Ordered Face Structures and Many-to-one Computads

Marek Zawadowski

June 22, 2007, Carvoeiro, Portugal Many-to-one computads are ω -categories that are free 'levelwise' i.e. we adjoin n + 1 dimensional generators (= indets) and we fix their domains and codomains only after generation on all n dimensional cell. Moreover we insists that the codomain of the indets are indets again (= many-to-one).

Why many-to-one computads? They seem to be in the center of two approaches to weak ω -categories: multitopic and opetopic.

The category $\text{Comp}^{m/1}$ of many-to-one computads and computads map is equivalent to the category of multitopic sets MltSets...

...and probably to the category of opetopic sets, as well.

Ordered face structures are combinatorial structures describing the 'types' of (all) cells in many-to-one computads.

Domains: $\delta(a_1) = \{x_2, x_3\}$

Codomains: $\gamma(a_1) = x_1$

Two orders.

Lower: $x_1 < x_0$ as $\gamma(x_1) \in \delta(x_0)$, ... and by transitivity: $x_6 < x_0$

Upper: $x_3 < x_1$ as $x_3 \in \delta(a_3)$ and $\gamma(a_3) = x_1$, ... and by transitivity: $x_6 < x_1$

However we may have *empty-domain faces*... and hence *empty faces* and *loops*

What about lower order of x_3 and x_4 ?... or y_2 and y_3 ? We need this order as an additional part of data < \sim contained in <-!We have $x_4 < \sim x_3$ but not $x_3 < \sim x_4!$ Similarly $y_2 < \sim y_1$.

Data for ordered face structures

faces: $\{S_n\}_{n \in \omega}$; S_n is a finite set of faces of dimension n; almost all S_n 's are empty;

domain relation δ : $\delta(\alpha)$ is either a finite nonempty set of faces or an empty faces;

Below we have: $\delta(a_2) = 1_{s_0}$ and $\delta(a_1) = \{x_1, x_2, x_3, x_4, x_5, x_8, x_9\}$

codomain function γ : e.g. $\gamma(a_1) = x_0$

lower order < \sim : e.g. $x_4 < \sim x_3$

The upper order $<^+$ is definable from γ and δ .

Axioms for ordered face structures

In the ordered faces structure

we have

 $\gamma\gamma(\alpha) = x_0, \ \delta\delta(\alpha) = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ $\delta\gamma(\alpha) = \{x_1, x_4, x_5, x_6\}, \ \gamma\delta(\alpha) = \{x_0, x_2, x_3\}$ Globularity axiom (positive case) $\gamma\gamma(\alpha) = \gamma\delta(\alpha) - \delta\delta(\alpha), \ \delta\gamma(\alpha) = \delta\delta(\alpha) - \gamma\delta(\alpha)$

But when we have loops in the domain as in b_1 or empty-domain loop as in b_2

we have $\gamma\gamma(b_i) = \delta\delta(b_i) = \delta\gamma(b_i) = \gamma\delta(b_i) = s$, and the above formulas does not work. We have to drop both loops and empty faces.

Globularity axiom

$$\gamma\gamma(\alpha) = \gamma\delta(\alpha) - \delta\dot{\delta}^{-\lambda}(\alpha)$$
$$\delta\gamma(\alpha) \equiv_1 \delta\delta(\alpha) - \gamma\dot{\delta}^{-\lambda}(\alpha)$$

 \equiv_1 is 'equality' that ignores empty faces, i.e. the empty faces that might occur on the right side of the sign \equiv_1 must be empty on ether domain or codomain of a face that belongs to the left side.

Other axioms of ordered face structures talks about the upper $<^+$ and lower $<^\sim$ orders.

They are strict, disjoint and $<^{\sim}$ is maximal such contained in $<^{-}$. The upper order on 0-cells is linear.

No two faces in a domain of a face might be comparable in the upper order $<^+$.

Incident faces must be comparable in one of these orders.

Every loop must be filled in, i.e. must be a codomain of a cell which is not a loop.

There are two basic kinds of morphisms of ordered face structures.

A local morphism of ordered face structures $f: S \to T$ is a family of functions $f_k: S_k \to T_k$, for $k \in \omega$, such that the diagrams

commute. For the right square it means more then commutation of relations, we demand that for any $a \in S_{\geq 1}$,

$$f_a: (\dot{\delta}(a), <^{\sim}) \longrightarrow (\dot{\delta}(f(a)), <^{\sim})$$

be an order isomorphism, where f_a is the restriction of f to $\dot{\delta}(a)$ (if $\delta(a) = 1_u$ we mean by that $\delta(f(a)) = 1_{f(u)}$).

A global (monotone) morphism of ordered face structures $f: S \to T$ is a local morphism that preserves lower order $<^{\sim}$ (globally). *Examples.* $f_1 : T_1 \rightarrow S$ is monotone:

 $f_2: T_2 \rightarrow S$ is not monotone but it is local:

The following two ordered face structures are not isomorphic (globally) but they are isomorphic locally:

 $\mathbf{oFs}~(\mathbf{oFs}_{loc})$ - is the category of ordered face structures and monotone (local) maps

In oFs we have operations of the k-th domain $d^{(k)}$ and k-th codomain $c^{(k)}$. For an order face structure S as follows

its 1-domain is

the convex subset of S defining 1-codomain is

and finally the 1-codomain of S is the stretching of $c^{\left(1\right)}S$

$$\mathbf{c^{(1)}}S$$

$$s_3 \xrightarrow{x_6} s_1 \xrightarrow{x_1} (s_0, \emptyset, \{x_0\}) \xrightarrow{x_0} (s_0, \{x_0\}, \emptyset)$$

We have monotone maps embedding k-th domain and k-th codomain into an order face structure S:

$$\mathbf{d}^{(k)}S \xrightarrow{\mathbf{d}^{(k)}_S} S \xleftarrow{\mathbf{c}^{(k)}_S} \mathbf{c}^{(k)}S$$

We also have an operation of *k*-tensor of two ordered face structures *S* and *T* such that $\mathbf{c}^{(k)}S = \mathbf{d}^{(k)}T$.

Examples

The tensor is a pushout locally. But $<^{\sim}$ is not uniquely determined by this. The additional rule is that in case of doubts faces from Scomes before faces from T. This is why $x <^{\sim} y$, above.

$$\mathbf{c}^{(1)}S = \mathbf{d}^{(1)}T$$

$$\bullet \xrightarrow{x} \bullet \xrightarrow{y_2} \bullet \xrightarrow{y_1} \bullet \xrightarrow{y_0} \bullet$$

and the 1-tensor $S \otimes_{\mathbf{1}} T$ is

Theorem. The category oFs is a monoidal globular category in the sense of Batanin, with k-tensor squares being pushout locally (i.e. in oFs_{loc}).

We have a full embedding functor

 $(-)^*$: oFs_{loc} \longrightarrow Comp^{m/1}

Fix S in oFs_{loc}. k-cells in S^{*}: (monotone iso classes of) local maps $f: T \longrightarrow S$ with $dim(T) \leq k$; f_0 is equivalent to f_1 iff there is a monotone iso h such that the triangle

commutes.

domains and codomains S^* :

 $d^{(k)}(f) = f \circ \mathbf{d}_T^{(k)}$ and $c^{(k)}(f) = f \circ \mathbf{c}_T^{(k)}$

compositions in S^* : if $c^{(k)}(f_0) = d^{(k)}(f_1)$

then $f_1 \circ_k f_0 = [f_0, f_1]$

 $(-)^*$ acts on morphism by compositions.

Theorem.

 $(-)^*$: oFs_{loc} \longrightarrow Comp^{m/1}

induces the functor

 $C \longmapsto \operatorname{Comp}((-)^*, C)$

which is full and faithful, and whose essential image consists of functors sending tensor squares in \mathbf{oFs}_{loc}^{op} to pullbacks in Set.