Cartesian Bicategories as Symmetric Monoidal Bicategories

R.J. Wood
with A. Carboni, G.M. "Max" Kelly, and R.F.C. Walters
Mathematics, Dalhousie University, Halifax, Canada
CT07
2007JN17-23

The Axioms

(All bicategories are normal) A bicategory \mathbf{B} is precartesian if

- $\mathbf{M}=\operatorname{Map} \mathbf{B}$ has \times and 1, products (as a bicategory)
- Each $\mathbf{B}(X, A)$ has \wedge and T, products

The Axioms

(All bicategories are normal) A bicategory \mathbf{B} is precartesian if

- $\mathbf{M}=\operatorname{Map} \mathbf{B}$ has \times and 1, products (as a bicategory)
- Each $\mathbf{B}(X, A)$ has \wedge and T, products

A precartesian bicategory \mathbf{B} admits lax functors

$$
R \otimes S:=p^{*} R p \wedge r^{*} S r \quad X \times \mathbf{B} \xrightarrow{\otimes} \mathbf{B} \stackrel{I}{\longleftarrow}
$$

The Grothendieck Bicategory

The Grothendieck Bicategory

- G has \times and 1 , products preserved by ∂_{0} and ∂_{1}
- On objects of \mathbf{G}, \times is \otimes

The Grothendieck Bicategory

- \mathbf{G} has \times and 1 , products preserved by ∂_{0} and ∂_{1}
- On objects of G, \times is \otimes

A precartesian bicategory \mathbf{B} is cartesian if

- \otimes and I are pseudofunctors (iff $\tilde{\otimes}:(T \otimes U)(R \otimes S) \rightarrow T R \otimes U S$ $\otimes^{\circ}: 1_{X \otimes Y} \rightarrow 1_{X} \otimes 1_{Y}$ and $I^{\circ}: 1_{1} \rightarrow \top$ are invertible)

Note that, in general, \mathbf{B} does not have \times and 1, products

Why Cartesian Bicategories?

Good axiom base to characterize bicategories of:

- (Carboni \& Walters 1987 (locally ordered case))
- relations in a regular category
- ordered objects and order ideals in an exact category
- additive relations in an abelian category
- relations in a Grothendieck topos
- (CKWW @ CT06) spans in a category with finite limits
- profunctors in an elementary topos

Why Cartesian Bicategories?

Good axiom base to characterize bicategories of:

- (Carboni \& Walters 1987 (locally ordered case))
- relations in a regular category
- ordered objects and order ideals in an exact category
- additive relations in an abelian category
- relations in a Grothendieck topos
- (CKWW @ CT06) spans in a category with finite limits
- profunctors in an elementary topos

Observe that a cartesian bicategory is a bicategory with properties ? What is the derived structure provided by the pseudofunctors

$$
B \times B \xrightarrow{\otimes} B \stackrel{I}{\longleftarrow} \mathbf{1}
$$

Cartesian Bicategories as Symmetric Monoidal Bicategories

For a cartesian B, if

$$
\mathbf{G} \times \mathbf{G} \xrightarrow{\times} \mathbf{G} \leftarrow^{1} \mathbf{1}
$$

underlies symmetric monoidal structure then

$$
B \times B \xrightarrow{\otimes} B<^{\prime} \mathbf{1}
$$

underlies symmetric monoidal structure (straightforward)

Cartesian Bicategories as Symmetric Monoidal Bicategories

For a cartesian B, if

$$
\mathbf{G} \times \mathbf{G} \xrightarrow{\times} \mathbf{G} \leftarrow^{1} \mathbf{1}
$$

underlies symmetric monoidal structure then

$$
B \times B \xrightarrow{\otimes} B<^{\prime} \mathbf{1}
$$

underlies symmetric monoidal structure (straightforward)
? Is a bicategory with \times and 1, products symmetric monoidal

A bicategory \mathbf{A} with \times and 1, products

- For each pair (X, Y) of objects there is an object $X \times Y$
- and arrows $p_{X, Y}: X \times Y \rightarrow X$ and $r_{X, Y}: X \times Y \rightarrow Y$
- such that, for each A,

$$
\mathbf{A}(A, X \times Y) \xrightarrow{\langle\mathbf{A}(A, p), \mathbf{A}(A, r)\rangle} \mathbf{A}(A, X) \times \mathbf{A}(A, Y)
$$

is an equivalence of categories

- There is an object 1 such that, for each A,

$$
\mathbf{A}(A, 1) \xrightarrow{!} \mathbf{1}
$$

is an equivalence of categories

A monoidal bicategory is a one-object tricategory

- $X \otimes Y$ pseudofunctorial and I
- $a_{X, Y, Z}:(X \otimes Y) \otimes Z \rightarrow X \otimes(Y \otimes Z)$ pseudonatural equivalence
- $I_{X}: I \otimes X \rightarrow X$ pseudonatural equivalence
- $r_{X}: X \otimes I \rightarrow X$ pseudonatural equivalence
- $\pi_{W, X, Y, Z}:$ Wa.a.aZ \rightarrow a.a invertible modification
- $\mu_{X, Y}: X I . a \rightarrow r Y$ invertible modification

A monoidal bicategory is a one-object tricategory

- $X \otimes Y$ pseudofunctorial and I
- $a_{X, Y, Z}:(X \otimes Y) \otimes Z \rightarrow X \otimes(Y \otimes Z)$ pseudonatural equivalence
- $I_{X}: I \otimes X \rightarrow X$ pseudonatural equivalence
- $r_{X}: X \otimes I \rightarrow X$ pseudonatural equivalence
- $\pi_{W, X, Y, Z}:$ Wa.a.aZ \rightarrow a.a invertible modification
- $\mu_{X, Y}: X I . a \rightarrow r Y$ invertible modification

A symmetric monoidal bicategory is a one-object, one-arrow, one-2-cell, one-3-cell, weak 6-category

- $s_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ pseudonatural equivalence
- $\rho_{X, Y, Z}: a . s . a \rightarrow Y$ s.a.sZ invertible modification
- $\lambda_{X, Y, Z}: a^{*} . s . a^{*} \rightarrow s Y$.a*. $X s$ invertible modification
- $\sigma_{X, Y}: 1_{\otimes} \rightarrow s_{Y, X} \cdot s_{X, Y}$ invertible modification

The modifications are to satisfy $3+4+2+1$ equations (!Rather a lot to dig out of a rather weak universal property)

A bicategory \mathbf{A} has finite products if

- For each finite I and $X=\left(X_{i}\right)_{i \in I}$ in $|\mathbf{A}|$, there is P in $|\mathbf{A}|$
- and $p=\left(p_{i}: P \rightarrow X_{i}\right)_{i \in I}$
- such that, for each A,

$$
\mathbf{A}(A, P) \rightarrow \prod_{i \in I} \mathbf{A}\left(A, X_{i}\right)
$$

is an equivalence. (Call such p a product cone over X)
\mathbf{A} has finite products iff \mathbf{A} has \times and 1, products.

A bicategory \mathbf{A} has finite products if

- For each finite I and $X=\left(X_{i}\right)_{i \in I}$ in $|\mathbf{A}|$, there is P in $|\mathbf{A}|$
- and $p=\left(p_{i}: P \rightarrow X_{i}\right)_{i \in I}$
- such that, for each A,

$$
\mathbf{A}(A, P) \rightarrow \prod_{i \in I} \mathbf{A}\left(A, X_{i}\right)
$$

is an equivalence. (Call such p a product cone over X)
\mathbf{A} has finite products iff \mathbf{A} has \times and 1, products.
For each n, have a pseudofunctor

$$
\Pi_{n}: \mathbf{A} \times \cdots \times \mathbf{A}=\mathbf{A}^{n} \rightarrow \mathbf{A}
$$

Can write, say, $\Pi_{3}(X, Y, Z)=X \times Y \times Z$ without parentheses.

A bicategory \mathbf{A} has finite products if

- For each finite I and $X=\left(X_{i}\right)_{i \in I}$ in $|\mathbf{A}|$, there is P in $|\mathbf{A}|$
- and $p=\left(p_{i}: P \rightarrow X_{i}\right)_{i \in I}$
- such that, for each A,

$$
\mathbf{A}(A, P) \rightarrow \prod_{i \in I} \mathbf{A}\left(A, X_{i}\right)
$$

is an equivalence. (Call such p a product cone over X)
A has finite products iff \mathbf{A} has \times and 1, products.
For each n, have a pseudofunctor

$$
\Pi_{n}: \mathbf{A} \times \cdots \times \mathbf{A}=\mathbf{A}^{n} \rightarrow \mathbf{A}
$$

Can write, say, $\Pi_{3}(X, Y, Z)=X \times Y \times Z$ without parentheses. For $X=\left(X_{i}\right)_{i \in I}$, write $\mathbf{A}(X)=\mathbf{A}\left(\left(X_{i}\right)_{i \in I}\right)$ for the bicategory

- whose objects are the product cones over X
- $\left(b_{i}: B \rightarrow X_{i}\right) \rightarrow\left(c_{i}: C \rightarrow X_{i}\right)$ is $R: B \rightarrow C$ with $\mu_{i}: c_{i} R \xrightarrow{\sim} b_{i}$
- $\left(R, \mu_{i}\right) \rightarrow\left(S, \nu_{i}\right)$ is $\alpha: R \rightarrow S$ with $\nu_{i} \cdot\left(c_{i} \alpha\right)=\mu_{i}$.

There is a forgetful pseudofunctor $\mathbf{A}(X) \rightarrow \mathbf{A}$

KEY LEMMA: Each bicategory $\mathbf{A}(X)$ is biequivalent to $\mathbf{1}$. So ...

- the set of objects is not empty
- for any $\left(B, b_{i}\right),\left(C, c_{i}\right)$ there is an $\left(R, \mu_{i}\right):\left(B, b_{i}\right) \rightarrow\left(C, c_{i}\right)$
- for any $\left(R, \mu_{i}\right),\left(S, \nu_{i}\right): B \rightarrow C, \exists!R \xrightarrow{\alpha} S\left[\nu_{i} .\left(c_{i} \alpha\right)=\mu_{i}\right]$ every $\left(R, \mu_{i}\right) \rightarrow\left(S, \nu_{i}\right)$ invertible, every $\left(R, \mu_{i}\right):\left(B, b_{i}\right) \rightarrow\left(C, c_{i}\right)$ an equivalence in $\mathbf{A}(X)$ and hence in $\mathbf{A} \ldots$

KEY LEMMA: Each bicategory $\mathbf{A}(X)$ is biequivalent to $\mathbf{1}$. So ...

- the set of objects is not empty
- for any $\left(B, b_{i}\right),\left(C, c_{i}\right)$ there is an $\left(R, \mu_{i}\right):\left(B, b_{i}\right) \rightarrow\left(C, c_{i}\right)$
- for any $\left(R, \mu_{i}\right),\left(S, \nu_{i}\right): B \rightarrow C, \exists!R \xrightarrow{\alpha} S\left[\nu_{i} .\left(c_{i} \alpha\right)=\mu_{i}\right]$ every $\left(R, \mu_{i}\right) \rightarrow\left(S, \nu_{i}\right)$ invertible, every $\left(R, \mu_{i}\right):\left(B, b_{i}\right) \rightarrow\left(C, c_{i}\right)$ an equivalence in $\mathbf{A}(X)$ and hence in $\mathbf{A} \ldots$
The $p_{X, Y}$ and $r_{X, Y}$ provide components for pseudonaturals

$$
\text { Get } \quad p: P<\Pi_{2} \rightarrow R: r \quad \text { a product in }\left[\mathbf{A}^{2}, \mathbf{A}\right]
$$

KEY LEMMA: Each bicategory $\mathbf{A}(X)$ is biequivalent to $\mathbf{1}$. So ...

- the set of objects is not empty
- for any $\left(B, b_{i}\right),\left(C, c_{i}\right)$ there is an $\left(R, \mu_{i}\right):\left(B, b_{i}\right) \rightarrow\left(C, c_{i}\right)$
- for any $\left(R, \mu_{i}\right),\left(S, \nu_{i}\right): B \rightarrow C, \exists!R \xrightarrow{\alpha} S\left[\nu_{i} \cdot\left(c_{i} \alpha\right)=\mu_{i}\right]$ every $\left(R, \mu_{i}\right) \rightarrow\left(S, \nu_{i}\right)$ invertible, every $\left(R, \mu_{i}\right):\left(B, b_{i}\right) \rightarrow\left(C, c_{i}\right)$ an equivalence in $\mathbf{A}(X)$ and hence in $\mathbf{A} \ldots$
The $p_{X, Y}$ and $r_{X, Y}$ provide components for pseudonaturals
Get $p: P<\Pi_{2} \rightarrow R: r \quad$ a product in $\left[\mathbf{A}^{2}, \mathbf{A}\right]$

$$
p_{X, Y} \cdot p_{(X \times Y), Z}, \quad r_{X, Y} \cdot p_{(X \times Y), Z}, \quad \text { and } \quad r_{(X \times Y), Z}
$$

from $(X \times Y) \times Z$ to X, Y, and Z respectively, and

$$
p_{X,(Y \times Z)}, \quad p_{Y, Z} \cdot r_{X,(Y \times Z)}, \quad \text { and } \quad r_{Y, Z} \cdot r_{X,(Y \times Z)}
$$

from $X \times(Y \times Z)$ to X, Y, and Z respectively, give objects in $\left[\mathbf{A}^{3}, \mathbf{A}\right]\left(P_{1}, P_{2}, P_{3}\right)$
Applying KL we get an $a: \Pi_{2}\left(\Pi_{2} \times 1\right) \rightarrow \Pi_{2}\left(1 \times \Pi_{2}\right)$ and μ providing $a_{X, Y, Z}:(X \times Y) \times Z \rightarrow X \times(Y \times Z)$, pseudonatural equivalences

In $\left[\mathbf{A}^{4}, \mathbf{A}\right]$ (writing $X Y$ for $X \times Y, X$ for P_{1} etcetera)

In $\left[\mathbf{A}^{4}, \mathbf{A}\right]$ (writing $X Y$ for $X \times Y, X$ for P_{1} etcetera)

Actually in $\left[\mathbf{A}^{4}, \mathbf{A}\right](X, Y, Z, W)$, get unique $\pi: X a . a . a W \rightarrow$ a.a
$\ln \left[\mathbf{A}^{4}, \mathbf{A}\right]$ (writing $X Y$ for $X \times Y, X$ for P_{1} etcetera)

Actually in $\left[\mathbf{A}^{4}, \mathbf{A}\right](X, Y, Z, W)$, get unique $\pi: X a . a . a W \rightarrow$ a.a $\ln \left[\mathbf{A}^{5}, \mathbf{A}\right](X, Y, Z, U, V)$ pasting π 's we get
$X(Y a) . X a . a .(X a) V . a V .(a U) V \underset{\underset{\pi}{\leftrightarrows}}{\stackrel{\hat{\pi}}{\rightrightarrows}}$ a.a.a: $(((X Y) Z) U) V \rightrightarrows X(Y(Z(U V)))$
and the equality $\hat{\pi}=\check{\pi}$ of pasting composites is the "non-abelian 4 -cocycle condition" (TA1) of [GPS]. The proof of (TA2) and (TA3) is similar.

Have $S: \mathbf{A}^{2} \rightarrow \mathbf{A}^{2}$ with $S S=1_{\mathbf{A}^{2}}, P S=R$, and $R S=P$

There is a unique 2-cell $\sigma: 1_{\square} \rightarrow(s S) s$ with $p \sigma=\phi$ and $r \sigma=\psi$ in
[$\mathbf{A}^{2}, \mathbf{A}$] invertible since μ and ν are

$$
s_{X, Y} \sigma_{X, Y}=\sigma_{Y, X} s_{X, Y} \quad \text { symmetry equation } \quad s \sigma=(\sigma S) s
$$ suffices to show $(r S) s \sigma=(r S)(\sigma S) s$ and $(p S) s \sigma=(p S)(\sigma S) s$

$$
=\Pi \xrightarrow{s} \Pi S \xrightarrow{1 \text { חs }} \Pi S \xrightarrow{\sigma S \downarrow} P
$$

