mathrm{lx}, \mathrm{mp}, \dots\}$$

where for fibre-small functors $Q \xrightarrow{L} X \xleftarrow{M} R$ the hom-categories are given by

where

With modulations as 2-cells between modules and modifications as 2-cells between transforms, we obtain equivalences

$$[\![X, \mathit{spn}]\!]_{\texttt{O}} \cong \mathit{Cat}^{\texttt{O}}\!/\!\!/ X \qquad \text{with } \texttt{O} \in \{\mathrm{md}, \mathrm{lx}, \mathrm{mp}, \dots\}$$

where for fibre-small functors $Q \xrightarrow{L} X \xleftarrow{M} R$ the hom-categories are given by

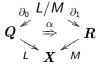
where

With modulations as 2-cells between modules and modifications as 2-cells between transforms, we obtain equivalences

$$[\![\boldsymbol{X}, \boldsymbol{\mathit{spn}}]\!]_{\boldsymbol{\mathbb{O}}} \cong \boldsymbol{\mathit{Cat}}^{\boldsymbol{\mathbb{O}}}\!/\!\!/ \boldsymbol{X} \qquad \text{with } \boldsymbol{\mathbb{O}} \in \{\mathrm{md}, \mathrm{lx}, \mathrm{mp}, \dots\}$$

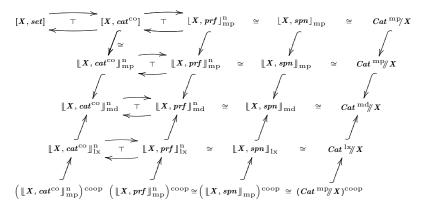
where for fibre-small functors $Q \xrightarrow{L} X \xleftarrow{M} R$ the hom-categories are given by

where



11. Comprehension

The embeddings of set into cat^{co} into prf, and the characterization of prf as the bicategory of monads on spn yield



- Posettal collapse: restrict to faithful processes over X and to systems into *rel*; substitute *ord* for *cat* and *idl* for *prf*.
- Size constraints: restrict to λ -small graphs/categories for some inaccessible cardinal λ .
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, *e.g.*, in a quantum computer):

- Posettal collapse: restrict to faithful processes over \mathcal{X} and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ-small graphs/categories for some inaccessible cardinal λ.
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, *e.g.*, in a quantum computer):

- Posettal collapse: restrict to faithful processes over \mathcal{X} and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ -small graphs/categories for some inaccessible cardinal λ .
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, *e.g.*, in a quantum computer):

- Posettal collapse: restrict to faithful processes over \mathcal{X} and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ -small graphs/categories for some inaccessible cardinal λ .
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, *e.g.*, in a quantum computer):

$$[E,gpd]$$
 $\sub{}$ $Gpd \stackrel{\mathrm{mp}}{\sim} E$

$$\llbracket E, gpd^{\mathrm{co}}
rbracket$$

- Posettal collapse: restrict to faithful processes over \mathcal{X} and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ -small graphs/categories for some inaccessible cardinal λ .
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, *e.g.*, in a quantum computer):