Free Constructions on

Double Categories

Dorette Pronk, Dalhousie University

with

Tom Fiore, University of Chicago Simona Paoli, Macquarie University

CT2007, Portugal, June 19, 2007

Overview

- Definitions
 - Double Categories
 - Double Derivation Schemes
- Free Constructions
 - Free double category on a DDS
 - Horizontal Categorification
- Motivation: Model Structures on **DblCat**
- Some Pushouts of Double Categories

Double Categories

Definition A double category \mathbb{D} is an internal category in Cat:

$$\mathbb{D} = \mathbf{D}_1 \longrightarrow \mathbf{D}_0 = \left| \begin{array}{c} \mathbf{D}_{1,1} \longrightarrow \mathbf{D}_{0,1} \\ \mathbf{D}_{1,0} \longrightarrow \mathbf{D}_{0,0} \end{array} \right|$$

We will write

Obj
$$\mathbb{D}=\mathbf{D}_{0,0}$$
 D_0,D_1,\dots Hor $\mathbb{D}=\mathbf{D}_{1,0}$ $D_0\stackrel{h}{\longrightarrow} D_1$

$$\operatorname{Ver} \mathbb{D} = \mathbf{D}_{0,1} \qquad \begin{array}{c} D_0 & D_0 \\ \downarrow \\ D_1 & \end{array} \qquad \operatorname{Sq} \mathbb{D} = \mathbf{D}_{1,1} \qquad \begin{array}{c} D_0 \xrightarrow{h_0} D_0' \\ \downarrow \\ D_1 \xrightarrow{h_1} D_1' \end{array}$$

Examples

1. The horizontal embedding $I_H(\mathbf{C})$ of a 2-category \mathbf{C} , with squares

$$A \xrightarrow{f} B$$
 $\parallel \quad \alpha \quad \parallel$
 $A \xrightarrow{g} B$

for α : $f \Rightarrow g$ in \mathbb{C} .

2. The vertical embedding $I_V(\mathbf{C})$ of a 2-category \mathbf{C} , with squares

$$A = B$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$A = B$$

for $\alpha \colon f \Rightarrow g$ in \mathbb{C} .

3. The **external product** $C \boxtimes D$ of two 2-categories C and D:

objects
$$(C, D)$$

vertical morphisms
$$(f, D) : (C, D) \rightarrow (C', D)$$

horizontal morphisms $(C,g):(C,D)\longrightarrow(C,D')$

squares
$$(C,D) \xrightarrow{(C,g_1)} (C,D')$$

$$(f_1,D) \bullet \qquad (\gamma,\delta) \qquad \bullet (f_2,D') \qquad f_1 \xrightarrow{\gamma} f_2$$

$$(C',D) \xrightarrow{(C,g_2)} (C',D') \qquad g_1 \xrightarrow{\delta} g_2$$

Lemma The external product is a functor

 \boxtimes : 2-Cat \times 2-Cat \rightarrow DblCat.

Note: If C and D are categories, the squares of $C \boxtimes D$ are

$$(C,D) \xrightarrow{(C,g)} (C,D')$$

$$(f,D) \downarrow \qquad \qquad \downarrow (f,D')$$

$$(C',D) \xrightarrow{(C',g)} (C',D').$$

If $D = [n] = (0 \xrightarrow{s_{1,0}} 1 \xrightarrow{s_{2,1}} \cdots \xrightarrow{s_{n,n-1}} n)$, every square has a canonical horizontal factorization

$$(C, \mathbf{k}) \xrightarrow{(C, s_{m,k})} (C, \mathbf{m})$$

$$(f, \mathbf{k}) \downarrow \qquad (f, \mathbf{m}) \downarrow =$$

$$(C', \mathbf{k}) \xrightarrow{(C', s_{m,k})} (C', \mathbf{m})$$

$$(C, \mathbf{k}) \xrightarrow{(C, s_{m,k})} (C, \mathbf{k} + 1) \xrightarrow{(C, s_{k+2,k+1})} \qquad \xrightarrow{(C, s_{m,m-1})} (C, \mathbf{m})$$

$$(f, \mathbf{k}) \downarrow \qquad (f, \mathbf{k} + 1) \downarrow \qquad \cdots \qquad (f, \mathbf{m}) \downarrow$$

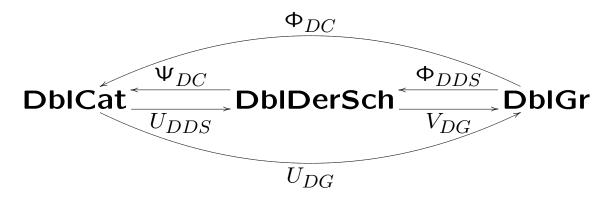
$$(C', \mathbf{k}) \xrightarrow{(C', s_{k+1,k})} (C', \mathbf{k} + 1) \xrightarrow{(C', s_{k+2,k+1})} \qquad \xrightarrow{(C', s_{m,m-1})} (C', \mathbf{m}).$$

Double Graphs and Double Derivation Schemes

Definition 1. A **double graph** is an internal reflexive graph in **RGraph**.

2. A **double derivation scheme** is a double graph whose vertical and horizontal graphs are categories.

There are adjunctions:



The free double category on a double derivation scheme

Let \mathbb{S} be a double derivation scheme. The squares of the free double category $\Psi_{DC}(\mathbb{S})$ are equivalence classes of allowable pasting diagrams of squares in \mathbb{S} .

- 1. The squares of \mathbb{S} are allowable.
- 2. A pasting diagram is allowable when it admits a vertical or horizontal cut which creates two allowable pasting diagrams.

Allowable:

Not
allowable:

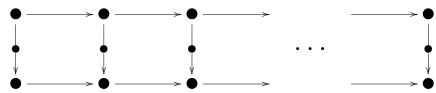
The Horizontal Nerve

Definition The horizontal nerve of a double category is the simplicial category:

$$(N_h\mathbb{D})_0=(\mathsf{Obj}\,\mathbb{D},\mathsf{Ver}\,\mathbb{D})$$

$$(N_h\mathbb{D})_1=(\mathsf{Hor}\,\mathbb{D},\mathsf{Sq}\,\mathbb{D})$$

 $(N_h \mathbb{D})_n =$ (paths of n horizontal arrows, rows of n squares)



Composition in each category is vertical composition.

Example
$$N_h(\mathbf{A} \boxtimes \mathbf{B}) = (\underline{\mathbf{A}})_* \times dN\mathbf{B}_*$$
, where

$$(\underline{\mathbf{A}})_n = \mathbf{A}$$
 for all n

and

$$dN\mathbf{B}_n = (N\mathbf{B}_n)_{\mathsf{disc}}.$$

Categorification

Recall: the ordinary nerve functor

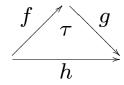
$$N \colon \mathbf{Cat} \to [\Delta^{\mathsf{op}}, \mathbf{Set}]$$

has a left adjoint

$$c \colon [\Delta^{\mathsf{op}}, \mathbf{Set}] \to \mathbf{Cat},$$

the **fundamental category** or **categorification** functor.

For a simplicial set X_* , $c(X_*)$ is the free category on the reflexive graph (X_0, X_1) , modulo the smallest congruence such that for every $\tau \in X_2$, with boundaries



we have that $g \circ f \sim h$.

Horizontal Categorification

We define the functor $c_h: [\Delta^{op}, Cat] \to DblCat$ in two steps.

Step 1:

$$[\Delta^{op}, \mathbf{Cat}] \longrightarrow \mathbf{DblDerSch}$$

$$X_* \mapsto s_h(X_*)$$
, defined by:

Vertical category: X_0

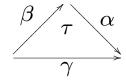
Horizontal category: $c(Obj(X_*))$

Squares: $Mor X_1$

Step 2: $c_h(\mathbf{X}_*)$ is a quotient of $\Psi_{DC}(c_h(\mathbf{X}_*))$ by the smallest congruence relation on the squares such that

a.
$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \sim [\beta \circ \alpha]$$
, where the composition is taken from \mathbf{X}_1 ;

b. For each $\tau \in \mathsf{Mor}\,\mathbf{X}_2$ with simplicial boundaries



we have $[\alpha \beta] \sim [\gamma]$.

Proposition Horizontal categorification c_h is left adjoint to the horizontal nerve N_h .

Examples

1. For a simplicial set X_* , let dX_* be the simplicial category with discrete categories,

$$dX_n = (X_n)_{\text{disc}}.$$

Then $c_h(dX_*) = I_H(cX_*)$.

2. Let A be a category and Y_* a simplicial set. Then

$$c_h((\underline{\mathbf{A}})_* \times dY_*) = \mathbf{A} \boxtimes cY.$$

Motivation - Model Structures on Double Categories

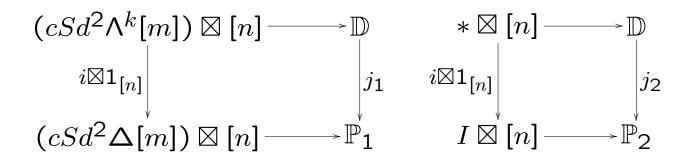
One way to obtain these is to transfer model structures along the adjunction:

$$\mathsf{DblCat} \overset{c_h}{\longrightarrow} [\Delta^\mathsf{op}, \mathsf{Cat}]$$

Specifically, we want to transfer the levelwise Thomason structure and the levelwise categorical structure on $[\Delta^{op}, Cat]$.

Main Technical Lemma

For the pushouts j_1 and j_2



in **DblCat**, the morphisms

$$N_h(j_1)$$
 and $N_h(j_2)$

are weak equivalences in the Thomason and categorical (resp.) model structures on $[\Delta^{op}, Cat]$.

Theorem Let $A \subseteq B$ be a full subcategory satisfying the (FRC), \mathbb{D} a double category, and \mathbb{P} the pushout

$$egin{array}{c|c} \mathbf{A}oxtimes[n] & \longrightarrow \mathbb{D} \ ioxtimes 1_{[n]} & \downarrow \ \mathbf{B}oxtimes[n] & \longrightarrow \mathbb{P} \end{array}$$

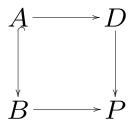
in **DblCat**. Then the induced map on horizontal nerves

$$N_h(\mathbf{B}\boxtimes [n])\coprod_{N_h(\mathbf{A}\boxtimes [n])}N_h(\mathbb{D})\longrightarrow N_h(\mathbb{P})$$

is an isomorphism of simplicial objects in Cat.

Pushouts of inclusions - in Set

Lemma If $A \subseteq B$ and D are sets, then the pushout in **Set**



is
$$P = D \coprod (B \setminus A)$$
.

Pushouts of inclusions - in Cat

Lemma If $A \subseteq B$ are sets and C and D are categories, then the pushout in Cat

$$A_{\mathsf{disc}} \times \mathbf{C} \longrightarrow \mathbf{D}$$
 $i \times 1_{\mathbf{C}}$
 $B_{\mathsf{disc}} \times \mathbf{C} \longrightarrow \mathbf{P}$

is

$$\mathbf{P} = \mathbf{D} \prod ((B \backslash A)_{\mathsf{disc}} \times \mathbf{C}).$$

Lemma Let $A \subseteq B$ be a full subcategory. Then the pushout

$$\begin{array}{ccc}
\mathbf{A} & \xrightarrow{F} & \mathbf{D} \\
\downarrow & & \downarrow \\
\mathbf{B} & \xrightarrow{P} & \mathbf{P}
\end{array}$$

in Cat can be desribed as:

$$\mathsf{Obj}\,\mathsf{P} = \mathsf{Obj}\,\mathsf{D}\coprod(\mathsf{Obj}\,\mathsf{B}\backslash\mathsf{Obj}\,\mathsf{A})$$

and the morphisms of ${\bf P}$ have two forms:

- 1. Arrows $B_0 \xrightarrow{f} B_1$ with $f \in \mathbf{B} \backslash \mathbf{A}$.
- 2. Paths

$$X_1 \xrightarrow{f_1} D_1 \xrightarrow{d} D_2 \xrightarrow{f_2} X_2$$

where $d \in \mathbf{D}$, and $f_1, f_2 \in \mathbf{B} \setminus \mathbf{A}$ or identities.

If f_1 is nontrivial, then $D_1 \in \mathbf{A}$. If f_2 is nontrivial, then $D_2 \in \mathbf{A}$. **Definition** A subcategory $A \subseteq B$ satisfies the **Factorization Refinement Condition** (FRC) if for any two paths of morphisms

$$B_1 \xrightarrow{b_1} A_1 \xrightarrow{a} A_2 \xrightarrow{b_2} B_2$$
 and $B_1 \xrightarrow{b'_1} A'_1 \xrightarrow{a'} A'_2 \xrightarrow{b'_2} B_2$

with $a, a' \in \mathbf{A}$ and $b_2ab_1 = b'_2a'b'_1$, there are

$$a_1, a_2, a_1', a_2' \in \mathbf{A}$$
 and $\overline{b}_1, \overline{b}_2 \in \mathbf{B}$

such that

$$B_{1} \xrightarrow{\overline{b_{1}}} A_{0} \xrightarrow{a_{1}} A_{1} \xrightarrow{a} A_{2} \xrightarrow{a_{2}} A_{3} \xrightarrow{\overline{b_{2}}} B_{2}$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \parallel \qquad \qquad \parallel \qquad \parallel$$

$$B_{1} \xrightarrow{\overline{b_{1}}} A_{0} \xrightarrow{a'_{1}} A'_{1} \xrightarrow{a'} A'_{2} \xrightarrow{a'_{2}} A_{3} \xrightarrow{\overline{b_{2}}} B_{2}.$$

Propositon Let $A \subseteq B$ be a full subcategory satisfying the (FRC), and $\mathbb D$ a double category. Then the pushout

$$egin{array}{c|c} \mathbf{A}oxtimes[n] & F & \mathbb{D} \ ioxtimes 1_{[n]} & & \downarrow \ \mathbf{B}oxtimes[n] & \longrightarrow \mathbb{P} \end{array}$$

in **DblCat** has the following explicit description.

- Objects:
- Horizontal Arrows:
- Vertical Arrows:
- Squares:

First create the pushout

$$egin{array}{c|c} \mathbf{A}oxtimes[n]^{-F}\mathbb{D} \ ioxtimes1_{[n]}\ \mathbf{B}oxtimes[n]^{-F}\mathbb{S} \end{array}$$

in **DbIDerSch** and use the previous lemmas to obtain:

- ullet Obj $\mathbb{P}=$ Obj \mathbb{S} : (B,\mathbf{k}) and D;
- Hor $\mathbb{P} = \operatorname{Hor} \mathbb{S}$: $(B, s_{m,k})$ with $B \in \mathbf{B} \backslash \mathbf{A}$ or $d \in \operatorname{Hor} \mathbb{D}$
- Ver $\mathbb{P} = \text{Ver } \mathbb{S}$: 1. Arrows $(B_0, \mathbf{k}) \xrightarrow{(b, \mathbf{k})} (B_1, \mathbf{k})$.
 - 2. Paths $X_1 \xrightarrow{f_1} D_1 \xrightarrow{d} D_2 \xrightarrow{f_2} X_2$ where $d \in \text{Ver } \mathbf{D}$, and each of $f_1, f_2 \in \mathbf{B} \backslash \mathbf{A} \times \{\mathbf{k}\}$ or identities.

The squares of \mathbb{S} are:

$$\mathsf{Sq}\,\mathbb{S} = \mathsf{Sq}\,\mathbb{D}\,\coprod(\mathsf{Sq}\,(\mathbf{B}\boxtimes[n])\backslash\mathsf{Sq}\,(\mathbf{A}\boxtimes[n])).$$

The squares of \mathbb{P} are equivalence classes of allowable pasting diagrams of squares in \mathbb{S} . The equivalence relation is generated by:

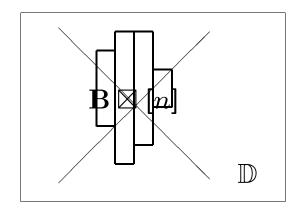
- any rectangular subdiagram containing only squares from one double category may be replaced by its composition in that double category;
- any square may be factored in the double category it came from;
- any $\mathbf{A} \boxtimes [n]$ -square is considered as a \mathbb{D} -square.

Step 1: Layer the $B \boxtimes [n]$ -squares

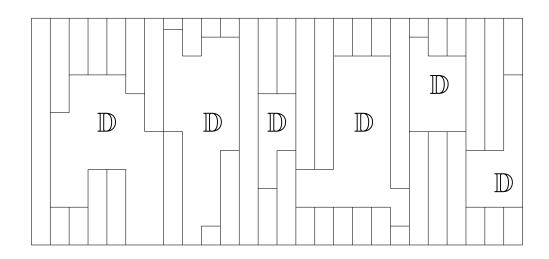
We can factor all $\mathbf{B} \boxtimes [n]$ -squares into vertical layers, and then compose these vertically where possible.

Note any $\mathbf{B} \boxtimes [n]$ -square which has \mathbb{D} -squares above and below it is an $\mathbf{A} \boxtimes [n]$ -square and such squares will be viewed as \mathbb{D} -squares.

So there are no floating $\mathbf{B} \boxtimes [n]$ -squares.

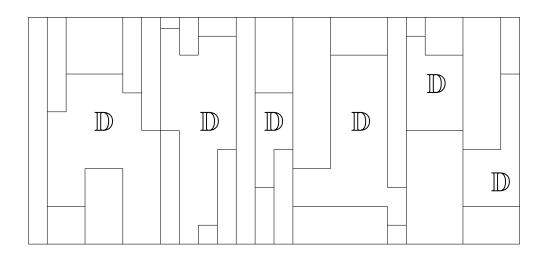


The pasting diagram has a shape as in

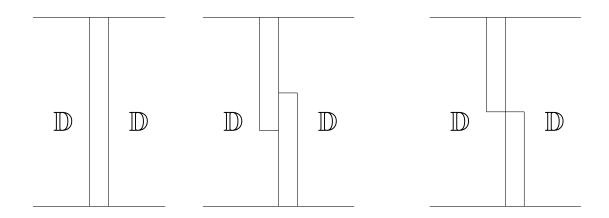


Step 2: Horizontally compose $B \boxtimes [n]$ -squares

Horizontally compose the $\mathbf{B} \boxtimes [n]$ -squares where possible, to obtain a pasting diagram as in

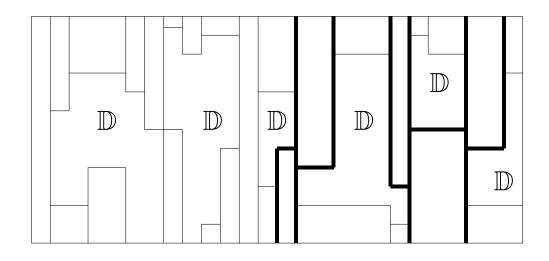


Note: The \mathbb{D} -regions are separated by configurations of the following three forms:



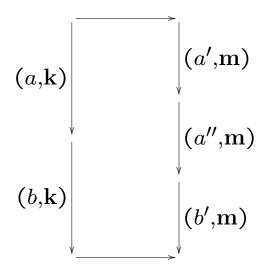
Step 3: Separation Removal

Separation Removal I: Clusters

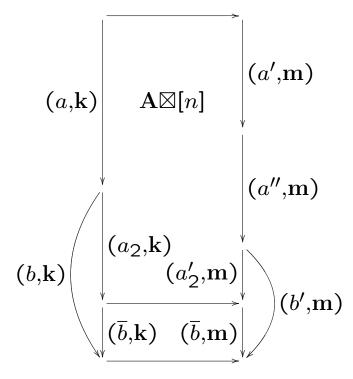


Note: any vertical arrow shared by two neighbouring columns in a cluster is of the form (a, \mathbf{k}) .

Assume that the left-most column of the cluster is part of the bottom layer. Then it is of the form

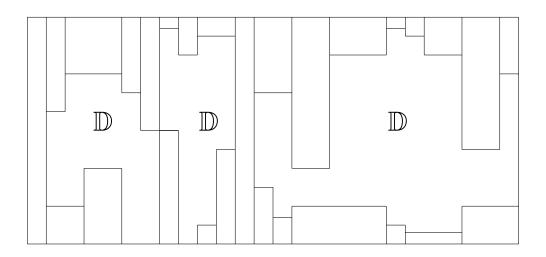


Use (FRC) to refactor this:



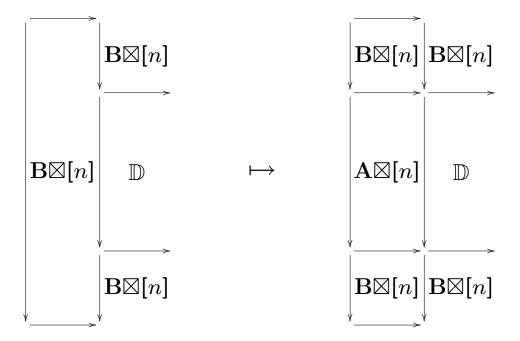
This will disconnect the neigbouring columns or turn them into touching columns.

The resulting pasting diagram is of the form

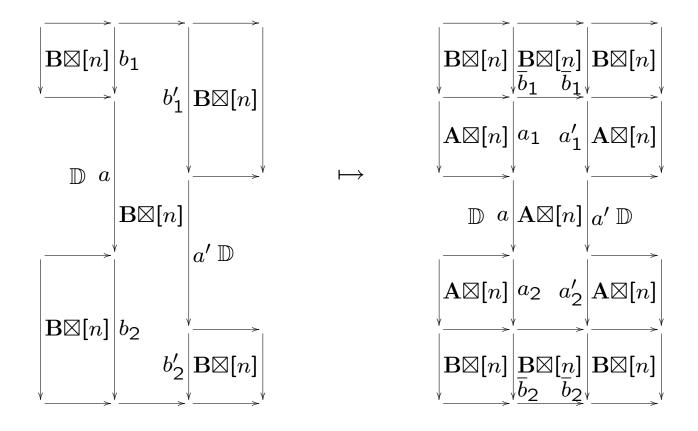


Separation Removal II: Full Height Columns

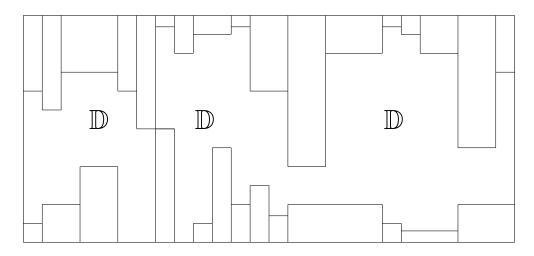
On the side of the diagram:



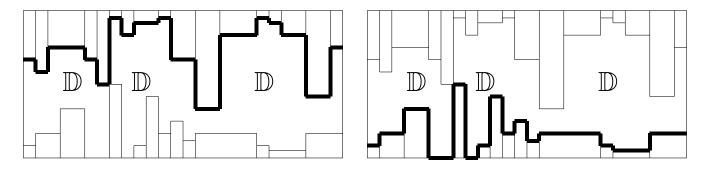
In the middle of the diagram:



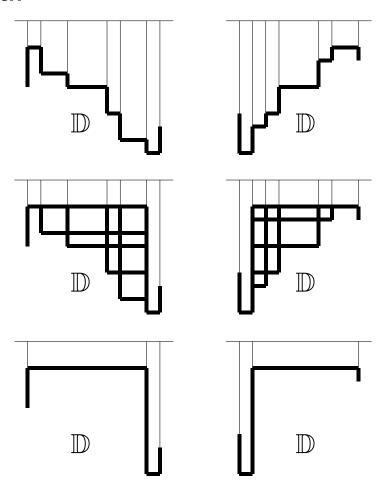
The resulting pasting diagram is of the form:



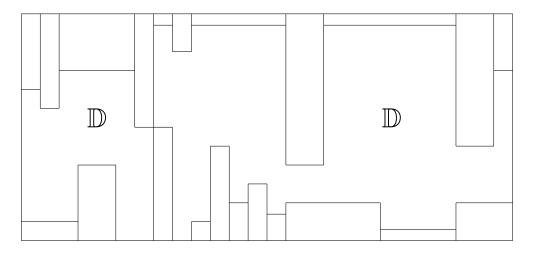
Note the boundaries of the \mathbb{D} -region:



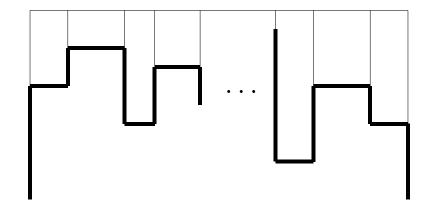
Straighten the boundaries I: Staircase removal



The resulting pasting diagram will be of the following form:

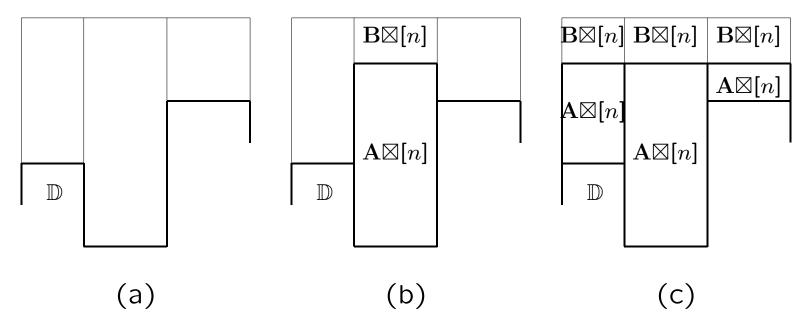


Straighten the boundaries II: Minima removal



- Boundary minima:

- Other local minima:



Conclusion: Squares of \mathbb{P} have two forms:

1. A square

$$(B, \mathbf{k}) \xrightarrow{(B, s_{m,k})} (B, \mathbf{m})$$

$$(f, \mathbf{k}) \downarrow \qquad \qquad \downarrow (f, \mathbf{m})$$

$$(B', \mathbf{k}) \underset{B', s_{m,k}}{\longrightarrow} (B', \mathbf{m})$$

in $Sq(B \boxtimes [n]) \setminus Sq(A \boxtimes [n])$.

2. A vertical path of squares

$$\delta \in \operatorname{Sq} \mathbb{D}$$

$$\delta \qquad \beta_1, \beta_2 \in \operatorname{Sq} (\mathbf{B} \boxtimes [n]) \backslash \operatorname{Sq} (\mathbf{A} \boxtimes [n])$$
or vertical identity squares