Cover Relations on Categories

Zurab Janelidze

University of Cape Town

Part I

Relations \sqsubset arising from factorization systems

Factorization systems

Definition (P. Freyd and G. M. Kelly)

Factorization systems

Definition (P. Freyd and G. M. Kelly)

$\mathbb{C},(\mathcal{E}, \mathcal{M})$

Factorization systems

Definition (P. Freyd and G. M. Kelly)
$\mathbb{C},(\mathcal{E}, \mathcal{M})$

- \mathcal{E} and \mathcal{M} contain isomorphisms and are closed under composition,

Factorization systems

Definition (P. Freyd and G. M. Kelly)

$\mathbb{C},(\mathcal{E}, \mathcal{M})$

- \mathcal{E} and \mathcal{M} contain isomorphisms and are closed under composition,
- Orthogonality:

Factorization systems

Definition (P. Freyd and G. M. Kelly)

$\mathbb{C},(\mathcal{E}, \mathcal{M})$

- \mathcal{E} and \mathcal{M} contain isomorphisms and are closed under composition,
- Orthogonality:

- Existence of $(\mathcal{E}, \mathcal{M})$-factorizations:

$f \sqsubset f^{\prime}$

$$
f \sqsubset f^{\prime}
$$

$$
\operatorname{Im}(f) \subseteq \operatorname{Im}\left(f^{\prime}\right)
$$

Can \mathcal{E} and \mathcal{M} be recovered from \sqsubset ?

Can \mathcal{E} and \mathcal{M} be recovered from \sqsubset ?

$$
\mathbb{C}=\text { Set: }
$$

Can \mathcal{E} and \mathcal{M} be recovered from \sqsubset ?

$\mathbb{C}=$ Set:

- $\mathcal{E}=$ Isos, $\mathcal{M}=$ All morphisms;

Can \mathcal{E} and \mathcal{M} be recovered from \sqsubset ?

$\mathbb{C}=$ Set:

- $\mathcal{E}=$ Isos, $\mathcal{M}=$ All morphisms;
- $\mathcal{E}=$ Epis, $\mathcal{M}=$ Monos.

Can \mathcal{E} and \mathcal{M} be recovered from \sqsubset ?

$\mathbb{C}=$ Set:

- $\mathcal{E}=$ Isos, $\mathcal{M}=$ All morphisms;
- $\mathcal{E}=$ Epis, $\mathcal{M}=$ Monos.
$f \sqsubset f^{\prime} \Leftrightarrow \operatorname{Im}(f) \subseteq \operatorname{Im}\left(f^{\prime}\right)$

Can \mathcal{E} and \mathcal{M} be recovered from \sqsubset ?

$\mathbb{C}=$ Set:

- $\mathcal{E}=$ Isos, $\mathcal{M}=$ All morphisms;
- $\mathcal{E}=$ Epis, $\mathcal{M}=$ Monos.
$f \sqsubset f^{\prime} \Leftrightarrow \operatorname{Im}(f) \subseteq \operatorname{Im}\left(f^{\prime}\right)$
The answer is yes if every morphism in \mathcal{M} is a monomorphism.

Axioms on \sqsubset

Axioms on \sqsubset

F0. \sqsubset is reflexive and transitive.

Axioms on \sqsubset

F0. \sqsubset is reflexive and transitive.
F1. Left preservation property:

if $f \sqsubset g$ then $h f \sqsubset h g$.

Axioms on \sqsubset

F0. \sqsubset is reflexive and transitive.
F1. Left preservation property:

if $f \sqsubset g$ then $h f \sqsubset h g$.
F2. Right preservation property:

if $f \sqsubset g$ then $f e \sqsubset g$.

F0. \sqsubset is reflexive and transitive.
F1. Left preservation property:

if $f \sqsubset g$ then $h f \sqsubset h g$.
F2. Right preservation property:

if $f \sqsubset g$ then $f e \sqsubset g$.

F3. Every morphism f has a \sqsubset-image m, i.e. a morphism m such that $m \sqsubset f$ and m is universal with this property

F0. \sqsubset is reflexive and transitive.
F1. Left preservation property:

if $f \sqsubset g$ then $h f \sqsubset h g$.
F2. Right preservation property:

if $f \sqsubset g$ then $f e \sqsubset g$.

F3. Every morphism f has a \sqsubset-image m, i.e. a morphism m such that $m \sqsubset f$ and m is universal with this property

F4. Every \sqsubset-image h is a \sqsubset-reflecting morphism, i.e. for every two morphisms f, g (as in the display in Axiom 1) we have $h f \sqsubset h g \Rightarrow f \sqsubset g$.

Axioms on \sqsubset (continued)

Axioms on \sqsubset (continued)

- F0 \& F1 \& F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems $(\mathcal{E}, \mathcal{M})$ where every element in \mathcal{M} is a monomorphism).

Axioms on \sqsubset (continued)

- F0 \& F1 \& F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems $(\mathcal{E}, \mathcal{M})$ where every element in \mathcal{M} is a monomorphism).
- F0 \& F1 \& F2 \& F3: Right-proper right factorization systems in the sense of D. Dikranjan and W. Tholen.

Axioms on \sqsubset (continued)

- F0 \& F1 \& F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems $(\mathcal{E}, \mathcal{M})$ where every element in \mathcal{M} is a monomorphism).
- F0 \& F1 \& F2 \& F3: Right-proper right factorization systems in the sense of D. Dikranjan and W. Tholen.
- F0 \& F1 \& F2 \& F3 \& F4: Right-proper factorization systems.

Axioms on \sqsubset (continued)

- F0 \& F1 \& F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems $(\mathcal{E}, \mathcal{M})$ where every element in \mathcal{M} is a monomorphism).
- F0 \& F1 \& F2 \& F3: Right-proper right factorization systems in the sense of D. Dikranjan and W. Tholen.
- F0 \& F1 \& F2 \& F3 \& F4: Right-proper factorization systems.
- What happens if we remove Axiom F0?
Part II

Relations \sqsubset arising from certain monoidal structures

Cooperating pairs of morphisms in a unital category

Cooperating pairs of morphisms in a unital category
$\mathbb{C}=\mathbf{G r p} ;$

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow* \forallx\in\operatorname{Im}(f)}\mp@subsup{\forall}{y\in\operatorname{Im}(g)}{}(xy=yx)
```

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow* \forall
```

\sqsubset satisfies axioms

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow* \forall
```

\sqsubset satisfies axioms F1-4.

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow* \forall
```

\sqsubset satisfies axioms F1-4.

Where does \sqsubset come from?

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow}\mp@subsup{\forall}{x\in\operatorname{Im}(f)}{}\mp@subsup{\forall}{y\in\operatorname{Im}(g)}{}(xy=yx)
```

\sqsubset satisfies axioms F1-4.

Where does \sqsubset come from?
S. A. Huq:

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow}\mp@subsup{\forall}{x\in\operatorname{Im}(f)}{}\mp@subsup{\forall}{y\in\operatorname{Im}(g)}{}(xy=yx)
```

\sqsubset satisfies axioms F1-4.

Where does \sqsubset come from?
S. A. Huq:

Cooperating pairs of morphisms in a unital category

```
C = Grp;
f\sqsubsetg\Leftrightarrow* \forallx\in\operatorname{Im}(f)}\mp@subsup{\forall}{y\in\operatorname{Im}(g)}{}(xy=yx)
```

\sqsubset satisfies axioms F1-4.

Where does \sqsubset come from?
S. A. Huq:

Unital categories in the sense of D. Bourn: $f \sqsubset g$ iff f and g cooperate.

$$
\text { Replacing } \times \text { with } \otimes
$$

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

- $\mathbb{C}=$ Rng (rings with unit), $\otimes=$ tensor product of rings:

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

- $\mathbb{C}=$ Rng (rings with unit), $\otimes=$ tensor product of rings:

$$
f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x y=y x) .
$$

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

- $\mathbb{C}=$ Rng (rings with unit), $\otimes=$ tensor product of rings:

$$
f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x y=y x) .
$$

- $\mathbb{C}=\mathbf{A l g T h}$ (algebraic theories in the sense of F. W. Lawvere), $\otimes=$ Kronecker product (in the sense of P. Freyd):

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

- $\mathbb{C}=$ Rng (rings with unit), $\otimes=$ tensor product of rings:

$$
f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x y=y x) .
$$

- $\mathbb{C}=\mathbf{A l g T h}$ (algebraic theories in the sense of $\mathrm{F} . \mathrm{W}$. Lawvere), $\otimes=$ Kronecker product (in the sense of P. Freyd):
$f \sqsubset g \Leftrightarrow$ Every term in the image of f commutes with every term in the image of g.

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

- $\mathbb{C}=$ Rng (rings with unit), $\otimes=$ tensor product of rings:

$$
f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x y=y x) .
$$

- $\mathbb{C}=\mathbf{A l g T h}$ (algebraic theories in the sense of $\mathrm{F} . \mathrm{W}$. Lawvere), $\otimes=$ Kronecker product (in the sense of P. Freyd):
$f \sqsubset g \Leftrightarrow$ Every term in the image of f commutes with every term in the image of g.
- $\mathbb{C}=\Delta$ (the simplicial category), $\otimes=$ ordinal addition:

Replacing \times with \otimes

$(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

- $\mathbb{C}=$ Rng (rings with unit), $\otimes=$ tensor product of rings:

$$
f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x y=y x) .
$$

- $\mathbb{C}=\mathbf{A l g T h}$ (algebraic theories in the sense of $\mathrm{F} . \mathrm{W}$. Lawvere), $\otimes=$ Kronecker product (in the sense of P. Freyd):
$f \sqsubset g \Leftrightarrow$ Every term in the image of f commutes with every term in the image of g.
- $\mathbb{C}=\Delta$ (the simplicial category), $\otimes=$ ordinal addition:

$$
f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x \leqslant y) .
$$

Axioms on \sqsubset (which give rise to a monoidal structure)

Axioms on \sqsubset (which give rise to a monoidal structure)

M0. The opposite relation of \sqsubset satisfies the same axioms as \sqsubset (that are listed below).

Axioms on \sqsubset (which give rise to a monoidal structure)

M0. The opposite relation of \sqsubset satisfies the same axioms as \sqsubset (that are listed below). $\mathrm{M} 1=\mathrm{F} 1$. Left preservation property.

Axioms on \sqsubset (which give rise to a monoidal structure)

M0. The opposite relation of \sqsubset satisfies the same axioms as \sqsubset (that are listed below). $\mathrm{M} 1=\mathrm{F} 1$. Left preservation property.
$\mathrm{M} 2=\mathrm{F} 2$. Right preservation property.

Axioms on \sqsubset (which give rise to a monoidal structure)

M0. The opposite relation of \sqsubset satisfies the same axioms as \sqsubset (that are listed below). $\mathrm{M} 1=\mathrm{F} 1$. Left preservation property.
$\mathrm{M} 2=\mathrm{F} 2$. Right preservation property.
M3. For any two objects X and Y, the category of diagrams

$$
X \xrightarrow{f} C \stackrel{g}{\stackrel{g}{4}} Y
$$

with the property $f \sqsubset g$, has an initial object

$$
X \xrightarrow{\iota_{1}} X \otimes Y \nprec^{\iota_{2}} Y
$$

Axioms on \sqsubset (which give rise to a monoidal structure)

M0. The opposite relation of \sqsubset satisfies the same axioms as \sqsubset (that are listed below). $\mathrm{M} 1=\mathrm{F} 1$. Left preservation property.
$\mathrm{M} 2=\mathrm{F} 2$. Right preservation property.
M3. For any two objects X and Y, the category of diagrams

$$
X \xrightarrow{f} C \stackrel{g}{\stackrel{g}{\longleftrightarrow}} Y
$$

with the property $f \sqsubset g$, has an initial object

$$
X \xrightarrow{\iota_{1}} X \otimes Y \nleftarrow^{\iota_{2}} Y
$$

M4. For any diagram

if $f \sqsubset g \iota_{2}$ then $f \iota_{1} \sqsubset g$.

Axioms on \sqsubset (which give rise to a monoidal structure)

M0. The opposite relation of \sqsubset satisfies the same axioms as \sqsubset (that are listed below). $\mathrm{M} 1=\mathrm{F} 1$. Left preservation property.
$\mathrm{M} 2=\mathrm{F} 2$. Right preservation property.
M3. For any two objects X and Y, the category of diagrams

$$
X \xrightarrow{f} C \stackrel{g}{\stackrel{g}{\longleftrightarrow}} Y
$$

with the property $f \sqsubset g$, has an initial object

$$
X \xrightarrow{\iota_{1}} X \otimes Y \nprec^{\iota_{2}} Y
$$

M4. For any diagram

if $f \sqsubset g \iota_{2}$ then $f \iota_{1} \sqsubset g$.
M5. There exists an object I such that for any morphism $f: X \rightarrow Y$, we have $g \sqsubset f$, for exactly one morphism $g: I \rightarrow Y$.

Part III

Cover relations

The definition

The definition

Definition
A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

The definition

Definition
A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

The definition

Definition

A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

- By \angle we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

The definition

Definition

A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

- By \angle we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

- For a pullback-stable class \mathcal{M} of morphisms the cover relation $\sqsubset^{\mathcal{M}}$ is defined as follows:

$$
f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}}(g \angle m \Rightarrow f \angle m) .
$$

The definition

Definition

A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

- By \angle we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

- For a pullback-stable class \mathcal{M} of morphisms the cover relation $\sqsubset^{\mathcal{M}}$ is defined as follows:

$$
f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}}(g \angle m \Rightarrow f \angle m) .
$$

A strange example
$\mathbb{C}=$ Top: $f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x \rightsquigarrow y)$.

The definition

Definition

A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

- By \angle we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

- For a pullback-stable class \mathcal{M} of morphisms the cover relation $\sqsubset^{\mathcal{M}}$ is defined as follows:

$$
f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}}(g \angle m \Rightarrow f \angle m) .
$$

A strange example
$\mathbb{C}=$ Top: $f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x \rightsquigarrow y)$.
All axioms are satisfied except F1 and M3.

The definition

Definition

A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

- By \angle we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

- For a pullback-stable class \mathcal{M} of morphisms the cover relation $\sqsubset^{\mathcal{M}}$ is defined as follows:

$$
f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}}(g \angle m \Rightarrow f \angle m) .
$$

A strange example
$\mathbb{C}=$ Top: $f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x \rightsquigarrow y)$.
All axioms are satisfied except F1 and M3.
Is there a cover relation which satisfies all axioms?

The definition

Definition

A cover relation on a category \mathbb{C} is a relation \sqsubset having left and right preservation properties.

Examples

- By \angle we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

- For a pullback-stable class \mathcal{M} of morphisms the cover relation $\sqsubset^{\mathcal{M}}$ is defined as follows:

$$
f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}}(g \angle m \Rightarrow f \angle m) .
$$

A strange example
$\mathbb{C}=$ Top: $f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)}(x \rightsquigarrow y)$.
All axioms are satisfied except F1 and M3.
Is there a cover relation which satisfies all axioms?
Just one - the codiscrete \sqsubset.

\sqsubset-Coverings

Definition
Let \sqsubset be a cover relation. A \sqsubset-covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

\sqsubset-Coverings

Definition
Let \sqsubset be a cover relation. A \sqsubset-covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

- 1_{Y} is a ■-image of c;

\sqsubset-Coverings

Definition
Let \sqsubset be a cover relation. A \sqsubset-covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

- 1_{Y} is a \sqsubset-image of c;
- $1_{Y} \sqsubset c$;

\sqsubset-Coverings

Definition
Let \sqsubset be a cover relation. A \sqsubset-covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

- 1_{Y} is a \sqsubset-image of c;
- $1_{Y} \sqsubset c$;
- $f \sqsubset c$ for any morphism f with codomain Y.

\sqsubset-Coverings

Definition

Let \sqsubset be a cover relation. A \sqsubset-covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

- 1_{Y} is a \sqsubset-image of c;
- $1_{Y} \sqsubset c$;
- $f \sqsubset c$ for any morphism f with codomain Y.

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a factorization system such that kernel pairs of morphisms from \mathcal{M} exist. Then the following conditions are equivalent to each other:

- Every morphism in \mathcal{M} is a monomorphism.
- \mathcal{E} is the class of all \sqsubset-coverings.

\sqsubset-Coverings

Definition

Let \sqsubset be a cover relation. A \sqsubset-covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

- 1_{Y} is a \sqsubset-image of c;
- $1_{Y} \sqsubset c$;
- $f \sqsubset c$ for any morphism f with codomain Y.

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a factorization system such that kernel pairs of morphisms from \mathcal{M} exist. Then the following conditions are equivalent to each other:

- Every morphism in \mathcal{M} is a monomorphism.
- \mathcal{E} is the class of all \sqsubset-coverings.

Theorem

A class \mathcal{E} of morphisms is the class of \sqsubset-coverings for some reflexive and transitive cover relation \sqsubset if and only if \mathcal{E} has the following properties:

- \mathcal{E} contains identity morphisms.
- \mathcal{E} is closed under composition.
- For any morphism f and for any $e \in \mathcal{E}$, if $e \angle f$ then $f \in \mathcal{E}$.

Relations \sqsubset induced by classes of morphisms

For a class \mathcal{E} of morphisms by $\sqsubset_{\mathcal{E}}$ we denote the relation defined as follows: $f \sqsubset_{\mathcal{E}} g$ if and only if f and g are part of a commutative square

where $e \in \mathcal{E}$.

Relations \sqsubset induced by classes of morphisms

For a class \mathcal{E} of morphisms by $\square_{\mathcal{E}}$ we denote the relation defined as follows: $f \sqsubset_{\mathcal{E}} g$ if and only if f and g are part of a commutative square

where $e \in \mathcal{E}$.

Lemma

$\sqsubset_{\mathcal{E}}$ has left preservation property and it is a cover relation if and only if every morphism $e \in \mathcal{E}$ is a $\sqsubset_{\mathcal{E}}$-covering, i.e. for every pair f, e of solid arrows in the diagram

with $e \in \mathcal{E}$, there exist the dotted arrows e^{\prime}, f^{\prime}, with $e^{\prime} \in \mathcal{E}$, making the square commute (in other words, \mathcal{E} admits lifts).

Grothendieck topologies and stable factorization systems

Theorem

Let \mathcal{E} be a class of morphisms such that for any morphism f and for any $e \in \mathcal{E}$, if e $\angle f$ then $f \in \mathcal{E}$. Then the following conditions are equivalent to each other:

- $\sqsubset_{\mathcal{E}}$ is a reflexive and transitive cover relation.
- \mathcal{E} contains identity morphisms, is closed under composition, and admits lifts.

Theorem

For a factorization system $(\mathcal{E}, \mathcal{M})$ the following conditions are equivalent:

- \mathcal{E} admits lifts.
- The relation $\sqsubset_{\mathcal{E}}$ coincides with the relation $\sqsubset^{\mathcal{M}}$.

In particular, if every morphism from \mathcal{M} is a monomorphism and pullbacks of morphisms from \mathcal{E} exist, then the above conditions are equivalent to \mathcal{E} being stable under pullbacks.

Part IV
Motivation from Logic and Universal Algebra

Closedness properties of internal relations

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions \longrightarrow

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions \longrightarrow Closedness properties of internal relations

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions \longrightarrow Closedness properties of internal relations
$\ldots p\left(x_{1}, \ldots, x_{i}\right)=p^{\prime}\left(x_{1}^{\prime}, \ldots, x_{i^{\prime}}^{\prime}\right), p^{\prime \prime}\left(x_{1}^{\prime \prime}, \ldots, x_{i^{\prime \prime}}^{\prime \prime}\right)=x^{\prime \prime} \ldots$

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).
Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions \longrightarrow Closedness properties of internal relations
$\ldots p\left(x_{1}, \ldots, x_{i}\right)=p^{\prime}\left(x_{1}^{\prime}, \ldots, x_{i^{\prime}}^{\prime}\right), p^{\prime \prime}\left(x_{1}^{\prime \prime}, \ldots, x_{i^{\prime \prime}}^{\prime \prime}\right)=x^{\prime \prime} \ldots$

$$
\forall_{x_{1}, \ldots, x_{l}}\left[\left(\bigwedge_{j \in\{1, \ldots, m\}} \varrho\left(t_{1 j}, \ldots, t_{n j}\right)\right) \Longrightarrow \exists_{x_{l+1}, \ldots, x_{k}}\left(\bigwedge_{j \in\left\{1, \ldots, m^{\prime}\right\}} \varrho\left(u_{1 j}, \ldots, u_{n j}\right)\right)\right]
$$

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions \longrightarrow Closedness properties of internal relations
$\ldots p\left(x_{1}, \ldots, x_{i}\right)=p^{\prime}\left(x_{1}^{\prime}, \ldots, x_{i^{\prime}}^{\prime}\right), p^{\prime \prime}\left(x_{1}^{\prime \prime}, \ldots, x_{i^{\prime \prime}}^{\prime \prime}\right)=x^{\prime \prime} \ldots$

$$
\forall_{x_{1}, \ldots, x_{l}}\left[\left(\bigwedge_{j \in\{1, \ldots, m\}} \varrho\left(t_{1 j}, \ldots, t_{n j}\right)\right) \Longrightarrow \exists_{x_{l+1}, \ldots, x_{k}}\left(\bigwedge_{j \in\left\{1, \ldots, m^{\prime}\right\}} \varrho\left(u_{1 j}, \ldots, u_{n j}\right)\right)\right]
$$

Closedness properties of internal relations

- Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories
Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories
Term conditions \longrightarrow Closedness properties of internal relations
$\ldots p\left(x_{1}, \ldots, x_{i}\right)=p^{\prime}\left(x_{1}^{\prime}, \ldots, x_{i^{\prime}}^{\prime}\right), p^{\prime \prime}\left(x_{1}^{\prime \prime}, \ldots, x_{i^{\prime \prime}}^{\prime \prime}\right)=x^{\prime \prime} \ldots$

$$
\forall_{x_{1}, \ldots, x_{l}}\left[\left(\bigwedge_{j \in\{1, \ldots, m\}} \varrho\left(t_{1 j}, \ldots, t_{n j}\right)\right) \Longrightarrow \exists_{x_{l+1}, \ldots, x_{k}}\left(\bigwedge_{j \in\left\{1, \ldots, m^{\prime}\right\}} \varrho\left(u_{1 j}, \ldots, u_{n j}\right)\right)\right]
$$

π_{1}
\downarrow
A^{\prime}

