Cartesian Bicategories as Symmetric Monoidal Bicategories

R.J. Wood with A. Carboni, G.M. "Max" Kelly, and R.F.C. Walters

Mathematics, Dalhousie University, Halifax, Canada

CT07 2007JN17-23

The Axioms

(All bicategories are normal) A bicategory B is precartesian if

- ▶ $\mathbf{M} = \operatorname{Map} \mathbf{B}$ has \times and 1, products (as a bicategory)
- ▶ Each $\mathbf{B}(X,A)$ has \wedge and \top , products

The Axioms

(All bicategories are normal) A bicategory B is precartesian if

- ▶ $\mathbf{M} = \operatorname{Map} \mathbf{B}$ has \times and 1, products (as a bicategory)
- ▶ Each $\mathbf{B}(X,A)$ has \wedge and \top , products

A precartesian bicategory **B** admits *lax* functors

$$\mathbf{B} \times \mathbf{B} \xrightarrow{\otimes} \mathbf{B} \xleftarrow{I} \mathbf{1}$$

$$R \otimes S := p^* R p \wedge r^* S r \qquad X \xleftarrow{p_{X,Y}} X \times Y \xrightarrow{r_{X,Y}} Y$$

$$R \swarrow \neg \pi - R \otimes S \longrightarrow p \searrow S$$

$$A \xrightarrow{p_{A,B}^*} A \times B \xleftarrow{r_{A,B}^*} B$$

$$I \text{ is the monad} \qquad \mathbf{1} \xrightarrow{\tau \downarrow} \mathbf{1}$$

The Grothendieck Bicategory

The Grothendieck Bicategory

- **G** has \times and 1, products preserved by ∂_0 and ∂_1
- ▶ On objects of \mathbf{G} , \times is \otimes

The Grothendieck Bicategory

- **G** has \times and 1, products preserved by ∂_0 and ∂_1
- ▶ On objects of \mathbf{G} , × is \otimes

A precartesian bicategory **B** is cartesian if

▶ \otimes and I are pseudofunctors (iff $\tilde{\otimes}$: $(T \otimes U)(R \otimes S) \rightarrow TR \otimes US$ \otimes° : $1_{X \otimes Y} \rightarrow 1_{X} \otimes 1_{Y}$ and I° : $1_{1} \rightarrow \top$ are invertible)

Note that, in general, ${f B}$ does not have imes and 1, products

Why Cartesian Bicategories?

Good axiom base to characterize bicategories of:

- ► (Carboni & Walters 1987 (locally ordered case))
 - relations in a regular category
 - ordered objects and order ideals in an exact category
 - additive relations in an abelian category
 - relations in a Grothendieck topos
- ► (CKWW @ CT06) spans in a category with finite limits
- profunctors in an elementary topos

Why Cartesian Bicategories?

Good axiom base to characterize bicategories of:

- ► (Carboni & Walters 1987 (locally ordered case))
 - relations in a regular category
 - ordered objects and order ideals in an exact category
 - additive relations in an abelian category
 - relations in a Grothendieck topos
- ► (CKWW @ CT06) spans in a category with finite limits
- profunctors in an elementary topos

Observe that a cartesian bicategory is a bicategory with properties

? What is the derived *structure* provided by the pseudofunctors

$$B\times B \stackrel{\otimes}{\longrightarrow} B \stackrel{/}{\longleftarrow} 1$$

Cartesian Bicategories as Symmetric Monoidal Bicategories

For a cartesian B, if

$$\mathbf{G} \times \mathbf{G} \xrightarrow{\times} \mathbf{G} \xleftarrow{1} \mathbf{1}$$

underlies symmetric monoidal structure then

$$B\times B \stackrel{\otimes}{\longrightarrow} B \stackrel{/}{\longleftarrow} 1$$

underlies symmetric monoidal structure (straightforward)

Cartesian Bicategories as Symmetric Monoidal Bicategories

For a cartesian B, if

$$\mathbf{G} \times \mathbf{G} \xrightarrow{\times} \mathbf{G} \xleftarrow{1} \mathbf{1}$$

underlies symmetric monoidal structure then

$$B \times B \xrightarrow{\otimes} B \xleftarrow{l} 1$$

underlies symmetric monoidal structure (straightforward) ? Is a bicategory with \times and 1, products symmetric monoidal

A bicategory **A** with \times and 1, products

- ▶ For each pair (X, Y) of objects there is an object $X \times Y$
- ▶ and arrows $p_{X,Y}:X \times Y \rightarrow X$ and $r_{X,Y}:X \times Y \rightarrow Y$
- ▶ such that, for each A,

$$\mathbf{A}(A, X \times Y) \xrightarrow{\langle \mathbf{A}(A, p), \mathbf{A}(A, r) \rangle} \mathbf{A}(A, X) \times \mathbf{A}(A, Y)$$

is an equivalence of categories

▶ There is an object 1 such that, for each A,

$$\mathbf{A}(A,1) \xrightarrow{!} \mathbf{1}$$

is an equivalence of categories

A monoidal bicategory is a one-object tricategory

- X ⊗ Y pseudofunctorial and I
- ▶ $a_{X,Y,Z}$: $(X \otimes Y) \otimes Z \rightarrow X \otimes (Y \otimes Z)$ pseudonatural equivalence
- ▶ $I_X:I \otimes X \rightarrow X$ pseudonatural equivalence
- ▶ $r_X: X \otimes I \rightarrow X$ pseudonatural equivalence
- $\blacktriangleright \pi_{W,X,Y,Z}: Wa.a.aZ \rightarrow a.a$ invertible modification
- $\blacktriangleright \mu_{X,Y}:XI.a \rightarrow rY$ invertible modification

A monoidal bicategory is a one-object tricategory

- X ⊗ Y pseudofunctorial and I
- ▶ $a_{X,Y,Z}$: $(X \otimes Y) \otimes Z \longrightarrow X \otimes (Y \otimes Z)$ pseudonatural equivalence
- ▶ $I_X:I\otimes X \longrightarrow X$ pseudonatural equivalence
- $ightharpoonup r_X: X \otimes I \rightarrow X$ pseudonatural equivalence
- $\blacktriangleright \pi_{W,X,Y,Z}: Wa.a.aZ \rightarrow a.a$ invertible modification
- $\blacktriangleright \mu_{X,Y}:XI.a \rightarrow rY$ invertible modification

A *symmetric* monoidal bicategory is a one-object, one-arrow, one-2-cell, one-3-cell, weak 6-category

- ▶ $s_{X,Y}:X \otimes Y \rightarrow Y \otimes X$ pseudonatural equivalence
- $\triangleright \rho_{X,Y,Z}:a.s.a \rightarrow Ys.a.sZ$ invertible modification
- $\lambda_{X,Y,Z}:a^*.s.a^* \rightarrow sY.a^*.Xs$ invertible modification
- $ightharpoonup \sigma_{X,Y}: 1_{\otimes} \rightarrow s_{Y,X}.s_{X,Y}$ invertible modification

The modifications are to satisfy 3 + 4 + 2 + 1 equations (!Rather a lot to dig out of a rather weak universal property)

A bicategory **A** has *finite products* if

- ▶ For each finite I and $X = (X_i)_{i \in I}$ in $|\mathbf{A}|$, there is P in $|\mathbf{A}|$
- ▶ and $p = (p_i: P \rightarrow X_i)_{i \in I}$
- ▶ such that, for each *A*,

$$\mathbf{A}(A,P) \rightarrow \prod_{i \in I} \mathbf{A}(A,X_i)$$

is an equivalence. (Call such p a product cone over X) **A** has finite products iff **A** has \times and 1, products.

A bicategory **A** has *finite products* if

- ▶ For each finite I and $X = (X_i)_{i \in I}$ in $|\mathbf{A}|$, there is P in $|\mathbf{A}|$
- ▶ and $p = (p_i: P \rightarrow X_i)_{i \in I}$
- such that, for each A,

$$\mathbf{A}(A,P) \rightarrow \prod_{i \in I} \mathbf{A}(A,X_i)$$

is an equivalence. (Call such p a product cone over X) **A** has finite products iff **A** has \times and 1, products. For each n, have a pseudofunctor

$$\Pi_n: \mathbf{A} \times \cdots \times \mathbf{A} = \mathbf{A}^n \rightarrow \mathbf{A}$$

Can write, say, $\Pi_3(X, Y, Z) = X \times Y \times Z$ without parentheses.

A bicategory **A** has *finite products* if

- ▶ For each finite I and $X = (X_i)_{i \in I}$ in $|\mathbf{A}|$, there is P in $|\mathbf{A}|$
- ▶ and $p = (p_i: P \rightarrow X_i)_{i \in I}$
- such that, for each A,

$$\mathbf{A}(A,P) \rightarrow \prod_{i \in I} \mathbf{A}(A,X_i)$$

is an equivalence. (Call such p a product cone over X) **A** has finite products iff **A** has \times and 1, products. For each n, have a pseudofunctor

$$\Pi_n: \mathbf{A} \times \cdots \times \mathbf{A} = \mathbf{A}^n \rightarrow \mathbf{A}$$

Can write, say, $\Pi_3(X,Y,Z) = X \times Y \times Z$ without parentheses. For $X = (X_i)_{i \in I}$, write $\mathbf{A}(X) = \mathbf{A}((X_i)_{i \in I})$ for the bicategory

- whose objects are the product cones over X
- ▶ $(b_i:B\rightarrow X_i)\rightarrow (c_i:C\rightarrow X_i)$ is $R:B\rightarrow C$ with $\mu_i:c_iR\stackrel{\simeq}{\longrightarrow}b_i$
- $(R, \mu_i) \rightarrow (S, \nu_i)$ is $\alpha: R \rightarrow S$ with $\nu_i.(c_i\alpha) = \mu_i$.

There is a forgetful pseudofunctor $\mathbf{A}(X) \rightarrow \mathbf{A}$

KEY LEMMA: Each bicategory $\mathbf{A}(X)$ is biequivalent to $\mathbf{1}$. So ...

- the set of objects is not empty
- ▶ for any (B, b_i) , (C, c_i) there is an (R, μ_i) : $(B, b_i) \rightarrow (C, c_i)$
- ▶ for any (R, μ_i) , (S, ν_i) : $B \rightarrow C$, $\exists ! R \xrightarrow{\alpha} S[\nu_i.(c_i\alpha) = \mu_i]$ every $(R, \mu_i) \rightarrow (S, \nu_i)$ invertible, every (R, μ_i) : $(B, b_i) \rightarrow (C, c_i)$ an equivalence in $\mathbf{A}(X)$ and hence in \mathbf{A} ...

KEY LEMMA: Each bicategory $\mathbf{A}(X)$ is biequivalent to $\mathbf{1}$. So ...

- the set of objects is not empty
- ▶ for any (B, b_i) , (C, c_i) there is an (R, μ_i) : (B, b_i) \rightarrow (C, c_i)
- ▶ for any (R, μ_i) , (S, ν_i) : $B \rightarrow C$, $\exists ! R \xrightarrow{\alpha} S[\nu_i.(c_i\alpha) = \mu_i]$ every $(R, \mu_i) \rightarrow (S, \nu_i)$ invertible, every (R, μ_i) : $(B, b_i) \rightarrow (C, c_i)$ an equivalence in $\mathbf{A}(X)$ and hence in \mathbf{A} ...

The $p_{X,Y}$ and $r_{X,Y}$ provide components for pseudonaturals

Get
$$p:P \leftarrow \Pi_2 \rightarrow R:r$$
 a product in $[\mathbf{A}^2, \mathbf{A}]$

KEY LEMMA: Each bicategory $\mathbf{A}(X)$ is biequivalent to $\mathbf{1}$. So ...

- the set of objects is not empty
- ▶ for any (B, b_i) , (C, c_i) there is an (R, μ_i) : $(B, b_i) \rightarrow (C, c_i)$
- ▶ for any (R, μ_i) , (S, ν_i) : $B \rightarrow C$, $\exists ! R \xrightarrow{\alpha} S[\nu_i.(c_i\alpha) = \mu_i]$ every $(R, \mu_i) \rightarrow (S, \nu_i)$ invertible, every (R, μ_i) : $(B, b_i) \rightarrow (C, c_i)$ an equivalence in $\mathbf{A}(X)$ and hence in \mathbf{A} ...

The $p_{X,Y}$ and $r_{X,Y}$ provide components for pseudonaturals

Get
$$p: P \leftarrow \Pi_2 \rightarrow R: r$$
 a product in $[\mathbf{A}^2, \mathbf{A}]$

$$p_{X,Y}.p_{(X\times Y),Z}, \quad r_{X,Y}.p_{(X\times Y),Z}, \quad \text{and} \quad r_{(X\times Y),Z}$$
 from $(X\times Y)\times Z$ to $X, Y, \text{ and } Z$ respectively, and

$$p_{X,(Y\times Z)}, p_{Y,Z}.r_{X,(Y\times Z)}, \text{ and } r_{Y,Z}.r_{X,(Y\times Z)}$$

from $X \times (Y \times Z)$ to X, Y, and Z respectively, give objects in $[\mathbf{A}^3, \mathbf{A}](P_1, P_2, P_3)$

Applying KL we get an $a:\Pi_2(\Pi_2 \times 1) \rightarrow \Pi_2(1 \times \Pi_2)$ and μ providing $a_{X.Y.Z}:(X \times Y) \times Z \rightarrow X \times (Y \times Z)$, pseudonatural equivalences

In $[\mathbf{A}^4, \mathbf{A}]$ (writing XY for $X \times Y$, X for P_1 etcetera)

$$((XY)Z)W \xrightarrow{aW} (X(YZ))W \xrightarrow{a} X((YZ)W) \xrightarrow{Xa} X(Y(ZW))$$

$$((XY)Z)W \xrightarrow{a} (XY)(ZW) \xrightarrow{a} X(Y(ZW))$$

In $[\mathbf{A}^4, \mathbf{A}]$ (writing XY for $X \times Y$, X for P_1 etcetera)

$$((XY)Z)W \xrightarrow{aW} (X(YZ))W \xrightarrow{a} X((YZ)W) \xrightarrow{Xa} X(Y(ZW))$$

$$((XY)Z)W \xrightarrow{a} (XY)(ZW) \xrightarrow{a} X(Y(ZW))$$

Actually in $[\mathbf{A}^4, \mathbf{A}](X, Y, Z, W)$, get unique $\pi: Xa.a.aW \rightarrow a.a$

In $[\mathbf{A}^4, \mathbf{A}]$ (writing XY for $X \times Y$, X for P_1 etcetera)

$$((XY)Z)W \xrightarrow{aW} (X(YZ))W \xrightarrow{a} X((YZ)W) \xrightarrow{Xa} X(Y(ZW))$$

$$((XY)Z)W \xrightarrow{a} (XY)(ZW) \xrightarrow{a} X(Y(ZW))$$

Actually in $[\mathbf{A}^4, \mathbf{A}](X, Y, Z, W)$, get unique $\pi: Xa.a.aW \rightarrow a.a$ In $[\mathbf{A}^5, \mathbf{A}](X, Y, Z, U, V)$ pasting π 's we get

$$X(Ya).Xa.a.(Xa)V.aV.(aU)V \underset{\check{\pi}}{\overset{\hat{\pi}}{\Longrightarrow}} a.a.a:(((XY)Z)U)V \underset{\check{\pi}}{\Longrightarrow} X(Y(Z(UV)))$$

and the equality $\hat{\pi}=\check{\pi}$ of pasting composites is the "non-abelian 4-cocycle condition" (TA1) of [GPS]. The proof of (TA2) and (TA3) is similar.

Have $S: \mathbf{A}^2 \rightarrow \mathbf{A}^2$ with $SS = 1_{\mathbf{A}^2}$, PS = R, and RS = P

There is a unique 2-cell $\sigma:1_{\Pi} \rightarrow (sS)s$ with $p\sigma = \phi$ and $r\sigma = \psi$ in $[\mathbf{A}^2, \mathbf{A}]$ invertible since μ and ν are

 $s_{X,Y}\sigma_{X,Y}=\sigma_{Y,X}s_{X,Y}$ symmetry equation $s\sigma=(\sigma S)s$ suffices to show $(rS)s\sigma=(rS)(\sigma S)s$ and $(pS)s\sigma=(pS)(\sigma S)s$

