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Many-to-one computads are ω-categories that

are free 'levelwise' i.e. we adjoin n + 1 dimen-

sional generators (= indets) and we �x their

domains and codomains only after generation

on all n dimensional cell. Moreover we in-

sists that the codomain of the indets are indets

again (= many-to-one).

Why many-to-one computads? They seem to

be in the center of two approaches to weak

ω-categories: multitopic and opetopic.

The category Compm/1 of many-to-one com-

putads and computads map is equivalent to

the category of multitopic sets MltSets...

...and probably to the category of opetopic

sets, as well.
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Ordered face structures are combinatorial

structures describing the 'types' of (all) cells

in many-to-one computads.

Examples.
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Domains: δ(a1) = {x2, x3}

Codomains: γ(a1) = x1

Two orders.

Lower: x1 <− x0 as γ(x1) ∈ δ(x0),
... and by transitivity: x6 <− x0

Upper: x3 <+ x1 as x3 ∈ δ(a3) and γ(a3) = x1,

... and by transitivity: x6 <− x1
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However we may have empty-domain faces...

and hence empty faces and loops
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δ(a2) = 1s0, γ(a2) = x1 and more loops
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What about lower order of x3 and x4?... or y2
and y3? We need this order as an additional

part of data <∼ contained in <−!
We have x4 <∼ x3 but not x3 <∼ x4!

Similarly y2 <∼ y1.
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Data for ordered face structures

faces: {Sn}n∈ω; Sn is a �nite set of faces of

dimension n; almost all Sn's are empty;

domain relation δ: δ(α) is either a �nite non-

empty set of faces or an empty faces;

Below we have: δ(a2) = 1s0 and

δ(a1) = {x1, x2, x3, x4, x5, x8, x9}

codomain function γ: e.g. γ(a1) = x0

lower order <∼: e.g. x4 <∼ x3
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The upper order <+ is de�nable from γ and δ.
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Axioms for ordered face structures

In the ordered faces structure
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we have

γγ(α) = x0, δδ(α) = {x1, x2, x3, x4, x5, x6}

δγ(α) = {x1, x4, x5, x6}, γδ(α) = {x0, x2, x3}

Globularity axiom (positive case)

γγ(α) = γδ(α)− δδ(α), δγ(α) = δδ(α)− γδ(α)

5



But when we have loops in the domain as in

b1 or empty-domain loop as in b2
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we have γγ(bi) = δδ(bi) = δγ(bi) = γδ(bi) = s,

and the above formulas does not work. We

have to drop both loops and empty faces.

Globularity axiom

γγ(α) = γδ(α)− δδ̇−λ(α)

δγ(α) ≡1 δδ(α)− γδ̇−λ(α)

≡1 is 'equality' that ignores empty faces, i.e.

the empty faces that might occur on the right

side of the sign ≡1 must be empty on ether

domain or codomain of a face that belongs to

the left side.
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Other axioms of ordered face structures

talks about the upper <+ and lower <∼ orders.

They are strict, disjoint and <∼ is maximal

such contained in <−. The upper order on

0-cells is linear.

No two faces in a domain of a face might be

comparable in the upper order <+.

Incident faces must be comparable in one of

these orders.

Every loop must be �lled in, i.e. must be a

codomain of a cell which is not a loop.
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There are two basic kinds of morphisms of or-

dered face structures.

A local morphism of ordered face structures

f : S → T is a family of functions fk : Sk → Tk,

for k ∈ ω, such that the diagrams

Sk Tk
-

fk

Sk+1 Tk+1-
fk+1

?

γ
?

γ

Sk t· 1Sk−1
Tk t· 1Tk−1

-

fk + 1fk−1

Sk+1 Tk+1-
fk+1

?

δ
?

δ

commute. For the right square it means more

then commutation of relations, we demand

that for any a ∈ S≥1,

fa : (δ̇(a), <∼) −→ (δ̇(f(a)), <∼)

be an order isomorphism, where fa is the re-

striction of f to δ̇(a) (if δ(a) = 1u we mean by

that δ(f(a)) = 1f(u)).

A global (monotone) morphism of ordered face

structures f : S → T is a local morphism that

preserves lower order <∼ (globally).
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Examples. f1 : T1 → S is monotone:
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f2 : T2 → S is not monotone but it is local:
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The following two ordered face structures are

not isomorphic (globally) but they are isomor-

phic locally:
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oFs (oFsloc) - is the category of ordered face

structures and monotone (local) maps

In oFs we have operations of the k-th domain

d(k) and k-th codomain c(k). For an order face

structure S as follows

S
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d(1)S
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the convex subset of S de�ning 1-codomain is

c(1)S

s3 s1-x6 s0

& %
�
�
�
�
�
�
��

�
�
�
�
�
�
���

���
�
�
�

C
C
C
CO

x0

x1

and �nally the 1-codomain of S is the stretch-

ing of c(1)S
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We have monotone maps embedding k-th do-

main and k-th codomain into an order face

structure S:
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S
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We also have an operation of k-tensor of two

ordered face structures S and T such that

c(k)S = d(k)T .
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T
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The tensor is a pushout locally. But <∼ is not

uniquely determined by this. The additional

rule is that in case of doubts faces from S

comes before faces from T . This is why x <∼ y,

above.
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c(1)S = d(1)T

and the 1-tensor S ⊗1 T is
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Theorem. The category oFs is a monoidal

globular category in the sense of Batanin, with

k-tensor squares being pushout locally (i.e. in

oFsloc).

We have a full embedding functor

(−)∗ : oFsloc −→ Compm/1

Fix S in oFsloc.

k-cells in S∗: (monotone iso classes of) local

maps f : T −→ S with dim(T ) ≤ k;

f0 is equivalent to f1 i� there is a monotone

iso h such that the triangle
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domains and codomains S∗:
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then f1 ◦k f0 = [f0, f1]

(−)∗ acts on morphism by compositions.
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Theorem.

(−)∗ : oFsloc −→ Compm/1

induces the functor

Compm/1 SetoFsop
loc

-

C Comp((−)∗, C)-

which is full and faithful, and whose essen-

tial image consists of functors sending tensor

squares in oFsop
loc to pullbacks in Set.
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