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Motivation

Sources of interest in A∞-categories:

• Kontsevich’s Homological Mirror Symmetry Conjecture;

• recent advances in homological algebra (Bondal–Kapranov, Drin-

feld, Keller, Kontsevich-Soibelman, . . . ).

Question: What do A∞-categories form?

Our answer: A closed symmetric multicategory.
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A short review of A∞-categories

Throughout, k is a commutative ground ring.

Definition. A graded quiver A consists of a set Ob A of objects and

a graded k-module A(X, Y ), for each X, Y ∈ ObA. A morphism of

graded quivers f : A → B consists of a function Ob f : ObA → ObB,

X 7→ Xf and a k-linear map f = fX,Y : A(X, Y ) → B(Xf, Y f) of

degree 0, for each X, Y ∈ ObA.

Let Q denote the category of graded quivers. It is symmetric monoidal.

The tensor product of graded quivers A and B is the graded quiver

A ⊠ B given by

Ob(A ⊠ B) = ObA × ObB

(A ⊠ B)((X, U), (Y, V )) = A(X, Y ) ⊗ B(U, V ).

The unit object is the graded quiver 1 with Ob1 = {∗} and 1(∗, ∗) = k.
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Definition. For a set S, denote by Q/S the subcategory of Q whose

objects are graded quivers A such that ObA = S and whose morphisms

are morphisms of graded quivers f : A → B such that Ob f = idS .

The category Q/S is (non-symmetric) monoidal. The tensor product

of graded quivers A, B is the graded quiver A ⊗ B given by

(A ⊗ B)(X, Z) =
⊕

Y ∈S

A(X, Y ) ⊗ B(Y, Z), X, Z ∈ S.

The unit object is the discrete quiver kS given by Ob kS = S and

(kS)(X, Y ) =





k if X = Y ,

0 if X 6= Y ,
X, Y ∈ S.
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Definition. An augmented graded cocategory is a graded quiver C

equipped with the structure of an augmented counital coassociative

coalgebra in the monoidal category Q/ ObC. Therefore, C comes with

• a comultiplication ∆ : C → C ⊗ C,

• a counit ε : C → k ObC, and

• an augmentation η : k ObC → C,

which are morphisms in Q/ ObC satisfying the usual axioms.

A morphism of augmented graded cocategories f : C → D is a mor-

phism of graded quivers that preserves the comultiplication, counit,

and augmentation.

The category of augmented graded cocategories is a symmetric mono-

idal category with the tensor product inherited from Q.
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Example. Let A be a graded quiver. The quiver

TA =

∞⊕

n=0

Tn
A,

where TnA is the n-fold tensor product of A in Q/ ObA, equipped

with the ‘cut’ comultiplication

∆0 : f1 ⊗ · · · ⊗ fn 7→

n∑

k=0

f1 ⊗ · · · ⊗ fk

⊗
fk+1 ⊗ · · · ⊗ fn,

the counit

ε = pr0 : TA → T 0
A = k ObA,

and the augmentation

η = in0 : k ObA = T 0
A →֒ TA

is an augmented graded cocategory.
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For a graded quiver A, denote by sA its suspension:

Ob sA = ObA, (sA(X, Y ))d = A(X, Y )d+1, X, Y ∈ ObA.

Let s : A → sA denote the ‘identity’ map of degree −1.

Definition. An A∞-category consist of a graded quiver A and a dif-

ferential b : TsA → TsA of degree 1 such that (TsA, ∆0, pr0, in0, b) is

an augmented differential graded cocategory, i.e.,

b2 = 0, b∆0 = ∆0(1 ⊗ b + b ⊗ 1), b pr0 = 0, in0 b = 0.

For A∞-categories A and B, an A∞-functor f : A → B is a morphism

of augmented differential graded cocategories f : (TsA, b) → (TsB, b).

Even better: we can define A∞-functors of many arguments!
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A short review of multicategories

A multicategory is just like a category, the only difference being the

shape of arrows. An arrow in a multicategory looks like

X1, X2, . . . , Xn −→ Y

with a finite family of objects as the source and one object as the

target, and composition turns a tree of arrows into a single arrow.

Example. An arbitrary (symmetric) monoidal category C gives rise

to a (symmetric) multicategory Ĉ with the same set of objects. A

morphism

X1, . . . , Xn −→ Y

in Ĉ is a morphism

X1 ⊗ · · · ⊗ Xn −→ Y

in C. Composition in Ĉ is derived from composition and tensor in C.
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Closed multicategories

A multicategory C is closed if, for each Xi, Z ∈ ObC, i ∈ I, there exist

an internal Hom-object C((Xi)i∈I ; Z) and an evaluation morphism

evC

(Xi)i∈I ;Z : (Xi)i∈I , C((Xi)i∈I ; Z) −→ Z

satisfying the following universal property: an arbitrary morphism

(Xi)i∈I , (Yj)j∈J −→ Z

can be written in a unique way as

[
(Xi)i∈I , (Yj)j∈J

(1Xi
)i∈I ,f

−−−−−−−→ (Xi)i∈I , C((Xi)i∈I ; Z)
evC

(Xi)i∈I ;Z

−−−−−−−→ Z
]
.

Example. Let C be a monoidal category. It is closed if and only if so

is the associated multicategory Ĉ.
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Main theorem

The symmetric multicategory A∞ of A∞-categories is defined as fol-

lows.

• Objects are A∞-categories.

• A morphism

f : A1, . . . ,An −→ B,

called an A∞-functor, is a morphism of augmented differential

graded cocategories

f : TsA1 ⊠ · · · ⊠ TsAn −→ TsB.

Theorem. The multicategory A∞ is closed.
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Basic ideas of proof

Step 1. The category Q of graded quivers admits a different symmet-

ric monoidal structure with tensor product given by

A ⊠u B
def
= (A ⊠ B) ⊕ (k ObA ⊠ B) ⊕ (A ⊠ k ObB),

and the unit object being the graded quiver 1u with Ob1u = {∗}

and 1u(∗, ∗) = 0. Let Qu denote the category Q with this symmetric

monoidal structure.

Proposition. The symmetric monoidal category Qu is closed.
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Step 2. For a graded quiver A, denote by

T≥1
A =

∞⊕

n=1

Tn
A

the reduced tensor quiver.

Proposition. The functor T≥1 : Q → Q admits the structure of a

lax symmetric monoidal comonad in the closed symmetric monoidal

category Qu.

In particular, T≥1 gives rise to a symmetric multicomonad T≥1 in the

closed symmetric multicategory Q̂u.

Theorem. Let T be a symmetric multicomonad in a closed symmetric

multicategory C. Then the multicategory of free T -coalgebras is closed.
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Proposition. There is an isomorphism of symmetric multicategories




free

T≥1-coalgebras





∼=





augmented graded

cocategories of the form TA




 .

In particular, the multicategory in the right hand side is closed.

Step 3. Add differentials.

Question. Is the symmetric monoidal category of augmented (differ-

ential) graded cocategories closed?

We do not know the answer in general. . .
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Summary

• A∞-categories naturally form a symmetric multicategory.

• This multicategory is closed.
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Outlook

• Unital A∞-categories (A∞-categories with weak identities). We

prove that unital A∞-categories and unital A∞-functors constitute

a closed symmetric submulticategory of A∞.

• Closed multicategories vs. closed categories in the sense of Eilen-

berg-Kelly. We prove that these are basically the same (suitably

defined 2-categories of closed multicategories and closed categories

are 2-equivalent).
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