Ordered Face Structures and

Many-to-one Computads

Marek Zawadowski

June 22, 2007,
Carvoeiro, Portugal

Many-to-one computads are ω-categories that are free 'levelwise' i.e. we adjoin $n+1$ dimensional generators ($=$ indets) and we fix their domains and codomains only after generation on all n dimensional cell. Moreover we insists that the codomain of the indets are indets again (= many-to-one).

Why many-to-one computads? They seem to be in the center of two approaches to weak ω-categories: multitopic and opetopic.

The category Comp ${ }^{m / 1}$ of many-to-one computads and computads map is equivalent to the category of multitopic sets MltSets...
...and probably to the category of opetopic sets, as well.

Ordered face structures are combinatorial structures describing the 'types' of (all) cells in many-to-one computads.

Examples.

Domains: $\delta\left(a_{1}\right)=\left\{x_{2}, x_{3}\right\}$
Codomains: $\gamma\left(a_{1}\right)=x_{1}$
Two orders.

Lower: $x_{1}<^{-} x_{0}$ as $\gamma\left(x_{1}\right) \in \delta\left(x_{0}\right)$,
\ldots and by transitivity: $x_{6}<^{-} x_{0}$
Upper: $x_{3}<^{+} x_{1}$ as $x_{3} \in \delta\left(a_{3}\right)$ and $\gamma\left(a_{3}\right)=x_{1}$,
\ldots and by transitivity: $x_{6}<^{-} x_{1}$

However we may have empty-domain faces... and hence empty faces and loops s_{2}

$s_{3} \xrightarrow[x_{5}]{ } s_{1}$

$\delta\left(a_{2}\right)=1_{s_{0}}, \underset{s}{\gamma}\left(a_{2}\right)=x_{1}$ and more loops

What about lower order of x_{3} and $x_{4} ? \ldots$ or y_{2} and y_{3} ? We need this order as an additional part of data $<^{\sim}$ contained in $<^{-}$! We have $x_{4}<^{\sim} x_{3}$ but not $x_{3}<^{\sim} x_{4}$! Similarly $y_{2}<^{\sim} y_{1}$.

Data for ordered face structures
faces: $\left\{S_{n}\right\}_{n \in \omega} ; S_{n}$ is a finite set of faces of dimension n; almost all S_{n} 's are empty;
domain relation $\delta: \delta(\alpha)$ is either a finite nonempty set of faces or an empty faces;

Below we have: $\delta\left(a_{2}\right)=1_{s_{0}}$ and

$$
\delta\left(a_{1}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{8}, x_{9}\right\}
$$

codomain function γ : e.g. $\gamma\left(a_{1}\right)=x_{0}$
lower order $<^{\sim}$: e.g. $x_{4}<^{\sim} x_{3}$
$s_{3} \xrightarrow{x_{5}} s_{1}$

The upper order $<^{+}$is definable from γ and δ.

Axioms for ordered face structures

In the ordered faces structure

we have
$\gamma \gamma(\alpha)=x_{0}, \quad \delta \delta(\alpha)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$
$\delta \gamma(\alpha)=\left\{x_{1}, x_{4}, x_{5}, x_{6}\right\}, \quad \gamma \delta(\alpha)=\left\{x_{0}, x_{2}, x_{3}\right\}$

Globularity axiom (positive case)
$\gamma \gamma(\alpha)=\gamma \delta(\alpha)-\delta \delta(\alpha), \quad \delta \gamma(\alpha)=\delta \delta(\alpha)-\gamma \delta(\alpha)$

But when we have loops in the domain as in b_{1} or empty-domain loop as in $b 2$

we have $\gamma \gamma\left(b_{i}\right)=\delta \delta\left(b_{i}\right)=\delta \gamma\left(b_{i}\right)=\gamma \delta\left(b_{i}\right)=s$, and the above formulas does not work. We have to drop both loops and empty faces.

Globularity axiom

$$
\begin{gathered}
\gamma \gamma(\alpha)=\gamma \delta(\alpha)-\delta \dot{\delta}^{-\lambda}(\alpha) \\
\delta \gamma(\alpha) \equiv_{1} \delta \delta(\alpha)-\gamma \dot{\delta}^{-\lambda}(\alpha)
\end{gathered}
$$

\equiv_{1} is 'equality' that ignores empty faces, i.e. the empty faces that might occur on the right side of the sign \equiv_{1} must be empty on ether domain or codomain of a face that belongs to the left side.

Other axioms of ordered face structures talks about the upper $<^{+}$and lower $<^{\sim}$ orders.

They are strict, disjoint and $<^{\sim}$ is maximal such contained in $<^{-}$. The upper order on 0 -cells is linear.

No two faces in a domain of a face might be comparable in the upper order $<^{+}$.

Incident faces must be comparable in one of these orders.

Every loop must be filled in, i.e. must be a codomain of a cell which is not a loop.

There are two basic kinds of morphisms of ordered face structures.

A local morphism of ordered face structures $f: S \rightarrow T$ is a family of functions $f_{k}: S_{k} \rightarrow T_{k}$, for $k \in \omega$, such that the diagrams

$$
\begin{aligned}
& S_{k+1} \xrightarrow{f_{k+1}} T_{k+1} \\
& \gamma \mid \quad \gamma
\end{aligned}
$$

$$
\begin{aligned}
& S_{k} \longrightarrow{ }_{f_{k}} T_{k}
\end{aligned}
$$

commute. For the right square it means more then commutation of relations, we demand that for any $a \in S_{\geq 1}$,

$$
f_{a}:\left(\dot{\delta}(a),<^{\sim}\right) \longrightarrow\left(\dot{\delta}(f(a)),<^{\sim}\right)
$$

be an order isomorphism, where f_{a} is the restriction of f to $\dot{\delta}(a)$ (if $\delta(a)=1_{u}$ we mean by that $\left.\delta(f(a))=1_{f(u)}\right)$.

A global (monotone) morphism of ordered face structures $f: S \rightarrow T$ is a local morphism that preserves lower order $<^{\sim}$ (globally).

Examples. $f_{1}: T_{1} \rightarrow S$ is monotone:
$T_{1}:$
$s_{2} \xrightarrow{y} s_{1} \xrightarrow{x} s_{0}$ S :

$f_{2}: T_{2} \rightarrow S$ is not monotone but it is local:

The following two ordered face structures are not isomorphic (globally) but they are isomorphic locally:

$z<{ }^{\sim} x$

$x<{ }^{\sim} z$
$\mathrm{oFs}\left(\mathrm{oFs}_{l o c}\right)$ - is the category of ordered face structures and monotone (local) maps

In oFs we have operations of the k-th domain $\mathbf{d}^{(k)}$ and k-th codomain $\mathbf{c}^{(k)}$. For an order face structure S as follows
S

its 1-domain is
$\mathbf{d}^{(1)} S \quad s_{2}$
x_{8}
s3 $s_{1} \longrightarrow x_{0}$
the convex subset of S defining 1-codomain is
$c^{(1)} S$

and finally the 1-codomain of S is the stretching of $c^{(1)} S$
$\mathbf{c}^{(1)} S$
$s_{3} \xrightarrow{x_{6}} s_{1} \xrightarrow{x_{1}}\left(s_{0}, \emptyset,\left\{x_{0}\right\}\right) \xrightarrow{x_{0}}\left(s_{0},\left\{x_{0}\right\}, \emptyset\right)$
We have monotone maps embedding k-th domain and k-th codomain into an order face structure S :

We also have an operation of k-tensor of two ordered face structures S and T such that $\mathbf{c}^{(k)} S=\mathbf{d}^{(k)} T$.

$$
\begin{gathered}
S \xrightarrow{\kappa_{S}} S \otimes_{k} T \\
\mathbf{c}_{S}^{(k)} \mid \\
\mathbf{c}^{(k)} S \xrightarrow[\mathbf{d}_{T}^{(k)}]{ } \\
\\
\\
\end{gathered} \kappa_{T}
$$

Examples

The tensor is a pushout locally. But $<^{\sim}$ is not uniquely determined by this. The additional rule is that in case of doubts faces from S comes before faces from T. This is why $x<^{\sim} y$, above.

$\mathbf{c}^{(1)} S=\mathbf{d}^{(1)} T$

$$
\bullet \xrightarrow{x} \bullet \stackrel{y_{2}}{\bullet} \stackrel{y_{1}}{\bullet} \stackrel{y_{0}}{\bullet}
$$

and the 1-tensor $S \otimes_{1} T$ is

Theorem. The category oFs is a monoidal globular category in the sense of Batanin, with k-tensor squares being pushout locally (i.e. in $\mathrm{oFs}_{l o c}$).

We have a full embedding functor

$$
(-)^{*}: \mathbf{o F s}_{l o c} \longrightarrow \text { Comp }^{m / 1}
$$

Fix S in $\mathrm{oFs}_{\text {loc }}$.
k-cells in S^{*} : (monotone iso classes of) local maps $f: T \longrightarrow S$ with $\operatorname{dim}(T) \leq k$;
f_{0} is equivalent to f_{1} iff there is a monotone iso h such that the triangle

commutes.
domains and codomains S^{*} :

$d^{(k)}(f)=f \circ \mathbf{d}_{T}^{(k)}$ and $c^{(k)}(f)=f \circ \mathbf{c}_{T}^{(k)}$
compositions in S^{*} : if $c^{(k)}\left(f_{0}\right)=d^{(k)}\left(f_{1}\right)$

then $f_{1} \circ_{k} f_{0}=\left[f_{0}, f_{1}\right]$
(-)* acts on morphism by compositions.

Theorem.

$$
(-)^{*}: \mathbf{o F s}_{l o c} \longrightarrow \text { Comp }^{m / 1}
$$

induces the functor

$$
\operatorname{Comp}^{m / 1} \longrightarrow \text { Set }^{\mathrm{oFs}_{l o c}^{o p}}
$$

which is full and faithful, and whose essential image consists of functors sending tensor squares in oFs ${ }_{l o c}^{o p}$ to pullbacks in Set.

