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Part I

Relations < arising from factorization systems



Factorization systems

Definition (P. Freyd and G. M. Kelly)

C, (E,M)

I E and M contain isomorphisms and are closed under composition,

I Orthogonality:

•

��

e // •

����
•

m
// •

I Existence of (E,M)-factorizations:

•

e
��

f // •

•
m

??
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f ′

$$
e′

//
m′

//

f

::e // m //

OO

f < f ′

Im(f ) ⊆ Im(f ′)



f ′

$$
e′

//
m′

//

f

::e // m //

OO

f < f ′

Im(f ) ⊆ Im(f ′)



f ′

$$
e′

//
m′

//

f

::e // m //

OO

f < f ′

Im(f ) ⊆ Im(f ′)



Can E and M be recovered from <?

C = Set:

I E = Isos, M = All morphisms;

I E = Epis, M = Monos.

f < f ′ ⇔ Im(f ) ⊆ Im(f ′)

The answer is yes if every morphism in M is a monomorphism.
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Axioms on <

F0. < is reflexive and transitive.

F1. Left preservation property:

g

��
f

//
h

//

if f < g then hf < hg .

F2. Right preservation property:

g

��
e

//
f

//

if f < g then fe < g .

F3. Every morphism f has a <-image
m, i.e. a morphism m such that
m < f and m is universal with this
property

g < f ⇒ m

��

??

g
//

F4. Every <-image h is a <-reflecting
morphism, i.e. for every two
morphisms f , g (as in the display
in Axiom 1) we have
hf < hg ⇒ f < g .
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Axioms on < (continued)

I F0 & F1 & F2: Relations lifted from those induced by a factorization system =
Relations lifted from those induced by right-proper factorization systems
(i.e. those factorization systems (E,M) where every element in M is a
monomorphism).

I F0 & F1 & F2 & F3: Right-proper right factorization systems in the sense of
D. Dikranjan and W. Tholen.

I F0 & F1 & F2 & F3 & F4: Right-proper factorization systems.

I What happens if we remove Axiom F0?
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Part II

Relations < arising from certain monoidal structures



Cooperating pairs of morphisms in a unital category

C = Grp;
f < g ⇔ ∀x∈Im(f )∀y∈Im(g)(xy = yx).

< satisfies axioms F1-4.

Where does < come from?

S. A. Huq:

X
(1X ,0) //

f

""EE
EE

EE
EE

EE
E X × Y

��

Y
(0,1Y )oo

g

||yy
yy

yy
yy

yy
y

Z

Unital categories in the sense of D. Bourn: f < g iff f and g cooperate.
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Replacing × with ⊗

(C,⊗, I , α, λ, %)

X ⊗ I
1X⊗iY // X ⊗ Y

��

I ⊗ Y
iX⊗1Yoo

X

%

OO

ι1

;;wwwwwwwwwwwwww
f

// Z Yg
oo

λ

OO

ι2

ccGGGGGGGGGGGGGG

Examples
I C = Rng (rings with unit), ⊗ = tensor product of rings:

f < g ⇔ ∀x∈Im(f )∀y∈Im(g)(xy = yx).

I C = AlgTh (algebraic theories in the sense of F. W. Lawvere), ⊗ = Kronecker
product (in the sense of P. Freyd):

f < g ⇔ Every term in the image of f commutes with every term in the image of g .

I C = ∆ (the simplicial category), ⊗ = ordinal addition:

f < g ⇔ ∀x∈Im(f )∀y∈Im(g)(x 6 y).
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Axioms on < (which give rise to a monoidal structure)

M0. The opposite relation of < satisfies the same axioms as < (that are listed below).

M1=F1. Left preservation property.

M2=F2. Right preservation property.

M3. For any two objects X and Y , the category of diagrams

X
f // C Y

goo

with the property f < g , has an initial object

X
ι1 // X ⊗ Y Y

ι2oo

M4. For any diagram

X

ι1
%%JJJ

Y

ι2
yysss ι1

%%JJJ
Z

ι2
zzttt

X ⊗ Y

f
%%KKK

Y ⊗ Z

gyyttt
C

if f < gι2 then f ι1 < g .

M5. There exists an object I such that for any morphism f : X → Y , we have g < f ,
for exactly one morphism g : I → Y .
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Part III

Cover relations



The definition

Definition
A cover relation on a category C is a relation < having left and right preservation
properties.

Examples
I By ∠ we denote the cover relation on C defined as follows: f∠g if f and g are

part of a commutative triangle

g

��

??��������
f

//

I For a pullback-stable class M of morphisms the cover relation <M is defined as
follows:

f <M g ⇔ ∀m∈M(g∠m ⇒ f∠m).

A strange example
C = Top: f < g ⇔ ∀x∈Im(f )∀y∈Im(g)(x  y).

All axioms are satisfied except F1 and M3.

Is there a cover relation which satisfies all axioms?
Just one — the codiscrete <.
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<-Coverings

Definition
Let < be a cover relation. A <-covering is a morphism c : X → Y satisfying the
following equivalent conditions:

I 1Y is a <-image of c;

I 1Y < c;

I f < c for any morphism f with codomain Y .

Lemma
Let (E,M) be a factorization system such that kernel pairs of morphisms from M
exist. Then the following conditions are equivalent to each other:

I Every morphism in M is a monomorphism.

I E is the class of all <-coverings.

Theorem
A class E of morphisms is the class of <-coverings for some reflexive and transitive
cover relation < if and only if E has the following properties:

I E contains identity morphisms.

I E is closed under composition.

I For any morphism f and for any e ∈ E, if e∠f then f ∈ E.
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Relations < induced by classes of morphisms

For a class E of morphisms by <E we denote the relation defined as follows: f <E g if
and only if f and g are part of a commutative square

e

��

//

g

��
f

//

where e ∈ E.

Lemma
<E has left preservation property and it is a cover relation if and only if every
morphism e ∈ E is a <E -covering, i.e. for every pair f , e of solid arrows in the diagram

f ′

��

e′ //

f

��
e

//

with e ∈ E, there exist the dotted arrows e′, f ′, with e′ ∈ E, making the square
commute (in other words, E admits lifts).
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Grothendieck topologies and stable factorization systems

Theorem
Let E be a class of morphisms such that for any morphism f and for any e ∈ E, if e∠f
then f ∈ E. Then the following conditions are equivalent to each other:

I <E is a reflexive and transitive cover relation.

I E contains identity morphisms, is closed under composition, and admits lifts.

Theorem
For a factorization system (E,M) the following conditions are equivalent:

I E admits lifts.

I The relation <E coincides with the relation <M.

In particular, if every morphism from M is a monomorphism and pullbacks of
morphisms from E exist, then the above conditions are equivalent to E being stable
under pullbacks.



Part IV

Motivation from Logic and Universal Algebra



Closedness properties of internal relations

I Closedness properties of internal relations V: Linear Mal’tsev conditions, Algebra
Universalis (to appear).

Congruence permutable varieties −→ Mal’tsev categories

Pointed Jónsson-Tarski varieties −→ Unital categories

...

Classes of varieties −→ Classes of categories

Term conditions −→ Closedness properties of internal relations

... p(x1, ..., xi ) = p′(x ′1, ..., x
′
i′ ), p′′(x ′′1 , ..., x ′′

i′′ ) = x ′′ ...

∀x1,...,xl

2
4
0
@ ^

j∈{1,...,m}
%(t1j , ..., tnj )

1
A =⇒ ∃xl+1,...,xk

0
@ ^

j∈{1,...,m′}
%(u1j , ..., unj )

1
A
3
5

• //

f

��

Rm

rm

��
Al // (An)m

• //

g

��

Rm′

rm′

��
Ak = Al × Ak−l

π1

��

// (An)m
′

Al
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