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Relations T arising from factorization systems
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C, (E,M)
> £ and M contain isomorphisms and are closed under composition,
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Can & and M be recovered from Z?

C = Set:
> & = Isos, M = All morphisms;
> & = Epis, M = Monos.

fCf < Im(f) CIm(f")

The answer is yes if every morphism in M is a monomorphism.
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FO. [ is reflexive and transitive.
F1.

F2.

Left preservation property:

if f C g then hf C hg.

Right preservation property:

if f C g then fe C g.

F3.

F4.

Axioms on C

Every morphism f has a C-image
m, i.e. a morphism m such that
m C f and m is universal with this

property

gCf =

%
g

Every C-image h is a C-reflecting
morphism, i.e. for every two
morphisms f, g (as in the display
in Axiom 1) we have

hfC hg = fCg.
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Azxioms on T (continued)

FO & F1 & F2: Relations lifted from those induced by a factorization system =
Relations lifted from those induced by right-proper factorization systems

(i.e. those factorization systems (&, M) where every element in M is a
monomorphism).

FO & F1 & F2 & F3: Right-proper right factorization systems in the sense of
D. Dikranjan and W. Tholen.

FO & F1 & F2 & F3 & F4: Right-proper factorization systems.

What happens if we remove Axiom F0?
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Relations T arising from certain monoidal structures
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Cooperating pairs of morphisms in a unital category

C = Grp;
fCg © Yeemm(n)Vyeim(g)(xy = yx).

[ satisfies axioms F1-4.

Where does — come from?

S. A. Hug:
1x,0 0,1
x (1x,0) X %Y (0,1y) v
f g
v
V4

Unital categories in the sense of D. Bourn: f C g iff f and g cooperate.
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> C = Rng (rings with unit), ® = tensor product of rings:

fC g © Yeemm(n)Vyeim(g)(xy = yx).

» C = AlgTh (algebraic theories in the sense of F. W. Lawvere), ® = Kronecker
product (in the sense of P. Freyd):

f C g < Every term in the image of f commutes with every term in the image of g.

» C = A (the simplicial category), ® = ordinal addition:

fCg © Yeem(r)7yeimg) (X <Y)
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Axioms on T (which give rise to a monoidal structure)

The opposite relation of [ satisfies the same axioms as [ (that are listed below).
Left preservation property.

Right preservation property.
For any two objects X and Y, the category of diagrams

X—fsc<ft vy

with the property f C g, has an initial object

L1 L2

X X®Y Y




MoO.
M1=F1.
M2=F2.

M3.

M4.

Axioms on T (which give rise to a monoidal structure)

The opposite relation of [ satisfies the same axioms as [ (that are listed below).
Left preservation property.

Right preservation property.

For any two objects X and Y, the category of diagrams

X—fsc<ft vy

with the property f C g, has an initial object

L1 L2

For any diagram

if f C gto then fu1 C g.



MoO.
M1=F1.
M2=F2.

M3.

M4.

M5.

Axioms on T (which give rise to a monoidal structure)

The opposite relation of [ satisfies the same axioms as [ (that are listed below).
Left preservation property.

Right preservation property.

For any two objects X and Y, the category of diagrams

X—fsc<ft vy

with the property f C g, has an initial object

L1 L2

For any diagram

“

if f C gto then fu1 C g.

There exists an object / such that for any morphism f : X — Y, we have g C f,
for exactly one morphism g : [ — Y.
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The definition

Definition
A cover relation on a category C is a relation [ having left and right preservation
properties.

Examples

> By Z we denote the cover relation on C defined as follows: fZg if f and g are
part of a commutative triangle

f

> For a pullback-stable class M of morphisms the cover relation CM is defined as
follows:
fcMg © VYmem(gdm = fZm).

A strange example
C=Top: fC g & Vxelm(,c)vyelm(g)(x ~ y).

All axioms are satisfied except F1 and M3.

Is there a cover relation which satisfies all axioms?
Just one — the codiscrete .
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C-Coverings

Definition
Let C be a cover relation. A C-covering is a morphism ¢ : X — Y satisfying the
following equivalent conditions:

> 1y is a C-image of c;
> 1y C ¢

> f C c for any morphism f with codomain Y.

Lemma
Let (£, M) be a factorization system such that kernel pairs of morphisms from M
exist. Then the following conditions are equivalent to each other:

> Every morphism in M is a monomorphism.

> & is the class of all C-coverings.

Theorem
A class £ of morphisms is the class of [_-coverings for some reflexive and transitive
cover relation C if and only if £ has the following properties:

> & contains identity morphisms.
> & is closed under composition.

> For any morphism f and for any e € £, if eZf then f € £.
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Relations C induced by classes of morphisms

For a class £ of morphisms by C¢ we denote the relation defined as follows: f C¢ g if
and only if f and g are part of a commutative square

where e € £.

Lemma
C¢ has left preservation property and it is a cover relation if and only if every
morphism e € £ is a Cg-covering, i.e. for every pair f, e of solid arrows in the diagram

with e € £, there exist the dotted arrows €', f', with ¢’ € £, making the square
commute (in other words, £ admits lifts).



Grothendieck topologies and stable factorization systems

Theorem
Let € be a class of morphisms such that for any morphism f and for any e € £, if eZLf
then f € £. Then the following conditions are equivalent to each other:

> [ ¢ is a reflexive and transitive cover relation.

> & contains identity morphisms, is closed under composition, and admits lifts.

Theorem
For a factorization system (€, M) the following conditions are equivalent:

> & admits lifts.
> The relation Cg coincides with the relation M.

In particular, if every morphism from M is a monomorphism and pullbacks of
morphisms from & exist, then the above conditions are equivalent to £ being stable
under pullbacks.
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