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Motivation

Simplicial sets are lovely objects about which
algebraic topologists know a lot. If something is
described as a simplicial set, it is ready to be
absorbed into topology. Or, in other words, no matter
which definition of weak ω-category eventually
becomes dominant, it will be valuable to know its
simplicial nerve.

Ross Street, 2003

Dominic Verity Weak Complicial Sets and Internal Quasi-Categories



Weak Complicial Sets
Internal Quasi-Categories

Nerves of ω-Categories
Complicial Sets
Towards Weak ω-Categories

Nerves of (Strict) ω-Categories

We start by assuming that everyone is familiar with the
categories ∆ and ∆+ of finite ordinals, Simp = [∆op, Set] of
simplicial sets and ω-Cat of (strict) ω-categories.

To construct nerves of ω-categories, Ross Street started by
constructing a functor O : ∆ // ω-Cat which maps the ordinal
[n] to the “free ω-category on the n-simplex”, which he called
the nth oriental.

To this he applied Kan’s construction to obtain an adjoint pair:

ω-Cat
N

11⊥ Simp
F

qq

Here N is called the ω-categorical nerve and F is the
corresponding ω-categorical realisation.
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ω-Categorical Nerves in Pictures

For example, a 3-simplex in the nerve of a ω-category C may
be drawn as:

1 // 2

��5
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55
55

0

DD							

77pppppppppppppppp // 3

⇑
⇐

1 //

''NNNNNNNNNNNNNNNN 2

��5
55

55
55

0

DD							
// 3

⇑
⇒

_*4

Wherein single arrows are 1-cells, double arrows are 2-cells
and so forth.
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A 4-Simplex in N(C)
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Some Simplicial Notation

∆[n] the standard n-simplex is simply the representable in
Simp on [n] ∈ ∆.

∂∆[n] the boundary of ∆[n] is its simplicial subset
generated by its (n − 1)-dimensional faces
δi : [n − 1] // [n] (i = 0, 1, 2, ..., n).

Λk [n] the standard (n − 1)-dimensional k-horn is the
simplicial subset of ∆[n] generated by the faces δi for
i ∈ [n] \ {k}.

We say that an n-simplex x : O[n] // C of N(C) is thin if it
maps the unique non-trivial n-cell of O[n] to an identity.
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Horn Filling in ω-Categorical Nerves

We might think of a simplicial map h : Λk [n] // N(C), known
as a horn in N(C), as a “co-cycle problem” in C and ask the
question can we “solve” this problem by filling the horn with a
thin simplex?

Λk [n]
� � ⊆s //

h ##GG
GG

GG
GG

∆[n]

thin{{
N(C)
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Solving These Cocycle Conditions

In general, to solve such a cocycle condition we must insist that
certain of the cells in our horn should be identities (or at least
equivalences).
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Solving These Cocycle Conditions

In general, to solve such a cocycle condition we must insist that
certain of the cells in our horn should be identities (or at least
equivalences).

For instance here is a 1-dimensional 0-horn in C
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Solving These Cocycle Conditions

In general, to solve such a cocycle condition we must insist that
certain of the cells in our horn should be identities (or at least
equivalences).

To solve it we must insist that two of its cells are identities.
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Solving These Cocycle Conditions

In general, to solve such a cocycle condition we must insist that
certain of the cells in our horn should be identities (or at least
equivalences).

Filling this horn pastes together the diagram on the LHS and
puts the resulting 2-cell in the free space on the RHS.
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Complicial Horns

Ross also provides us with a complicial decomposition of each
oriental O[n].

This allows us to prove that the horn h : Λk [n] // N(C) has a
(unique) solution if the simplex h(α) ∈ N(C) is thin for each
simplex α of Λk [n] whose vertices include those in
[n] ∩ {k − 1, k , k + 1}.

A horn which satisfies this condition is said to be complicial.

We might say that, under this condition, the horn h has a
unique thin filler .
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Keeping Track of Thin Simplices

A stratified simplicial set is a simplicial set X equipped with a
specified subset tX ⊆ X of thin simplices satisfying the
conditions:

no 0-simplex is thin, and
all degenerate simplices are thin.

A simplicial map f : X // Y between stratified sets is said to
be stratified if it preserves thinness - that is if f (tX ) ⊆ tY . We
get a category (quasi-topos) of stratified sets and stratified
maps called Strat.

We implicitly promote every simplicial set to a stratified set by
giving it the minimal stratification, in which only the degenerate
simplices are thin.
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Complicial Horns

The nerve N(C) has a canonical stratification under which
whose elements are the thin simplices identified before. This
stratification augments the nerve functor to a functor
N : ω-Cat // Strat.

So if we let ∆k [n] denote the standard k-complicial n-simplex
whose stratification makes thin all of those simplices identified
as “in need of inversion” by Ross’ decomposition theorem ...

... and we also let Λk [n] denote the standard (n − 1)-diml
k-horn, whose underlying simplicial set it the usual k -horn and
which inherits its stratification from ∆k [n] ...

... then we can rephrase the unique horn filler condition given
earlier, to say that any stratified simplicial map Λk [n] // N(C)
has a unique extension along the inclusion Λk [n] � � // N(C).
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Complicial Sets

With a little effort, we may show that the nerve functor
N : ω-Cat // Strat is full and faithful.

A deeper analysis also reveals a simple characterisation of the
stratified simplicial sets in the replete image of this functor.

They are precisely the complicial sets, which were introduced
by John Roberts’ in his work on local cohomology theories.

These satisfy three axioms:
All thin 1-simplices are degenerate.
Unique fillers for (inner) complicial horns.
A thinness composition axiom (which we need not dwell on
here).
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Quasi-categories

So we know that strict ω-categories live quite happily in Strat -
how about weak ω-categories?

We already have a candidate model for the theory of those
weak ω-categories in which all cells are equivalences above
dimension 1 - Joyal’s quasi-categories.

These are simply simplicial sets A satisfying the property that
they are injective with respect to inner horn inclusions

Λk [n]
� � ⊆r //

h ""EE
EE

∆[n]

∃h̄}}
A

warning! we’ve dropped uniqueness

We know from Joyal’s work that much of category theory may
be weakened and generalised to the quasi-categorical setting.
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Street’s Idea

In fact, in 1987 Street had already proposed that we might get a
general theory of weak ω-categories from complicial sets by:

dropping the first of the complicial set axioms and
weakening the second one by insisting only on existence
(not unique existence) of thin fillers for complicial horns.

In this approach the thin simplices of a stratified simplicial set
are no longer to be regarded as equalities but as a (chosen
class of) equivalences.
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Weak Complicial Sets

We need to be a little careful with Street’s idea, since the
original complicial set notion says nothing about fillers for outer
horns. In that context

Degeneracy Condition+ Inner Horn Fillers ⇒ Outer Horn Fillers

To compensate for the loss of the degeneracy condition we ask
for (non-unique) fillers for outer horns as well.

We thus arrive at the definition of structures called weak
complicial sets, in which:

Fillers for complicial horns provide weakened, non-unique
composition / boundary mutation operations on simplices.
Thinness composition axioms ensure that equivalences
compose.
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Some Weak Complicial Sets

A simplicial set is a Kan complex iff its maximal
stratification, in which all simplices are thin, makes it into a
weak complicial set.

A quasi-category may be given a canonical stratification
under which it becomes a weak complicial set. We do this
by making thin all simplices above dimension 1 and
making thin the simplicial equivalences at dimension 1.

Complicial sets (and thus ω-categories) are all weak
complicial sets, amongst which they may be characterised
by a simple axiom relating thinness and degeneracy.

The homotopy coherent nerve of a category enriched in
weak complicial sets (under the cartesian product) is also
a weak complicial set.
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Slogan

Somewhat facetiously, at this stage, our slogan might be:

Quasi-categories+Strict ω-Categories ∼ Weak Complicial Sets

Even more speculatively:

Weak Complicial Sets ∼ Weak ω-Categories

Indeed, to even get the second of these slogans off the ground
we will need to add one last ingredient.

We need to ensure that the thin simplices of a simplicial weak
ω-category include every simplex that could possibly be
regarded as an equivalence.
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The Equivalence Property of Simplicial Weak
ω-Categories

Let E denote the generic simplicial equivalence, that is to say
the nerve of the generic isomorphism category I.

For X ∈ Strat let thn(X ) ∈ Strat denote the stratified simplicial
set obtained from X by making thin all of its simplices above
dimension n.

Let ⊕ denote the simplicial join bifunctor extended in an
appropriate way to Strat - this extends the ordinal sum on ∆ via
Day’s convolution formula.

Then we say that a weak complicial set is a simplicial weak
ω-category iff it is injective with respect to each inclusion

∆[n]⊕ th2(E)⊕∆[m] �
� // ∆[n]⊕ th1(E)⊕∆[m]
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The Lax Gray-Tensor Product

The category Strat supports a tensor product which is an
analogue of the lax Gray-tensor product, in the precise sense
that if

⊗ denotes both the lax Gray-tensor product on ω-Cat and
this simplicial lax Gray-tensor in Strat, and
F : Strat // ω-Cat denotes the realisation functor left
adjoint the nerve construction,

then F is a strong monoidal functor from (Strat,⊗, 1) to
(ω-Cat,⊗, 1).
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Constructing the Simplicial Lax Gray-Tensor

The simplicial lax Gray-tensor of stratified simplicial sets
X , Y ∈ Strat is constructed by taking the cartesian product of
the underlying simplicial sets |X | and |Y | in Simp and giving it a
stratification which is a suitable sub-stratification of that of the
stratified product X × Y .

The category Strat hosts a canonical complicial Quillen model
structure, whose fibrant objects are precisely the simplicial
weak ω-categories. Most importantly, this model structure is
monoidal with respect to ⊗.
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Closures for ⊗

Unfortunately, the bifunctor ⊗ is not co-continuous in each
variable, so it does not make Strat into a biclosed category.

However, we can show that if A ∈ Strat satisfies the third of the
compliciality axioms then we can form left and right closures
laxl(X , A) and laxr (X , A) for any stratified set X .

The left closure laxl(X , A) can be thought of as a simplicial
generalisation of the bicategory of homomorphisms, lax natural
transformations and modifications between any two
bicategories.

The fact that the complicial Quillen model structure on Strat is
monoidal immediately implies that laxl(X , A) (resp. laxr (X , A))
is a simplicial weak ω-category whenever A is.
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The Internal Quasi-Category of Prisms

Given a weak complicial set (or a simplicial weak ω-category)
A, we can form the following simplicial object in Strat

laxl(th1(∆[0]), A) // laxl(th1(∆[1]), A)
oo
oo

//
// laxl(th1(∆[2]), A)oo

oo

oo

which we denote by Pl(A).

We might think of this as the (internal) nerve of the complicial
set, whose n-arrows are simply the (left) prisms of A with cross
section ∆[n].

From the monoidality of the complicial Quillen model structure
we already know that each stratified set Pl(A)([i]) is a weak
complicial set (or simplicial weak ω-category), but we can
derive much more...

Dominic Verity Weak Complicial Sets and Internal Quasi-Categories



Weak Complicial Sets
Internal Quasi-Categories

Lax Gray-Tensor Products
The Category Theory of Weak Complicial Sets
A Conjecture

The Internal Quasi-Category of Prisms

Given a weak complicial set (or a simplicial weak ω-category)
A, we can form the following simplicial object in Strat

laxl(th1(∆[0]), A) // laxl(th1(∆[1]), A)
oo
oo

//
// laxl(th1(∆[2]), A)oo

oo

oo

which we denote by Pl(A).

We might think of this as the (internal) nerve of the complicial
set, whose n-arrows are simply the (left) prisms of A with cross
section ∆[n].

From the monoidality of the complicial Quillen model structure
we already know that each stratified set Pl(A)([i]) is a weak
complicial set (or simplicial weak ω-category), but we can
derive much more...

Dominic Verity Weak Complicial Sets and Internal Quasi-Categories



Weak Complicial Sets
Internal Quasi-Categories

Lax Gray-Tensor Products
The Category Theory of Weak Complicial Sets
A Conjecture

The Internal Quasi-Category of Prisms

Given a weak complicial set (or a simplicial weak ω-category)
A, we can form the following simplicial object in Strat

laxl(th1(∆[0]), A) // laxl(th1(∆[1]), A)
oo
oo

//
// laxl(th1(∆[2]), A)oo

oo

oo

which we denote by Pl(A).

We might think of this as the (internal) nerve of the complicial
set, whose n-arrows are simply the (left) prisms of A with cross
section ∆[n].

From the monoidality of the complicial Quillen model structure
we already know that each stratified set Pl(A)([i]) is a weak
complicial set (or simplicial weak ω-category), but we can
derive much more...

Dominic Verity Weak Complicial Sets and Internal Quasi-Categories



Weak Complicial Sets
Internal Quasi-Categories

Lax Gray-Tensor Products
The Category Theory of Weak Complicial Sets
A Conjecture

P(A) as an Internal Quasi-Category

We may show that each inclusion th1(Λ
k [n]) � � j // th1(∆[n]) is a

trivial cofibration in the complicial model structure.

So applying monoidality we see that the Leibniz tensor of that
map with any cofibration (inclusion) U � � i // V in Strat

(th1(Λ
k [n])⊗ V ) ∪ (th1(∆[n])⊗ U)

� � j⊗l i // th1(∆[n])⊗ V

is also a trivial cofibration. It follows therefore that this map has
the left lifting property with respect to the weak complicial set A.

Taking duals it follows that each simplicial map
− ◦ i : Strat(V , Pl(A)(−)) // Strat(U, Pl(A)(−)) has the right
lifting property with respect to Λk [n] � � // ∆[n].

In other words, this simplicial map is an inner or mid anodyne
extension.
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Pl(A) as an Internal Quasi Category

We might think of the property developed in the last slide as the
homotopically correct, representable internalisation (to Strat) of
the quasi-category notion.

With a few minor modifications, we may apply this internal
quasi-categoricity definition to simplicial objects in any left
proper Quillen model category.

Beyond internal quasi-categoricity, we can use similar
arguments to show that P(A) is also:

A strong internal quasi-category, in the sense that each
− ◦ i : Strat(V , Pl(A)(−)) // Strat(U, Pl(A)(−)) also
admits liftings of simplicial equivalences and
A Reedy cofibrant simplicial object.
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With a few minor modifications, we may apply this internal
quasi-categoricity definition to simplicial objects in any left
proper Quillen model category.

Beyond internal quasi-categoricity, we can use similar
arguments to show that P(A) is also:

A strong internal quasi-category, in the sense that each
− ◦ i : Strat(V , Pl(A)(−)) // Strat(U, Pl(A)(−)) also
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Internal Quasi-Categories in a Model Category

To do quasi-category theory in a model category M we will
need to assume extra technical conditions on that category.

For example, it should at least be combinatorial so that we can
easily build Quillen model structures on categories constructed
from M.

We also require a bunch of left “properness” properties.

For our purposes here we’ll assume that all objects in M are
cofibrant. Then we’ll assume that the map : B ∨A C // D
induced by applying the pushout property to a commutative
square of cofibrations is itself a cofibration. Finally, we’ll
assume that all split monomorphism are cofibrations.

These last two properties ensure that all pointwise cofibrations
in M are actually Reedy cofibrations.
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Internal Quasi-Category Theory

As an example of how we can do genuine (quasi-)category
theory with internal quasi-categories, let M be a model
category as in the last slide and suppose that A is an internal
quasi-category in M.

Now Simp(M) is canonically enriched in simplicial sets, and if
X ∈ Simp and A ∈ Simp(M) then their cotensor X t A is given
by the weighted limit formula (X t A)(n) = lim(X ×∆[n], A).

Now, we say that a simplicial map p : E // A is a left discrete
fibration iff the canonical map

∆[1] t E // (∆[1] t A) d1×p E

is a Reedy trivial fibration.
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Some Properties of Left Discrete Fibrations

The slice category Simp(M)/A has a canonical (strict)
enrichment over Simp(M). Under this enrichment, if (E, p)
is a left discrete fibration then each
Simp(M)/A((B, f ), (E, p)) is quasi-discrete - where we say
that C is quasi-discrete if d1 : ∆[1] t C // C is a reedy
weak equivalence).

If a : 1 // A is an arrow in Simp(M) then the
representable p : A ↓ a // A formed via the pullback

A ↓ a //

��

∆[1] t A
d1

��

d0

// A

1 a
// A

is a left discrete fibration
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The Yoneda Lemma

The unique map ! : A ↓ a // 1 has a right inverse
t : 1 // A ↓ a which picks out the identity on a.

We have a map ε : ∆[1] · (A ↓ a) // A ↓ a which
evaluates to the identity on A ↓ a at 0 ∈ ∆[1] and to the
constant function mapping to a at 1 ∈ ∆[1].

If (E, p) is an arbitrary left discrete fibration, then
Simp(M)/A(−, (E, p)) maps the above data to a homotopy
equivalence.

Notice also that Simp(M)/A((1, a), (E, p)) is isomorphic to
the pullback Ea of (E, p) along a.

Finally, we find that the map
Simp(M)/A((A ↓ a, p0), (E, p)) // Ea, induced by
pre-composition with the map t , is a Reedy trivial fibration.
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A Coherence Result

Now enrich Simp(M)/A over M rather than Simp(M), simply
by taking the objects of 0-simplices of each of the homsets of
this latter enrichment.

Then the Yoneda lemma, along with a few facts about Reedy
trivial fibrations, tells us that the following internal
quasi-categories are Reedy weakly equivalent:

The full subcategory of the genuine enriched category
Simp(M)/A on the representables p : A ↓ a // A, and

The internal quasi-category obtained by “pulling back” A to
the discrete set of points of its object of 0-simplices A([0]).

Compare this with the Gordon, Power and Street proof of
coherence for tricategories.
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A Conjecture

Based upon our experience with (strict) complicial sets, and the
result of the last slide, we might pose the following conjecture:

Every simplicial weak ω-category A is homotopy equivalent to
the homotopy coherent nerve of the Strat-enriched category of
representables over the internal quasi-category of prisms P(A).
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