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Many-to-one computads are w-categories that
are free 'levelwise' i.e. we adjoin n+ 1 dimen-
sional generators (= indets) and we fix their
domains and codomains only after generation
on all n dimensional cell. Moreover we in-
sists that the codomain of the indets are indets
again (= many-to-one).

Why many-to-one computads? They seem to
be in the center of two approaches to weak
w-categories: multitopic and opetopic.

The category Comp™/! of many-to-one com-
putads and computads map is equivalent to
the category of multitopic sets MltSets...

...and probably to the category of opetopic
sets, as well.



Ordered face structures are combinatorial
structures describing the 'types’ of (all) cells
in many-to-one computads.

Examples.
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Domains: §(aq) = {xp, 3}
Codomains: v(ay1) = z1
Two orders.

Lower: 1 <~ xg as v(x1) € §(xg),
. and by transitivity: xzg <™ xg

Upper: z3 <1 z1 as z3 € §(a3) and v(a3) = =1,
. and by transitivity: xg <™ x7



However we may have empty-domain faces...
and hence empty faces and loops
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§(an) = 1s4, v(az2) = x1 and more loops

Yo

What about lower order of x3 and x47... or yo
and y3? We need this order as an additional
part of data <™ contained in <™

We have x4 <™ x3 but not x3 <™ x4!

Similarly yo <™ y1.



Data for ordered face structures

faces: {Sn}new; Sn is a finite set of faces of
dimension n; almost all S,’s are empty;

domain relation 6: 6(«) is either a finite non-
empty set of faces or an empty faces;

Below we have: §(ap) = 15, and

5(0'1) — {xla L, X3,x4,T5,Ig, 339}

codomain function ~: e.g. v(a1) = xg

Y

lower order <™: e.g. x4 <™ x3
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The upper order <7 is definable from ~ and §.
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Axioms for ordered face structures

In the ordered faces structure

T5 / tag \T4 a, 5 / \3?4
S3
s %\ w6 0

S4 o S0

we have

vy(a) = zg, 60(a) = {z1,22,73,%4,Ts5,T6}
6v(a) = {z1,24,25,6}, 76() = {zo,x2, 23}
Globularity axiom (positive case)

¥v(a) = v6(a) — d6(a), 6v(a) = d6(a) — ()



But when we have loops in the domain as in
b1 or empty-domain loop as in b2
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we have yy(b;) = dd(b;) = 6v(b;) = vi(b;) = s,
and the above formulas does not work. We
have to drop both loops and empty faces.

Globularity axiom
vy(a) = v8(a) — 66 ()
Sv(a) =1 85(a) — 76 ()

=41 IS 'equality’ that ignhores empty faces, i.e.
the empty faces that might occur on the right
side of the sign =1 must be empty on ether
domain or codomain of a face that belongs to
the left side.



Other axioms of ordered face structures
talks about the upper <t and lower <™ orders.

They are strict, disjoint and <™ is maximal
such contained in <. The upper order on
O-cells is linear.

No two faces in a domain of a face might be
comparable in the upper order <t.

Incident faces must be comparable in one of
these orders.

Every loop must be filled in, i.e. must be a
codomain of a cell which is not a loop.



There are two basic kinds of morphisms of or-
dered face structures.

A local morphism of ordered face structures
f: S — T is a family of functions f,. : S — T},
for kK € w, such that the diagrams

fr+1 fr+1
Spt1 L Ty Sk+1 T T
v s 5
Sk . Tk Skz L lsk_ Tk: L lTk—l

iz e+ 1y,
commute. For the right square it means more
then commutation of relations, we demand
that for any a € S>1,

fa: (0(a), <™) — (6(f(a)),<™)
be an order isomorphism, where f, is the re-
striction of f to 6(a) (if 6(a) = 1, we mean by

A global (monotone) morphism of ordered face
structures f : S — T is a local morphism that
preserves lower order <™ (globally).



Examples. f1:17 — S is monotone:

7&'

: S : S
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fo T — S is not monotone but it is local:

X
- S - S

T Y s Y
1> - b y a/, b y

The following two ordered face structures are
not isomorphic (globally) but they are isomor-
phic locally:

S

S

<§}@§> <§g|§>

c/|\a a &

Y T T Uby .
r<z
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oFs (oF's;,.) - is the category of ordered face
structures and monotone (local) maps

In oFs we have operations of the k-th domain

d%) and k-th codomain ¢¥). For an order face
structure S as follows

o w\
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Ua;’: s 1
its 1-domain is
dDgs 52

xy \67
S3 S T2 - S0
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the convex subset of S defining 1-codomain is

(g
S3 L6 - 51 S0
KEBxO
L1

and finally the 1-codomain of S is the stretch-
ing of ¢(1)g

cLg

6 T1 0

s1 (s0,0{z0}) — (s0,{z0}.,0)

S3

We have monotone maps embedding k-th do-
main and k-th codomain into an order face
structure S:

4k (k)
dWg —2 g - o5 c(k)g
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We also have an operation of k-tensor of two
ordered face structures S and T such that
ck)g = dkT.

S S ~SC@k7j
C(Sk) KT

c(k)g T

a{

Examples

T

S " S®yT -

S S

S
a, a b b y
x (]

r<"y
The tensor is a pushout locally. But <™ is not
uniquely determined by this. The additional
rule is that in case of doubts faces from S

comes before faces from 1. Thisiswhy x <™ v,

above.
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° M go@ °
T y?/. oo - o\yo

cg =4

o T o Y2 g Y1 o Y0

and the 1-tensor S ®1 71 is
/il

MM(@ /@s

S®1T
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Theorem. The category oFs is a monoidal
globular category in the sense of Batanin, with
k-tensor squares being pushout locally (i.e. in
oF's;,.).

We have a full embedding functor

(=)* : oFs;,. —> Comp™/1

Fix S in oF'sy,,.
k-cells in S*: (monotone iso classes of) local
maps f: T — S with dim(T) < k;
fo Is equivalent to fq iff there is a monotone
ISO h such that the triangle
1o 7y
f1

fors.
S

commutes.
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domains and codomains S*:

S LOZ AR 162

\T
o
T

dB () = fodl¥ and c®(f) = foci

f

S

c(F)T

compositions in S*; if %) (fg) = d®)(f1)

fo
(k) T
c(k)TOCT% O\ Ty @1 Ty [fo, f1] L
Ty Ty 1

then f1 o fo = [fo, f1l

(—)* acts on morphism by compositions.
15



T heorem.

(=)* : oFs;,. —> Comp™/1

induces the functor

Comp™/1 - Set®FSio

C - Comp((—)*,C)

which is full and faithful, and whose essen-
tial image consists of functors sending tensor

squares in oFs;" to pullbacks in Set.
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