Comprehending stuff- and structure-types

Jürgen Koslowski

Department of Theoretical Computer Science
Technical University Braunschweig
CT 2007, Carvoeiro, Portugal, 2007-06-19
http://www.iti.cs.tu-bs.de/ ${ }^{\text {koslowj/RESEARCH }}$

01. Motivation: References

The initial motivation comes from two papers:

```
[BD] John C. Baez, James Dolan: From Finite Sets to Feynman
    Diagrams (April 2000), arXiv:math/0004133
[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
    MacQuarie University (November 2005),
    www.maths.mq.edu.au/~}street/ByrneHons.pd
as well as from various issues of John Baez's semi-regular column
"This Week's Find in Mathematical Physics"
```

available at http://math.ucr.edu/home/baez/weekXYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.
The main underlying reference is
[CE] André Joyal: Une théorie combinatoire des séries formelles,
Adv. Math. 42 (1981), 1-82

01. Motivation: References

The initial motivation comes from two papers:
[BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis,
MacQuarie University (November 2005),
www.maths.mq.edu.au/~street/ByrneHons.pdf
as well as from various issues of John Baez's semi-regular column
"This Week's Find in Mathematical Physics"
available at http: //math .ucr.edu/home/bacz/weekYYZ.html,
where intriguing applicatins of spans of groupoids are mentioned.
The main underlying reference is
[CE] André Joyal: Une théorie combinatoire des séries formelles, Adv. Math. 42 (1981), 1-82

01. Motivation: References

The initial motivation comes from two papers:
[BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~ street/ByrneHons.pdf

as well as from various issues of John Baez's semi-regular column "This Week's Find in Mathematical Physics"

available at http: //math .ucr. edu/home/baez/weekyYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is
[CE] André Joyal: Une théorie combinatoire des séries formelles, Adv. Math. 42 (1981), 1-82

01. Motivation: References

The initial motivation comes from two papers:
[BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf as well as from various issues of John Baez's semi-regular column "This Week's Find in Mathematical Physics"
available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE]André Joyal: Une théorie combinatoire des séries formelles, Ad N. Math. 42 (1981), 1-82

01. Motivation: References

The initial motivation comes from two papers:
[BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf
as well as from various issues of John Baez's semi-regular column
"This Week's Find in Mathematical Physics"
available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is

[CE]Adv. Math. 42 (1981), 1-82

01. Motivation: References

The initial motivation comes from two papers:
[BD] John C. Baez, James Dolan: From Finite Sets to Feynman Diagrams (April 2000), arXiv:math/0004133
[SB] Simon Byrne: On Groupoids and Stuff, Honors Thesis, MacQuarie University (November 2005), www.maths.mq.edu.au/~street/ByrneHons.pdf
as well as from various issues of John Baez's semi-regular column
"This Week's Find in Mathematical Physics"
available at http://math.ucr.edu/home/baez/weekXYZ.html, where intriguing applicatins of spans of groupoids are mentioned.

The main underlying reference is
[CE] André Joyal: Une théorie combinatoire des séries formelles, Adv. Math. 42 (1981), 1-82

02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set $n F$ of F-structures that can live on n.
Which types F of structures and which functions $n \xrightarrow{f} m$ between finite sets should be taken into consideration?
- To obtain well-behaved liftings $n F \stackrel{f F}{\longrightarrow} m F$ for all types F of structures, restricting to bijections $n \longrightarrow m$ seems appropriate.

[^0]
02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set $n F$ of F-structures that can live on n.
- Which types F of structures and which functions $n \xrightarrow{f} m$ between finite sets should be taken into consideration?
structures, restricting to bijections $n \xrightarrow{f} m$ seems appropriate.
\square
Thus a species of structures is just a functor from the groupoid \boldsymbol{E} of finite sets and bijections to set

02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set $n F$ of F-structures that can live on n.
- Which types F of structures and which functions $n \xrightarrow{f} m$ between finite sets should be taken into consideration?
- To obtain well-behaved liftings $n F \xrightarrow{f F} m F$ for all types F of structures, restricting to bijections $n \xrightarrow{f} m$ seems appropriate. (Also, no need to consider contravariance!)

[^1]
02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set $n F$ of F-structures that can live on n.
- Which types F of structures and which functions $n \xrightarrow{f} m$ between finite sets should be taken into consideration?
- To obtain well-behaved liftings $n F \xrightarrow{f F} m F$ for all types F of structures, restricting to bijections $n \xrightarrow{f} m$ seems appropriate. (Also, no need to consider contravariance!)

[^2]
02. Background

- In order to "categorify" combinatorics, Joyal begins defining a species of structures F by assigning to each finite set n the set $n F$ of F-structures that can live on n.
- Which types F of structures and which functions $n \xrightarrow{f} m$ between finite sets should be taken into consideration?
- To obtain well-behaved liftings $n F \xrightarrow{f F} m F$ for all types F of structures, restricting to bijections $n \xrightarrow{f} m$ seems appropriate. (Also, no need to consider contravariance!)

Definition

Thus a species of structures is just a functor from the groupoid \boldsymbol{E} of finite sets and bijections to set.

03. The Baez-Dolan approach

For a species $\boldsymbol{E} \xrightarrow{\boldsymbol{F}}$ set Baez and Dolan construct a gpd-morphism into \boldsymbol{E} that "contains all the information in the [species]" F :

- Its domain is the value of a certain functor set \longrightarrow gpd at 1 ;
- This functor is modeled on the analytic functor F^{a} associated with F, i.e., the left Kan-extension of F along $E \xrightarrow{J}$ set:

03. The Baez-Dolan approach

For a species $\boldsymbol{E} \xrightarrow{\boldsymbol{F}}$ set Baez and Dolan construct a gpd-morphism into \boldsymbol{E} that "contains all the information in the [species]" F :

- Its domain is the value of a certain functor $\boldsymbol{s e t} \longrightarrow \boldsymbol{g p d}$ at 1 ;
- This functor is modeled on the analytic functor F^{a} associated with F, i.e., the left Kan-extension of F along $E \xrightarrow{J}$ set:

03. The Baez-Dolan approach

For a species $\boldsymbol{E} \xrightarrow{\boldsymbol{F}}$ set Baez and Dolan construct a gpd-morphism into \boldsymbol{E} that "contains all the information in the [species]" F :

- Its domain is the value of a certain functor $\boldsymbol{s e t} \longrightarrow \boldsymbol{g p d}$ at 1 ;
- This functor is modeled on the analytic functor $F^{\text {a }}$ associated with F, i.e., the left Kan-extension of F along $\boldsymbol{E} \xrightarrow{J}$ set:

where $\operatorname{set} \xrightarrow{\stackrel{I}{\longrightarrow}}$ gpd is the other obvious inclusion.

03. The Baez-Dolan approach

For a species $\boldsymbol{E} \xrightarrow{\boldsymbol{F}}$ set Baez and Dolan construct a gpd-morphism into \boldsymbol{E} that "contains all the information in the [species]" F :

- Its domain is the value of a certain functor $\boldsymbol{s e t} \longrightarrow \boldsymbol{g} \boldsymbol{p d}$ at 1 ;
- This functor is modeled on the analytic functor $F^{\text {a }}$ associated with F, i.e., the left Kan-extension of F along $\boldsymbol{E} \xrightarrow{J}$ set:

where set $\stackrel{l}{\longrightarrow} g p d$ is the other obvious inclusion.

03. The Baez-Dolan approach

For a species $\boldsymbol{E} \xrightarrow{\boldsymbol{F}}$ set Baez and Dolan construct a gpd-morphism into \boldsymbol{E} that "contains all the information in the [species]" F :

- Its domain is the value of a certain functor $\boldsymbol{s e t} \longrightarrow \boldsymbol{g} \boldsymbol{p d}$ at 1 ;
- This functor is modeled on the analytic functor $F^{\text {a }}$ associated with F, i.e., the left Kan-extension of F along $\boldsymbol{E} \xrightarrow{J}$ set:

where set $\xrightarrow{I} g p d$ is the other obvious inclusion.

03. The Baez-Dolan approach

For a species $\boldsymbol{E} \xrightarrow{\boldsymbol{F}}$ set Baez and Dolan construct a gpd-morphism into \boldsymbol{E} that "contains all the information in the [species]" F :

- Its domain is the value of a certain functor $\boldsymbol{s e t} \longrightarrow \boldsymbol{g} \boldsymbol{p d}$ at 1 ;
- This functor is modeled on the analytic functor F^{a} associated with F, i.e., the left Kan-extension of F along $\boldsymbol{E} \xrightarrow{J}$ set:

where set $\xrightarrow{l} \boldsymbol{g p d}$ is the other obvious inclusion.

04. The Baez-Dolan approach, continued

The exponential generating function for F

$$
\boldsymbol{N} \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in N}\left(|n F| \cdot x^{n}\right) / n!
$$

provides the template for both analytic functors F^{a} and $(F /)^{\mathrm{a}}$ (now we think of $n!$ as the permutation group of n):

> The "weak quotient" // is just a glueing construction! $(F I)^{\mathrm{a}}$ maps X to the groupoid of X-colored F-structured sets

04. The Baez-Dolan approach, continued

The exponential generating function for F

$$
\boldsymbol{N} \xrightarrow{|\boldsymbol{F}|} \boldsymbol{N}, \quad x \mapsto \sum_{n \in N}\left(|n F| \cdot x^{n}\right) / n!
$$

provides the template for both analytic functors F^{a} and $(F /)^{\mathrm{a}}$ (now we think of $n!$ as the permutation group of n):

$$
\text { set } \xrightarrow{F^{\mathrm{a}}} \text { set }, \quad X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / n!
$$

set $\xrightarrow{(F I)^{\mathrm{a}}} \boldsymbol{g} \boldsymbol{p d}$,

$\int_{u \in E}$

[^3]
04. The Baez-Dolan approach, continued

The exponential generating function for F

$$
\boldsymbol{N} \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in N}\left(|n F| \cdot x^{n}\right) / n!
$$

provides the template for both analytic functors F^{a} and $(F /)^{\mathrm{a}}$ (now we think of $n!$ as the permutation group of n):

$$
\begin{aligned}
\text { set } \xrightarrow{F^{\mathrm{a}}} \text { set }, \quad X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / n! \\
\text { set } \xrightarrow{(F I)^{\mathrm{a}}} \text { ged }, \quad X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / / n!
\end{aligned}
$$

The "weak quotient" // is just a glueing construction!
\square maps X to the groupoid of X-colored F-structured sets

04. The Baez-Dolan approach, continued

The exponential generating function for F

$$
\boldsymbol{N} \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in N}\left(|n F| \cdot x^{n}\right) / n!
$$

provides the template for both analytic functors F^{a} and $(F /)^{\mathrm{a}}$ (now we think of $n!$ as the permutation group of n):

$$
\begin{aligned}
\text { set } \xrightarrow{F^{\mathrm{a}}} \text { set }, \quad X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / n! \\
\text { set } \xrightarrow{(F I)^{\mathrm{a}}} \text { ged }, \quad X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / / n!
\end{aligned}
$$

The "weak quotient" // is just a glueing construction!

04. The Baez-Dolan approach, continued

The exponential generating function for F

$$
N \xrightarrow{|F|} N, \quad x \mapsto \sum_{n \in N}\left(|n F| \cdot x^{n}\right) / n!
$$

provides the template for both analytic functors F^{a} and $(F /)^{\mathrm{a}}$ (now we think of $n!$ as the permutation group of n):

$$
\begin{aligned}
& \text { set } \xrightarrow{F^{a}} \text { set }, X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / n! \\
& \text { set } \xrightarrow{(F I)^{a}} g p d, \quad X \mapsto \int^{u \in E} u F \times X^{u} \cong \sum_{n \in N}\left(n F \times X^{n}\right) / / n!
\end{aligned}
$$

The "weak quotient" // is just a glueing construction! $(F I)^{\mathrm{a}}$ maps X to the groupoid of X-colored F-structured sets.

05. The Baez-Dolan approach and Byrne's view

- Baez and Dolan then generalize the obvious forgetful functor $1(F I)^{\text {a }} \longrightarrow \boldsymbol{E}$ to arbitrary $\boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$-morphisms into \boldsymbol{E}, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a snecies by a glueing construction
- Conversely, from a stuff type he constructs a "fibre functor" $\boldsymbol{E} \longrightarrow \boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:

05. The Baez-Dolan approach and Byrne's view

- Baez and Dolan then generalize the obvious forgetful functor $1(F I)^{\text {a }} \longrightarrow \boldsymbol{E}$ to arbitrary $\boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$-morphisms into \boldsymbol{E}, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
glueing construction
- Conversely, from a stuff type he constructs a "fibre functor" $E \longrightarrow g p d$, and then characterizes those stuff types that will indeed produce a species in this fashion as the

05. The Baez-Dolan approach and Byrne's view

- Baez and Dolan then generalize the obvious forgetful functor $1(F I)^{\text {a }} \longrightarrow \boldsymbol{E}$ to arbitrary $\boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$-morphisms into \boldsymbol{E}, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor"
$E \rightarrow g p d$, and then characterizes those stuff types that will
indeed produce a species in this fashion as the faithful ones:

05. The Baez-Dolan approach and Byrne's view

- Baez and Dolan then generalize the obvious forgetful functor $1(F I)^{\mathrm{a}} \longrightarrow \boldsymbol{E}$ to arbitrary $\boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$-morphisms into \boldsymbol{E}, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $\boldsymbol{E} \longrightarrow \boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:
functor

stuff type
full and faithful functor $\mathcal{G} \longrightarrow \boldsymbol{E}:$ property type

05. The Baez-Dolan approach and Byrne's view

- Baez and Dolan then generalize the obvious forgetful functor $1(F I)^{\text {a }} \longrightarrow \boldsymbol{E}$ to arbitrary $\boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$-morphisms into \boldsymbol{E}, subject to an unspecified finiteness condition; these are called stuff types.
- Byrne [SB] describes stuff (and structure) types as "working in the opposite direction" of species, by forgetting the structure.
- He then proceeds to construct a stuff type from a species by a glueing construction.
- Conversely, from a stuff type he constructs a "fibre functor" $\boldsymbol{E} \longrightarrow \boldsymbol{g} \boldsymbol{p} \boldsymbol{d}$, and then characterizes those stuff types that will indeed produce a species in this fashion as the faithful ones:
functor $\mathcal{G} \longrightarrow \boldsymbol{E}: \quad$ stuff type
faithful functor $\mathcal{G} \longrightarrow \boldsymbol{E}:$ structure type
full and faithful functor $\mathcal{G} \longrightarrow \boldsymbol{E}: \quad$ property type

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into X, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $X \longrightarrow \operatorname{spn}$ (rel). Viewing labels in a set X as arrows of a single-node graph we get

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel). Viewing labels in a set X as arrows of a single-node graph we get

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

This also works for general graphs \boldsymbol{X}

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

This also works for general graphs \boldsymbol{X}

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

This also works for general graphs \boldsymbol{X}

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get
(graph morphism)
This also works for general graphs X

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

This also works for general graphs X

06. Labeled transition systems (LTSs): recap

The picture emerging so far bears striking resemblance to the different views of (traditional) LTSs over a label graph \boldsymbol{X},

- as processes, i.e., (faithful) graph-morphisms into \boldsymbol{X}, or
- as systems, i.e., graph-morphisms $\boldsymbol{X} \longrightarrow \boldsymbol{s p n}$ (rel).

Viewing labels in a set X as arrows of a single-node graph we get

This also works for general graphs \boldsymbol{X}.

07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.
We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem
Every graph X induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow$ spn

07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem
Every graph X induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow s p n$

07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph \boldsymbol{X} induces an essentially bijective correspondence between fiber-small processes $\boldsymbol{Q} \longrightarrow \boldsymbol{X}$ and systems $\boldsymbol{X} \longrightarrow s p n$.

If X is a category, this restricts to fiber-small functors $Q \rightarrow X$ respectively, lax functors $X \longrightarrow s p n$.

07. Graph comprehension at the object level

Definition

grph and Grph denote the (bi)categories of small, respectively, locally small graphs and graph morphisms. These have non-full sub(bi)categories cat and Cat, respectively.

We call a Grph-morphism fiber-small, if each fibre is small ;-)

Theorem

Every graph \boldsymbol{X} induces an essentially bijective correspondence between fiber-small processes $Q \longrightarrow X$ and systems $X \longrightarrow s p n$.

If \boldsymbol{X} is a category, this restricts to fiber-small functors $\boldsymbol{Q} \longrightarrow \boldsymbol{X}$, respectively, lax functors $\boldsymbol{X} \longrightarrow s p n$.

08. Graph comprehension at the object level

Sketch of proof

- L_{0} is obtained from L by taking inverse images.
- In the other direction one emplovs disioint unions.
- If X is a category, laxness of L_{0} equips Q with units and a composition that are preserved by L, and vica versa.

08. Graph comprehension at the object level

Sketch of proof

- L_{\circ} is obtained from L by taking inverse images.
- In the other direction one employs disjoint unions.
- If X is a category, laxness of L_{\circ} equips Q with units and a
composition that are preserved by L, and vica versa.

08. Graph comprehension at the object level

Sketch of proof

- L_{\circ} is obtained from L by taking inverse images.
- In the other direction one employs disjoint unions.
- If X is a category, laxness of L_{0} equips Q with units and a composition that are preserved by L, and vica versa.

08. Graph comprehension at the object level

Sketch of proof

- L_{\circ} is obtained from L by taking inverse images.
- In the other direction one employs disjoint unions.
- If \boldsymbol{X} is a category, laxness of L_{\circ} equips \boldsymbol{Q} with units and a composition that are preserved by L, and vica versa.

09. Three important types of 1-cells for systems \boldsymbol{X}

- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi{ }_{\#}} L$ and $M \xrightarrow{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1-cells for systems \boldsymbol{X}

- Lax transforms are closely related to simulations (of N by M)
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xlongequal{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\prime \prime}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09 . Three important types of 1 -cells for systems X

Modules (mixed assoc.)
$L \xrightarrow{\pi} M$: in $s p n$

Lax transforms

$$
M \stackrel{\sigma}{\rightleftharpoons} N: \text { in } \operatorname{spn}
$$

- Lax transforms are closely related to simulations (of N by M)
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain
- We obtain modules $K \xlongequal{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\prime \prime}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules

09. Three important types of 1-cells for systems \boldsymbol{X}

transforms
in spn

$$
\begin{aligned}
& \text { Modules (mixed assoc.) } \\
& L \xrightarrow{\pi} M \text { : in } s p n \\
& x L \xrightarrow{u \pi} y M \\
& u L /(u ; v) \pi / v M \\
& y L \xrightarrow[v \pi]{ } z M
\end{aligned}
$$

Lax transforms
$M \stackrel{\sigma}{\Longrightarrow} N:$ in $s p n$

- Lax transforms are closely related to simulations (of N by M)
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain
- We obtain modules $K \xlongequal{\varphi \#} L$ and $M \xlongequal{\sigma} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09 . Three important types of 1 -cells for systems X

transforms
in spn

Modules (mixed assoc.)
$L \xrightarrow{\pi} M$: in spn
$x L \xrightarrow{u \pi} y M$
$u L<(u ; v) \pi \pi^{k} / v M$
$y L \xrightarrow[v \pi]{\longrightarrow} z M$

Lax transforms
$M \stackrel{\sigma}{\Longrightarrow} N:$ in spn

- Lax transforms are closely related to simulations (of N by M)
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain
- We obtain modules $K \xlongequal{\varphi{ }_{\#}} L$ and $M \xlongequal{\sigma} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1-cells for systems X

Oplax map-transforms $K \stackrel{\varphi}{\Longrightarrow} L$: in spn

$$
\begin{aligned}
& \text { Modules (mixed assoc.) } \\
& L \xrightarrow{\pi} M \text { : in } s p n
\end{aligned}
$$

Lax transforms
$M \stackrel{\sigma}{\rightleftharpoons} N:$ in $s p n$

- Lax transforms are closely related to simulations (of N by M)
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain
- We obtain modules $K \xlongequal{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\prime \prime}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1 -cells for systems X

- Lax transforms are closely related to simulations (of N by M)
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain
- We obtain modules $K \xlongequal{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1 -cells for systems X

$$
\begin{aligned}
& \text { Modules (mixed assoc.) } \\
& L \stackrel{\pi}{\longrightarrow} M \text { : in } s p n \\
& x L \xrightarrow{u \pi} y M
\end{aligned}
$$

$$
\begin{aligned}
& y L \xrightarrow[v \pi]{\longrightarrow} z M
\end{aligned}
$$

Lax transforms
$M \stackrel{\sigma}{\Longrightarrow} N$: in spn

- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category X such 1-cells also must be compatible with the lax structures of their domain and codomain
- We obtain modules $K \xlongequal{\varphi_{\#}} I$ and $M \xlongequal{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1-cells for systems \boldsymbol{X}

Modules (mixed assoc.)
$L \stackrel{\pi}{\longrightarrow} M$: in spn

Lax transforms

$M \stackrel{\sigma}{\longrightarrow} N:$ in spn

- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi{ }_{\#}} L$ and $M \xlongequal{\sigma^{+}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1-cells for systems \boldsymbol{X}

Modules (mixed assoc.)
$L \xrightarrow{\pi} M$: in $s p n$

Lax transforms

$M \stackrel{\sigma}{\Longrightarrow} N:$ in $s p n$

- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.

09. Three important types of 1 -cells for systems \boldsymbol{X}

Oplax map-transforms
$K \stackrel{\varphi}{\Longrightarrow} L$: in spn

Modules (mixed assoc.)
$L \xrightarrow{\pi} M$: in $s p n$

Lax transforms

$M \stackrel{\sigma}{\Longrightarrow} N:$ in $s p n$

- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules.
transforms lift faithfully, but in general not fully.

09. Three important types of 1-cells for systems \boldsymbol{X}

Oplax map-transforms
$K \stackrel{\varphi}{\Longrightarrow} L$: in spn

Modules (mixed assoc.)
$L \xrightarrow{\pi} M$: in $s p n$

Lax transforms

$M \stackrel{\sigma}{\Longrightarrow} N:$ in $s p n$

- Lax transforms are closely related to simulations (of N by M).
- For lax functors from a category \boldsymbol{X} such 1-cells also must be compatible with the lax structures of their domain and codomain.
- We obtain modules $K \xrightarrow{\varphi_{\#}} L$ and $M \xlongequal{\sigma^{\#}} N$ by pasting with the identity module on the codomain, respectively, domain.
- Modulations provide 2-cells for modules. Modifications between transforms lift faithfully, but in general not fully.

09. 1-cells for processes over X : the module case

The process 1 -cell corresponding to a module $L \stackrel{\pi}{\longrightarrow} M$ is a span of fibre-small functors over \boldsymbol{X} with a natural transformation:

Old andarrows are composed according to the module 2-cells:

In particular, \boldsymbol{P} encompasses all new arrows.

09. 1-cells for processes over X : the module case

The process 1 -cell corresponding to a module $L \xlongequal{\pi} M$ is a span of fibre-small functors over \boldsymbol{X} with a natural transformation:

Interpretation
Combine Q and R into a new category over X with P-objects serving as new arrows linking Q with R-objects, and P-arrows serving as linking Q-with R-arrows. Old and new arrows are composed according to the module 2 -cells:

In particular, \boldsymbol{P} encompasses all new arrows.

09. 1-cells for processes over \boldsymbol{X} : the module case

The process 1 -cell corresponding to a module $L \xlongequal{\pi} M$ is a span of fibre-small functors over \boldsymbol{X} with a natural transformation:

Interpretation

Combine \boldsymbol{Q} and \boldsymbol{R} into a new category over \boldsymbol{X} with \boldsymbol{P}-objects serving as new arrows linking \boldsymbol{Q} with \boldsymbol{R}-objects, and \boldsymbol{P}-arrows serving as new commutative squares linking \boldsymbol{Q} - with \boldsymbol{R}-arrows.
arrows are composed according to the module 2-cells:

In particular, \boldsymbol{P} encompasses all new arrows.

09. 1-cells for processes over \boldsymbol{X} : the module case

The process 1 -cell corresponding to a module $L \xlongequal{\pi} M$ is a span of fibre-small functors over \boldsymbol{X} with a natural transformation:

Interpretation

Combine \boldsymbol{Q} and \boldsymbol{R} into a new category over \boldsymbol{X} with \boldsymbol{P}-objects serving as new arrows linking \boldsymbol{Q} with \boldsymbol{R}-objects, and \boldsymbol{P}-arrows serving as new commutative squares linking \boldsymbol{Q} - with \boldsymbol{R}-arrows.

Old and new arrows are composed according to the module 2-cells:

In particular, P encompasses all new arrows.

09. 1-cells for processes over \boldsymbol{X} : the module case

The process 1 -cell corresponding to a module $L \xlongequal{\pi} M$ is a span of fibre-small functors over \boldsymbol{X} with a natural transformation:

Interpretation

Combine \boldsymbol{Q} and \boldsymbol{R} into a new category over \boldsymbol{X} with \boldsymbol{P}-objects serving as new arrows linking \boldsymbol{Q} with \boldsymbol{R}-objects, and \boldsymbol{P}-arrows serving as new commutative squares linking \boldsymbol{Q} - with \boldsymbol{R}-arrows.

Old and new arrows are composed according to the module 2-cells:

In particular, \boldsymbol{P} encompasses all new arrows.

10. 1-cells for processes over \boldsymbol{X} : the transform case

Differences compared to the module case
For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and arrows now compose freely and are then identified according to the 2-cells of π :

10. 1-cells for processes over \boldsymbol{X} : the transform case

Differences compared to the module case
For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and arrows now compose freely and are then identified according to the 2 -cells of π :

- For $L \stackrel{\pi}{\sim} M$ this makes P_{1}
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0}

10. 1-cells for processes over X : the transform case

Differences compared to the module case
For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and arrows now compose freely and are then identified according to the 2-cells of π :

Identificaton of new composites

- For $L \stackrel{\pi}{\sim} M$ this makes P_{1}
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0}

10. 1-cells for processes over X : the transform case

Differences compared to the module case
For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and new arrows now compose freely and are then identified according to the 2-cells of π :

- For $L \stackrel{\pi}{\longrightarrow} M$ this makes P_{1}
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0}

10. 1-cells for processes over X : the transform case

Differences compared to the module case
For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and new arrows now compose freely and are then identified according to the 2-cells of π :
π° in diagram form

Identificaton of new composites

- For $L \stackrel{\pi}{\sim} M$ this makes P_{1}
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0}

10. 1-cells for processes over X : the transform case

Differences compared to the module case
For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and new arrows now compose freely and are then identified according to the 2-cells of π :
π° in diagram form

Identificaton of new composites

- For $L \stackrel{\pi}{\longrightarrow} M$ this makes $P_{1}(1 \xrightarrow{0} 2)$-orthogonal *, which turns π° into a simulation of M° by L° over X
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0}

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and new arrows now compose freely and are then identified according to the 2-cells of π :
π° in diagram form

Identificaton of new composites

- For $L \stackrel{\pi}{\longrightarrow} M$ this makes $P_{1}(1 \xrightarrow{0} 2)$-orthogonal *, which turns π° into a simulation of M° by L° over \boldsymbol{X}.
- For $L \xrightarrow{n} M$ this makes P_{0}

10. 1-cells for processes over X : the transform case

Differences compared to the module case

For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and new arrows now compose freely and are then identified according to the 2-cells of π :
π° in diagram form

Identificaton of new composites

- For $L \stackrel{\pi}{\longrightarrow} M$ this makes $P_{1}(1 \xrightarrow{0} 2)$-orthogonal *, which turns π° into a simulation of M° by L° over \boldsymbol{X}.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0} iso,

[^4]
10. 1-cells for processes over X : the transform case

Differences compared to the module case

For $L \stackrel{\pi}{\Longrightarrow} M$ or $L \stackrel{\pi}{\Longrightarrow} M$ only those new arrows show up in \boldsymbol{P} that live over identities in \boldsymbol{X}; old and new arrows now compose freely and are then identified according to the 2-cells of π :
π° in diagram form

Identificaton of new composites

- For $L \stackrel{\pi}{\longrightarrow} M$ this makes $P_{1}(1 \xrightarrow{0} 2)$-orthogonal *, which turns π° into a simulation of M° by L° over \boldsymbol{X}.
- For $L \stackrel{\pi}{\Longrightarrow} M$ this makes P_{0} iso, which turns π° into a functor over \boldsymbol{X}.

11. The main equivalencess

With modulations as 2-cells between modules and modfications as 2-cells between transforms, we obtain equivalences

$$
\llbracket \boldsymbol{X}, s p n \rrbracket_{@} \cong \boldsymbol{C a t} \boldsymbol{t}^{@} / / \boldsymbol{X} \quad \text { with } @ \in\{\mathrm{md}, \mathrm{~lx}, \mathrm{mp}, \ldots\}
$$

where for fibre-small functors $Q \xrightarrow{L} X<{ }^{M} R$ the hom-categories are given by
$\langle L, M\rangle \operatorname{Cat}^{\mathrm{md}} / \boldsymbol{X}=\operatorname{Cat} /(L / M)$

$\langle L, M\rangle \boldsymbol{C a t}{ }^{\mathrm{mp}} / / \boldsymbol{X}=\{\boldsymbol{Q} \xrightarrow{Q} L / M: Q \alpha=\boldsymbol{i d}\}$
where

denotes the comma square.

11. The main equivalencess

With modulations as 2-cells between modules and modfications as 2-cells between transforms, we obtain equivalences

$$
\llbracket \boldsymbol{X}, s p n \rrbracket_{\varrho} \cong \boldsymbol{C a t} \boldsymbol{t}^{@} / / \boldsymbol{X} \quad \text { with } @ \in\{\mathrm{md}, \mathrm{~lx}, \mathrm{mp}, \ldots\}
$$

where for fibre-small functors $\boldsymbol{Q} \xrightarrow{L} X \boldsymbol{X} \stackrel{M}{\longleftrightarrow} \boldsymbol{R}$ the hom-categories are given by

where

denotes the comma square.

11. The main equivalencess

With modulations as 2-cells between modules and modfications as 2-cells between transforms, we obtain equivalences

$$
\llbracket \boldsymbol{X}, s p n \rrbracket_{\varrho} \cong \boldsymbol{C a t} \boldsymbol{t}^{@} / / \boldsymbol{X} \quad \text { with } @ \in\{\mathrm{md}, \mathrm{~lx}, \mathrm{mp}, \ldots\}
$$

where for fibre-small functors $\boldsymbol{Q} \xrightarrow{L} X \boldsymbol{X} \stackrel{M}{ } \boldsymbol{R}$ the hom-categories are given by

$$
\begin{aligned}
\langle L, M\rangle \boldsymbol{C a} \boldsymbol{t}^{\mathrm{md}} / \boldsymbol{X} & =\boldsymbol{C} \boldsymbol{a} \boldsymbol{t} /(L / M) \\
\langle L, M\rangle \boldsymbol{C a t}^{\mathrm{lx}} / / \boldsymbol{X} & =\left\{\boldsymbol{P} \xrightarrow{P} L / M: P \alpha=\boldsymbol{i d} \wedge(1 \xrightarrow{0} 2) \perp P \partial_{1}\right\} \\
\langle L, M\rangle \boldsymbol{C a t}^{\mathrm{mp}} / / \boldsymbol{X} & =\{\boldsymbol{Q} \xrightarrow{Q} L / M: Q \alpha=\boldsymbol{i d}\}
\end{aligned}
$$

With modulations as 2-cells between modules and modfications as 2-cells between transforms, we obtain equivalences

$$
\llbracket \boldsymbol{X}, s p n \rrbracket_{\varrho} \cong \boldsymbol{C a t} \boldsymbol{t}^{@} / / \boldsymbol{X} \quad \text { with } @ \in\{\mathrm{md}, \mathrm{~lx}, \mathrm{mp}, \ldots\}
$$

where for fibre-small functors $\boldsymbol{Q} \xrightarrow{L} \boldsymbol{X} \stackrel{M}{\longleftrightarrow} \boldsymbol{R}$ the hom-categories are given by
$\langle L, M\rangle \boldsymbol{C a t}{ }^{\mathrm{md}} / / \boldsymbol{X}=\boldsymbol{C a t} /(L / M)$
$\langle L, M\rangle \boldsymbol{C a t}{ }^{\mathrm{lx}} / / \boldsymbol{X}=\left\{\boldsymbol{P} \xrightarrow{P} L / M: P \alpha=\boldsymbol{i d} \wedge(1 \xrightarrow{0} 2) \perp P \partial_{1}\right\}$
$\langle L, M\rangle \boldsymbol{C a} \boldsymbol{t}^{\mathrm{mp}} / / \boldsymbol{X}=\{\boldsymbol{Q} \xrightarrow{Q} L / M: Q \alpha=\boldsymbol{i d}\}$

11. Comprehension

The embeddings of set into $\boldsymbol{c a t}{ }^{\mathrm{co}}$ into $\boldsymbol{p r f}$, and the characterization of $p r f$ as the bicategory of monads on $s p n$ yield

11. Specialization in various directions

- Posettal collapse: restrict to faithful processes over \mathcal{X} and to systems into rel; substitute ord for cat and $i d l$ for $p r f$
- Size constraints: restrict to λ-small graphs/categories for some inaccessible cardinal λ.
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, e.g., in a quantum computer):

11. Specialization in various directions

- Posettal collapse: restrict to faithful processes over X and to systems into rel ; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ-small graphs/categories for some inaccessible cardinal λ
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations,

11. Specialization in various directions

- Posettal collapse: restrict to faithful processes over X and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ-small graphs/categories for some inaccessible cardinal λ.
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling

11. Specialization in various directions

- Posettal collapse: restrict to faithful processes over X and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ-small graphs/categories for some inaccessible cardinal λ.
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, e.g., in a quantum computer):

11. Specialization in various directions

- Posettal collapse: restrict to faithful processes over X and to systems into rel; substitute ord for cat and idl for prf.
- Size constraints: restrict to λ-small graphs/categories for some inaccessible cardinal λ.
- Symmetrization: restrict to symmetric graphs and spans, replace categories by groupoids, this allows modelling reversible computations, as, e.g., in a quantum computer):

$$
\begin{aligned}
& {[\boldsymbol{E}, \text { set }] \xrightarrow{\top} \boldsymbol{G p d} \mathrm{mp}_{\mathrm{ff}} \boldsymbol{E}} \\
& {[\boldsymbol{E}, \boldsymbol{g} \boldsymbol{p} \boldsymbol{d}]{ }^{\top} \quad \boldsymbol{G} \boldsymbol{p} \boldsymbol{d}^{\mathrm{mp}} / \boldsymbol{E}}
\end{aligned}
$$

[^0]: Definition
 Thus a species of structures is just a functor from the groupoid E of finite sets and bijections to set

[^1]: Definition
 Thus a species of structures is just a functor from the groupoid E of finite sets and bijections to set

[^2]: Thus a species of structures is just a functor from the groupoid \boldsymbol{E} of finite sets and bijections to set

[^3]: The "weak quotient" // is just a glueing construction! $(F I)^{\mathrm{a}}$ maps X to the groupoid of X-colored

[^4]: which turns π° into a functor over X

