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The Axioms

(All bicategories are normal) A bicategory B is precartesian if
» M = MapB has x and 1, products (as a bicategory)
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A precartesian bicategory B admits /ax functors
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M M MP x M ————B° x B

» G has x and 1, products preserved by dy and 01
» On objects of G, X is ®

A precartesian bicategory B is cartesian if

» ® and / are pseudofunctors (iff @:(T @ U)(R® S)—~TR ® US
®%1xey—=lx ® 1y and [°:1;—T are invertible)

Note that, in general, B does not have x and 1, products



Why Cartesian Bicategories?

Good axiom base to characterize bicategories of:
> (Carboni & Walters 1987 (locally ordered case))

» relations in a regular category

ordered objects and order ideals in an exact category
> additive relations in an abelian category

» relations in a Grothendieck topos

» (CKWW @ CTO06) spans in a category with finite limits

» profunctors in an elementary topos

v



Why Cartesian Bicategories?

Good axiom base to characterize bicategories of:
> (Carboni & Walters 1987 (locally ordered case))
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>

relations in a regular category

ordered objects and order ideals in an exact category
additive relations in an abelian category

relations in a Grothendieck topos

» (CKWW @ CTO06) spans in a category with finite limits

» profunctors in an elementary topos

Observe that a cartesian bicategory is a bicategory with properties
? What is the derived structure provided by the pseudofunctors

BxB-—2~B<'-1
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Cartesian Bicategories as Symmetric Monoidal Bicategories

For a cartesian B, if

GxG—>G-<—1
underlies symmetric monoidal structure
then

® 1

BxB—B<—1

underlies symmetric monoidal structure (straightforward)
7 Is a bicategory with x and 1, products symmetric monoidal



A bicategory A with x and 1, products
» For each pair (X, Y) of objects there is an object X x Y
> and arrows px y:X X Y—=X and rx y: X x Y=Y
» such that, for each A,

A(A X x Y) (A(A,p),A(A,r))

A(A, X) x A(A,Y)

is an equivalence of categories

» There is an object 1 such that, for each A,
A(A 1) —=1

is an equivalence of categories



A monoidal bicategory is a one-object tricategory
» X ® Y pseudofunctorial and /
ax,y,.z2(X®Y)® Z>X® (Y ® Z) pseudonatural equivalence
Ix:I ® X—=X pseudonatural equivalence

>
>

> rx:X ® =X pseudonatural equivalence

> Tw x,y,z:Wa.a.aZ—a.a invertible modification
>

px,y:Xl.a—=rY invertible modification



A monoidal bicategory is a one-object tricategory
» X ® Y pseudofunctorial and /
> axy,z:(X®Y)® Z>X® (Y ® Z) pseudonatural equivalence
> [x:l ® X—=X pseudonatural equivalence
> rx:X ® =X pseudonatural equivalence
>

Tw,x,v,z:Wa.a.aZ—a.a invertible modification

v

px,y:Xl.a—=rY invertible modification

A symmetric monoidal bicategory is a one-object, one-arrow,
one-2-cell, one-3-cell, weak 6-category

> sx,y:X ® Y—=Y ® X pseudonatural equivalence
> px,vy,z:a.s.a—=>Ys.a.sZ invertible modification

> Ax,y,z:a".s.a*—=>sY.a".Xs invertible modification
> ox y:lg—sy x.Sx y invertible modification

The modifications are to satisfy 3 + 4 + 2 + 1 equations
('Rather a lot to dig out of a rather weak universal property)



A bicategory A has finite products if
» For each finite / and X = (X;)ics in |A|, there is P in |A|
> and p = (pj:P—>Xi)ic
» such that, for each A,
iel
is an equivalence. (Call such p a product cone over X)
A has finite products iff A has x and 1, products.
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A bicategory A has finite products if
» For each finite / and X = (X;)ics in |A|, there is P in |A|
> and p = (p;:P—=Xj)ic
» such that, for each A,
iel
is an equivalence. (Call such p a product cone over X)

A has finite products iff A has x and 1, products.
For each n, have a pseudofunctor

M:Ax---xA=A"-=A
Can write, say, M3(X,Y,Z) = X x Y x Z without parentheses.
For X = (Xi)ier, write A(X) = A((X;)ies) for the bicategory
» whose objects are the product cones over X
> (bj:B—=X;)—(c;:C—=X;) is R:B—~C with y;:c;R—>b;
> (R, pui)—=(S,vi) is a:R—S with v;.(ciar) = pi.
There is a forgetful pseudofunctor A(X)—A



KEY LEMMA: Each bicategory A(X) is biequivalent to 1. So ...
> the set of objects is not empty
» for any (B, b;), (C,¢;) there is an (R, u;):(B, bi)—(C, ¢;)
» for any (R, 1), (S,v;):B—~C, IR-S[v;.(cia) = pi]
every (R, ui)—(S,v;) invertible, every (R, 1j):(B, bi)—(C, ¢;) an
equivalence in A(X) and hence in A ...
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» for any (B, b;), (C,¢;) there is an (R, u;):(B, bi)—(C, ¢;)
» for any (R, 1), (S,v;):B—~C, IR-S[v;.(cia) = pi]
every (R, ui)—(S,v;) invertible, every (R, 1j):(B, bi)—(C, ¢;) an
equivalence in A(X) and hence in A ...
The px,y and rx y provide components for pseudonaturals

Get p:P<Tly>R:r a product in [A% A]

PX,Y-P(XxY),Z5 IX,Y-P(xxY),z» and rixxvy)z
from (X x Y) x Z to X, Y, and Z respectively, and

PX,(YxZ)s PY.Z-Ix(yxz), and ry z.rx(yxz)

from X x (Y x Z) to X, Y, and Z respectively, give objects in
[A3, A](P1, P2, P3)

Applying KL we get an a:My(IMy x 1)—3(1 x M3) and u providing
ax,y,z: (X x Y)x Z—=X x (Y x Z), pseudonatural equivalences



In [A*, A] (writing XY for X x Y, X for P; etcetera)
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In [A*, A] (writing XY for X x Y, X for P; etcetera)

W (X(YZ)W T X(YD)W)
(XY)Z)W ? X(Y(ZW))
T ) (W) ——

Actually in [A%* A](X, Y, Z, W), get unique 7:Xa.a.aW-=a.a
In [A®, A](X,Y,Z, U, V) pasting 7's we get

X(Ya).Xa.a.(Xa)V.aV.(aV) Vg,a a.a:((XY)2)U)v=X(Y(Z(UV)))
and the equality & = 7 of pasting composites is the "non-abelian
4-cocycle condition” (TA1) of [GPS]. The proof of (TA2) and
(TA3) is similar.



Have S:A%-~A2 with SS = 12, PS= R, and RS = P

AP N

P<—rs— TS —pSs— R = P \¢ I_IS ¢/ R

P s r P
|
'

There is a unique 2-cell 0:1q—(sS)s with pc = ¢ and ro = 1) in
[A2 A] invertible since p and v are

O=—6—
<

SX,yOX,y = Oy xSx,y Symmetry equation so = (0S)s

suffices to show (rS)so = (rS)(cS)s and (pS)so = (pS)(cS)s
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