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Motivation

When do we consider two categories A and

B the same?

Two different possibilities:

1) If there is a functor F : A → B such that

NF : NA → NB is a weak homotopy equiva-

lence.

2) If there is a fully faithful and essentially sur-

jective functor F : A → B.

2) ⇒ 1)
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Motivation

Often one would like to invert the weak equiva-

lences and have MorHoC(D, E) be a set. Model

structures enable one to do this.

Theorem 1 (Thomason 1980) There is a model

structure on Cat where F is a weak equivalence

if and only if NF is a weak equivalence. Fur-

ther, this model structure is Quillen equivalent

to SSet, and hence also Top.

Theorem 2 (Joyal-Tierney 1991) There is a

model structure on Cat where F is a weak

equivalence if and only if F is an equivalence

of categories.

In this talk we consider similar questions for

DblCat. Since DblCat can be viewed in so

many ways, there are many possible model

structures.
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Why are model structures on DblCat
of interest?

1. Model categories have found great utility

in the investigation of (∞,1)-categories.

Theorem 3 (Bergner, Joyal-Tierney, Rezk,...)

The following model categories are Quillen equiv-

alent: simplicial categories, Segal categories,

complete Segal spaces, and quasicategories.

So we can expect them to also be of use in an

investigation of iterated internalizations.

2. DblCat is useful for making sense of con-

structions in Cat: calculus of mates, adjoining

adjoints, spans (Dawson, Paré, Pronk, Gran-

dis)

3. Parametrized Spectra (May-Sigurdsson, Shul-

man)
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Double Categories

Definition 1 (Ehresmann 1963) A double cat-

egory D is an internal category (D0, D1) in Cat.

Definition 2 A small double category D con-

sists of

a set of objects,

a set of horizontal morphisms,

a set of vertical morphisms, and

a set of squares with source and target as fol-

lows

A
f

// B A

j
��

A
f

//

j
��

α

B

k
��

C C g
// D

and compositions and units that satisfy the

usual axioms and the interchange law.
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Examples of Double Categories

1. Any 2-category is a double category with

trivial vertical morphisms.

2. If C is a 2-category, then Ehresmann’s dou-

ble category of quintets QC has

Sq QC :=


A

f
//

j
��

α

B

k
��

C g
// D

∣∣∣∣∣∣ A

k◦f
""

g◦j

<<Dα
��

 .

3. Rings, bimodules, ring maps, and twisted

maps.

4. Categories, functors, profunctors, certain

natural transformations.
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Nerves of Double Categories

Horizontal Nerve:

Nh : DblCat → [∆op,Cat]

(NhD)n = (D1) t×s (D1) t×s · · · t×s (D1)︸ ︷︷ ︸
n copies

Obj : // // // // // // //

Mor :
//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��// // // // // // //

Proposition 4 (FPP) Nh admits a left adjoint

ch called horizontal categorification.
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Nerves of Double Categories

Double Nerve:

Nd : DblCat → [∆op ×∆op,Set]

(NdD)m,n = DblCat([m] � [n], D)

//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��//

��

//

��

//

��

//

�� ��

//

��

// //

�� ��// // // // // // //

Proposition 5 (FPP) Nd admits a left adjoint

cd called double categorification.
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Model Categories

A model category is a complete and cocom-

plete category C equipped with three subcat-

egories:

1. weak equivalences

2. fibrations

3. cofibrations

which satisfy various axioms. Most notably:

given a commutative diagram

A

cofibration i
��

// X

p fibration
��

B // Y

in which at least one of i or p is a weak equiv-

alence, then there exists a lift h : B //X .
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Examples of Model Categories
It suffices to give weak equivalences and fibra-
tions, since they determine together the cofi-
brations.

1. Top with π∗-isomorphisms and Serre fibra-
tions.

2. Cat where F is a weak equivalence or fi-
bration if and only if Ex2NF is so (Thoma-
son).

3. Cat with equivalences of categories and
iso-fibrations (Joyal-Tierney).

4. [∆op,Cat] with levelwise Thomason weak
equivalences and levelwise Thomason fi-
brations.

5. [∆op,Cat] with levelwise equivalences of cat-
egories and levelwise “iso-fibrations”.
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Model Structures on 2-Cat

Theorem 6 (Worytkiewicz, Hess, Parent, Tonks)

There is a model structure on 2-Cat in which

a 2-functor F is a weak equivalence or fibration

if and only if Ex2N2F is.

Theorem 7 (Lack) There is a model struc-

ture on 2-Cat in which the weak equivalences

are 2-functors that are surjective on objects up

to equivalence and locally an equivalence, and

the fibrations are “equiv-fibrations”.
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Results on Transfer

Theorem 8 (FPP) The levelwise Thomason

model structure on [∆op,Cat] transfers to a

cofibrantly generated model structure on DblCat

via horizontal categorification and horizontal

nerve.

[∆op,Cat] ⊥

ch
''

DblCat

Nh

hh

F : D //E is a weak equivalence or fibration if

and only if NhF is so.
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Results on Transfer

Theorem 9 (FPP) The levelwise categorical

model structure on [∆op,Cat] transfers to a

cofibrantly generated model structure on DblCat

via horizontal categorification and horizontal

nerve.

[∆op,Cat] ⊥

ch
''

DblCat

Nh

hh

F : D //E is a weak equivalence or fibration if

and only if NhF is so.

Theorem 10 (FPP) The Reedy categorical struc-

ture on [∆op,Cat] cannot transfer to DblCat.
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Main Technical Lemma

For the pushouts j1 and j2

(cSd2Λk[m]) � [n] //

i�1[n]
��

D

j1
��

(cSd2∆[m]) � [n] // P1

∗� [n] //

i�1[n]
��

D
j2

��

I � [n] // P2

in DblCat the morphisms Nh(j1) and Nh(j2)

are weak equivalences in the respective model

structures on [∆op,Cat].
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Internal Point of View

Everaert, Kieboom, Van der Linden have shown

that a Grothendieck topology on a good cat-

egory C induces a model structure on Cat(C)
under certain hypotheses. We have two appli-

cations to C = Cat so that Cat(C) = DblCat.

Grothendieck Topologies are of use because

essential surjectivity does not make sense in-

ternally, but fully faithfullness does:

Definition 3 (Bunge-Paré) An internal func-

tor (F0, F1) : (A0, A1) //(B0, B1) is fully faith-

ful if

A1
F1 //

(s,t)
��

B1

(s,t)
��

A0 ×A0 F0×F0
// B0 ×B0

is a pullback square in C.
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Essential T -Surjectivity

Let T be a Grothendieck topology on Cat, and

ET the class of functors p such that YT (p) is epi

where YT : Cat → Sh(Cat, T ) is the composite

of the Yoneda embedding with sheafification.

ET is the class of T -epimorphisms.

Definition 4 A double functor F : A //B is es-

sentially T -surjective if the functor

(PF )0 // B0

(a, f : b
∼= //F0a) 7→ b

is a T -epimorphism.

Definition 5 A T -equivalence is a fully faithful

double functor that is essentially T -surjective.
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Model Structures on Categories
of Internal Categories

Theorem 11 (Everaert, Kieboom, Van der Lin-
den)

1. Let C be a finitely complete category such
that Cat(C) is finitely complete and finitely
cocomplete and T is a Grothendieck topol-
ogy on C. If the class we(T ) of T -equivalences
has the 2-out-of-3 property and C has enough
ET -projectives, then

(Cat(C), fib(T ), cof(T ), we(T ))

is a model category.

2. An internal category (A0, A1) is cofibrant
if and only if A0 is ET -projective.

We apply this to C = Cat so that Cat(C) =
DblCat.
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Results on Cat(Cat) = DblCat

Theorem 12 (FPP) Let τ be the Grothendieck

topology where a basic cover of B ∈ C is

{F : A → B}

such that (NF )k is surjective for all k ≥ 0.

Then τ induces a model structure on DblCat.

Theorem 13 (FPP) The model structure in-

duced by τ is the same as the transferred lev-

elwise categorical structure from [∆op,Cat].
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Results on Cat(Cat) = DblCat

Theorem 14 (FPP) Let τ ′ be the Grothendieck

topology where a basic cover of B ∈ C is

{F : A → B}

such that F is surjective on objects and full.

Then τ ′ induces a model structure on DblCat.

Corollary 15 (FPP) In this model structure,

a double category D is cofibrant if and only if

D0 is projective with respect to functors that

are surjective on objects and full.

Remark 16 Embed 2-Cat vertically in DblCat.

Then a 2-category is cofibrant in Lack’s model

structure if and only if it is cofibrant in the τ ′

structure.
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2-Monads and 2-Cat

The adjunction

Cat(Graph) ⊥
))

Cat(Cat)
ii

is monadic and induces a 2-monad on Cat(Graph)

whose algebras are double categories.

Proposition 17 (FPP) The model structure

on DblCat induced by this 2-monad as pre-

scribed by Lack is the τ ′ model structure.

Proposition 18 (FPP) Embed 2-Cat vertically

in DblCat. If a 2-functor is a cofibration in

DblCat, then it is a cofibration in 2-Cat.
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Summary of Main Results

We have transferred the two levelwise model

structures on [∆op,Cat] via

[∆op,Cat] ⊥

ch
''

DblCat

Nh

hh
.

We have shown that the Reedy categorical

structure does not transfer.

We also constructed the transferred categori-

cal model structure using the methods of Ev-

eraert, Kieboom, and Van der Linden, and

obtained another structure from categorically

surjective functors.
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