Cover Relations on Categories

Zurab Janelidze

University of Cape Town

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$Part \ I$

Relations \sqsubset arising from factorization systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition (P. Freyd and G. M. Kelly)

Definition (P. Freyd and G. M. Kelly)

 $\mathbb{C},\,(\mathcal{E},\mathcal{M})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition (P. Freyd and G. M. Kelly)

 $\mathbb{C},\,(\mathcal{E},\mathcal{M})$

 $\blacktriangleright~{\cal E}$ and ${\cal M}$ contain isomorphisms and are closed under composition,

Definition (P. Freyd and G. M. Kelly)

 $\mathbb{C},~(\mathcal{E},\mathcal{M})$

- $\blacktriangleright~{\cal E}$ and ${\cal M}$ contain isomorphisms and are closed under composition,
- Orthogonality:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition (P. Freyd and G. M. Kelly)

 $\mathbb{C},~(\mathcal{E},\mathcal{M})$

- $\blacktriangleright~{\cal E}$ and ${\cal M}$ contain isomorphisms and are closed under composition,
- Orthogonality:

► Existence of (*E*, *M*)-factorizations:

うつつ ヨー ヘヨト イヨト イロト

◆□→ ◆□→ ◆三→ ◆三→

æ

 $f\sqsubset f'$

・ロト (個) (主) (主) (主) のへの

 $f\sqsubset f'$

 $\operatorname{Im}(f) \subseteq \operatorname{Im}(f')$

 $\mathbb{C} = \mathbf{Set}$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $\mathbb{C} = \mathbf{Set}:$

• $\mathcal{E} = \text{Isos}, \ \mathcal{M} = \text{All morphisms};$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\mathbb{C}=\text{Set}:$

- $\mathcal{E} = \text{Isos}, \ \mathcal{M} = \text{All morphisms};$
- $\mathcal{E} = \text{Epis}, \ \mathcal{M} = \text{Monos}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\mathbb{C}=\text{Set}:$

- $\mathcal{E} = \text{Isos}, \ \mathcal{M} = \text{All morphisms};$
- $\mathcal{E} = \text{Epis}, \ \mathcal{M} = \text{Monos}.$
- $f \sqsubset f' \Leftrightarrow \operatorname{Im}(f) \subseteq \operatorname{Im}(f')$

 $\mathbb{C}=\text{Set}:$

- $\mathcal{E} = \text{Isos}, \ \mathcal{M} = \text{All morphisms};$
- $\mathcal{E} = \text{Epis}, \ \mathcal{M} = \text{Monos}.$
- $f \sqsubset f' \Leftrightarrow \operatorname{Im}(f) \subseteq \operatorname{Im}(f')$

The answer is yes if every morphism in \mathcal{M} is a monomorphism.

◇□◇ 単 《目》《目》 《□◇

F0. \square is reflexive and transitive.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- F0. \square is reflexive and transitive.
- F1. Left preservation property:

if $f \sqsubset g$ then $hf \sqsubset hg$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- F0. \square is reflexive and transitive.
- F1. Left preservation property:

if $f \sqsubset g$ then $hf \sqsubset hg$.

F2. Right preservation property:

if $f \sqsubset g$ then $f e \sqsubset g$.

- F0. \square is reflexive and transitive.
- F1. Left preservation property:

F2. Right preservation property:

if $f \sqsubset g$ then $f e \sqsubset g$.

F3. Every morphism f has a □-image m, i.e. a morphism m such that m □ f and m is universal with this property

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三三 - つへ⊙

- F0. \square is reflexive and transitive.
- F1. Left preservation property:

- if $f \sqsubset g$ then $hf \sqsubset hg$.
- F2. Right preservation property:

if $f \sqsubset g$ then $f \in g$.

F3. Every morphism f has a □-image m, i.e. a morphism m such that m □ f and m is universal with this property

F4. Every \Box -image h is a \Box -reflecting morphism, i.e. for every two morphisms f, g (as in the display in Axiom 1) we have $hf \Box hg \Rightarrow f \Box g$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ <個▶ < E▶ < E▶ E のQ@</p>

F0 & F1 & F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems (*E*, *M*) where every element in *M* is a monomorphism).

- F0 & F1 & F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems (*E*, *M*) where every element in *M* is a monomorphism).
- F0 & F1 & F2 & F3: Right-proper right factorization systems in the sense of D. Dikranjan and W. Tholen.

- F0 & F1 & F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems (*E*, *M*) where every element in *M* is a monomorphism).
- F0 & F1 & F2 & F3: Right-proper right factorization systems in the sense of D. Dikranjan and W. Tholen.

▶ F0 & F1 & F2 & F3 & F4: Right-proper factorization systems.

- F0 & F1 & F2: Relations lifted from those induced by a factorization system = Relations lifted from those induced by right-proper factorization systems (i.e. those factorization systems (*E*, *M*) where every element in *M* is a monomorphism).
- F0 & F1 & F2 & F3: Right-proper right factorization systems in the sense of D. Dikranjan and W. Tholen.

うつつ ヨー ヘヨト イヨト イロト

- ▶ F0 & F1 & F2 & F3 & F4: Right-proper factorization systems.
- What happens if we remove Axiom F0?

$Part \ II$

 $Relations \sqsubset arising from certain monoidal structures$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQQ

 $\mathbb{C}=\text{Grp};$

$$C = \mathbf{Grp}; f \sqsubset g \iff \forall_{x \in \mathrm{Im}(f)} \forall_{y \in \mathrm{Im}(g)} (xy = yx).$$

 \square satisfies axioms

$$C = \mathbf{Grp}; f \sqsubset g \iff \forall_{x \in \mathrm{Im}(f)} \forall_{y \in \mathrm{Im}(g)} (xy = yx).$$

 \square satisfies axioms F1-4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 \square satisfies axioms F1-4.

Where does \square come from?

Where does \square come from?

S. A. Huq:

Where does \square come from?

S. A. Huq:

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三三 - のQ@
Cooperating pairs of morphisms in a unital category

Where does \square come from?

S. A. Huq:

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三三 - のへ⊙

Unital categories in the sense of D. Bourn: $f \sqsubset g$ iff f and g cooperate.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQQ

 $(\mathbb{C},\otimes, I,\alpha,\lambda,\varrho)$

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

イロト イヨト イヨト イヨト

4

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

イロト イヨト イヨト イヨト

4

Examples

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

イロト 不得下 イヨト イヨト

31

Examples

• $\mathbb{C} = \mathbf{Rng}$ (rings with unit), $\otimes =$ tensor product of rings:

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

• $\mathbb{C} = \mathbf{Rng}$ (rings with unit), $\otimes =$ tensor product of rings:

$$f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)} (xy = yx).$$

イロト 不得下 イヨト イヨト

31

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

• $\mathbb{C} = \mathbf{Rng}$ (rings with unit), $\otimes =$ tensor product of rings:

$$f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)} (xy = yx).$$

シックト 正 ・ イヨト イヨト ・ 日

C = AlgTh (algebraic theories in the sense of F. W. Lawvere), ⊗ = Kronecker product (in the sense of P. Freyd):

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

• $\mathbb{C} = \mathbf{Rng}$ (rings with unit), $\otimes =$ tensor product of rings:

$$f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)} (xy = yx).$$

C = AlgTh (algebraic theories in the sense of F. W. Lawvere), ⊗ = Kronecker product (in the sense of P. Freyd):

 $f \sqsubset g \Leftrightarrow$ Every term in the image of f commutes with every term in the image of g.

シックト 正 ・ イヨト イヨト ・ 日

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

• $\mathbb{C} = \mathbf{Rng}$ (rings with unit), $\otimes =$ tensor product of rings:

$$f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)} (xy = yx).$$

C = AlgTh (algebraic theories in the sense of F. W. Lawvere), ⊗ = Kronecker product (in the sense of P. Freyd):

 $f \sqsubset g \Leftrightarrow$ Every term in the image of f commutes with every term in the image of g.

シックト 正 ・ イヨト イヨト ・ 日

 $(\mathbb{C}, \otimes, I, \alpha, \lambda, \varrho)$

Examples

• $\mathbb{C} = \mathbf{Rng}$ (rings with unit), $\otimes =$ tensor product of rings:

$$f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)} (xy = yx).$$

• $\mathbb{C} = \text{AlgTh}$ (algebraic theories in the sense of F. W. Lawvere), $\otimes =$ Kronecker product (in the sense of P. Freyd):

 $f \sqsubset g \Leftrightarrow$ Every term in the image of f commutes with every term in the image of g.

シックト 正 ・ イヨト イヨト ・ 日

• $\mathbb{C} = \Delta$ (the simplicial category), \otimes = ordinal addition:

$$f \sqsubset g \Leftrightarrow \forall_{x \in \operatorname{Im}(f)} \forall_{y \in \operatorname{Im}(g)} (x \leqslant y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

M0. The opposite relation of \Box satisfies the same axioms as \Box (that are listed below).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

M0. The opposite relation of \square satisfies the same axioms as \square (that are listed below). M1=F1. Left preservation property.

M0. The opposite relation of \Box satisfies the same axioms as \Box (that are listed below).

- M1=F1. Left preservation property.
- M2=F2. Right preservation property.

M0. The opposite relation of \square satisfies the same axioms as \square (that are listed below).

- M1=F1. Left preservation property.
- M2=F2. Right preservation property.
 - M3. For any two objects X and Y, the category of diagrams

$$X \xrightarrow{f} C \xleftarrow{g} Y$$

with the property $f \sqsubset g$, has an initial object

$$X \xrightarrow{\iota_1} X \otimes Y \xleftarrow{\iota_2} Y$$

うつつ ヨー ヘビト ヘビト ヘロト

M0. The opposite relation of \square satisfies the same axioms as \square (that are listed below).

- M1 = F1. Left preservation property.
- M2=F2. Right preservation property.
 - M3. For any two objects X and Y, the category of diagrams

$$X \xrightarrow{f} C \xleftarrow{g} Y$$

with the property $f \sqsubset g$, has an initial object

$$X \xrightarrow{\iota_1} X \otimes Y \xleftarrow{\iota_2} Y$$

M4. For any diagram

シックト 正 ・ イヨト イヨト ・ 日

if $f \sqsubset g\iota_2$ then $f\iota_1 \sqsubset g$.

M0. The opposite relation of \square satisfies the same axioms as \square (that are listed below).

M1=F1. Left preservation property.

M2=F2. Right preservation property.

M3. For any two objects X and Y, the category of diagrams

$$X \xrightarrow{f} C \xleftarrow{g} Y$$

with the property $f \sqsubset g$, has an initial object

$$X \xrightarrow{\iota_1} X \otimes Y \xleftarrow{\iota_2} Y$$

M4. For any diagram

うつつ 川田 ふかく キャー うつつ

if $f \sqsubset g\iota_2$ then $f\iota_1 \sqsubset g$.

M5. There exists an object I such that for any morphism $f : X \to Y$, we have $g \sqsubset f$, for exactly one morphism $g : I \to Y$.

Part III

Cover relations

▲□▶ <圖▶ <필▶ <필▶ < 필▶

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

By ∠ we denote the cover relation on C defined as follows: f∠g if f and g are part of a commutative triangle

うつつ ヨー ヘビト ヘビト ヘロト

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

▶ By ∠ we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

 \blacktriangleright For a pullback-stable class ${\cal M}$ of morphisms the cover relation ${\sqsubset}^{\cal M}$ is defined as follows:

$$f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}} (g \angle m \Rightarrow f \angle m).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三三 - のへ⊙

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

▶ By ∠ we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

$$f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}} (g \angle m \Rightarrow f \angle m).$$

シックト 正 ・ イヨト イヨト ・ 日

A strange example $\mathbb{C} = \text{Top:} \ f \sqsubset g \iff \forall_{x \in \text{Im}(f)} \forall_{y \in \text{Im}(g)} (x \rightsquigarrow y).$

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

▶ By ∠ we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

For a pullback-stable class *M* of morphisms the cover relation

^{*M*} is defined as follows:

$$f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}} (g \angle m \Rightarrow f \angle m).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三三 - つへ⊙

A strange example

$$\mathbb{C} = \mathbf{Top:} \ f \sqsubset g \ \Leftrightarrow \ \forall_{x \in \mathrm{Im}(f)} \forall_{y \in \mathrm{Im}(g)} (x \rightsquigarrow y).$$

All axioms are satisfied except F1 and M3.

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

▶ By ∠ we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

$$f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}} (g \angle m \Rightarrow f \angle m).$$

うつん ヨー・ヨト・ヨト・・ロト

A strange example

$$\mathbb{C} = \mathbf{Top}: \ f \sqsubset g \ \Leftrightarrow \ \forall_{x \in \mathrm{Im}(f)} \forall_{y \in \mathrm{Im}(g)} (x \rightsquigarrow y).$$

All axioms are satisfied except F1 and M3.

Is there a cover relation which satisfies all axioms?

Definition

A cover relation on a category $\mathbb C$ is a relation \sqsubset having left and right preservation properties.

Examples

▶ By ∠ we denote the cover relation on \mathbb{C} defined as follows: $f \angle g$ if f and g are part of a commutative triangle

$$f \sqsubset^{\mathcal{M}} g \Leftrightarrow \forall_{m \in \mathcal{M}} (g \angle m \Rightarrow f \angle m).$$

A strange example

$$\mathbb{C} = \mathbf{Top}: \ f \sqsubset g \ \Leftrightarrow \ \forall_{x \in \mathrm{Im}(f)} \forall_{y \in \mathrm{Im}(g)} (x \rightsquigarrow y).$$

All axioms are satisfied except F1 and M3.

Is there a cover relation which satisfies all axioms? Just one — the codiscrete \Box .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition

Let \square be a cover relation. A \square -covering is a morphism $c: X \rightarrow Y$ satisfying the following equivalent conditions:

Definition

Let \square be a cover relation. A \square -covering is a morphism $c: X \to Y$ satisfying the following equivalent conditions:

▶ 1_Y is a \Box -image of c;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Definition

Let \square be a cover relation. A \square -covering is a morphism $c: X \to Y$ satisfying the following equivalent conditions:

- ▶ 1_Y is a \square -image of c;
- ▶ $1_Y \sqsubset c$;

Definition

Let \square be a cover relation. A \square -covering is a morphism $c: X \to Y$ satisfying the following equivalent conditions:

- ▶ 1_Y is a \square -image of c;
- ► 1_Y ⊂ c;
- $f \sqsubset c$ for any morphism f with codomain Y.

\square -Coverings

Definition

Let \square be a cover relation. A \square -covering is a morphism $c: X \to Y$ satisfying the following equivalent conditions:

- ▶ 1_Y is a \square -image of c;
- ▶ $1_Y \sqsubset c$;
- $f \sqsubset c$ for any morphism f with codomain Y.

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a factorization system such that kernel pairs of morphisms from \mathcal{M} exist. Then the following conditions are equivalent to each other:

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三三 - のQ@

- Every morphism in \mathcal{M} is a monomorphism.
- \mathcal{E} is the class of all \Box -coverings.

Definition

Let \square be a cover relation. A \square -covering is a morphism $c: X \to Y$ satisfying the following equivalent conditions:

- ▶ 1_Y is a \square -image of c;
- ▶ $1_Y \sqsubset c$;
- $f \sqsubset c$ for any morphism f with codomain Y.

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a factorization system such that kernel pairs of morphisms from \mathcal{M} exist. Then the following conditions are equivalent to each other:

- Every morphism in \mathcal{M} is a monomorphism.
- E is the class of all
 □-coverings.

Theorem

A class \mathcal{E} of morphisms is the class of \Box -coverings for some reflexive and transitive cover relation \Box if and only if \mathcal{E} has the following properties:

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三三 - つへ⊙

- *E* contains identity morphisms.
- \blacktriangleright ${\mathcal E}$ is closed under composition.
- For any morphism f and for any $e \in \mathcal{E}$, if $e \angle f$ then $f \in \mathcal{E}$.

Relations \square induced by classes of morphisms

For a class \mathcal{E} of morphisms by $\Box_{\mathcal{E}}$ we denote the relation defined as follows: $f \Box_{\mathcal{E}} g$ if and only if f and g are part of a commutative square

where $e \in \mathcal{E}$.

Relations \sqsubset induced by classes of morphisms

For a class \mathcal{E} of morphisms by $\Box_{\mathcal{E}}$ we denote the relation defined as follows: $f \Box_{\mathcal{E}} g$ if and only if f and g are part of a commutative square

where $e \in \mathcal{E}$.

Lemma

 $\Box_{\mathcal{E}}$ has left preservation property and it is a cover relation if and only if every morphism $e \in \mathcal{E}$ is a $\Box_{\mathcal{E}}$ -covering, i.e. for every pair f, e of solid arrows in the diagram

うつつ 川田 ふかく キャー うつつ

with $e \in \mathcal{E}$, there exist the dotted arrows e', f', with $e' \in \mathcal{E}$, making the square commute (in other words, \mathcal{E} admits lifts).
Grothendieck topologies and stable factorization systems

Theorem

Let \mathcal{E} be a class of morphisms such that for any morphism f and for any $e \in \mathcal{E}$, if $e \angle f$ then $f \in \mathcal{E}$. Then the following conditions are equivalent to each other:

- $\triangleright \ \sqsubseteq_{\mathcal{E}}$ is a reflexive and transitive cover relation.
- ▶ *E* contains identity morphisms, is closed under composition, and admits lifts.

Theorem

For a factorization system $(\mathcal{E}, \mathcal{M})$ the following conditions are equivalent:

- *E* admits lifts.
- The relation $\Box_{\mathcal{E}}$ coincides with the relation $\Box^{\mathcal{M}}$.

In particular, if every morphism from \mathcal{M} is a monomorphism and pullbacks of morphisms from \mathcal{E} exist, then the above conditions are equivalent to \mathcal{E} being stable under pullbacks.

うつつ 川田 ふかく キャー うつつ

Part IV

Motivation from Logic and Universal Algebra

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Congruence permutable varieties \longrightarrow

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Congruence permutable varieties \longrightarrow Mal'tsev categories

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

Pointed Jónsson-Tarski varieties

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Congruence permutable varieties \longrightarrow Mal'tsev categories

Pointed Jónsson-Tarski varieties \longrightarrow

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Congruence permutable varieties \longrightarrow Mal'tsev categories

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

. . .

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

Classes of varieties \longrightarrow

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

 $\mathsf{Classes} \text{ of varieties} \longrightarrow \mathsf{Classes} \text{ of categories}$

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

 $\label{eq:Classes} \begin{array}{l} {\sf Classes} \mbox{ of varieties } \longrightarrow {\sf Classes} \mbox{ of categories} \\ {\sf Term} \mbox{ conditions} \end{array}$

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

 $\mathsf{Classes} \text{ of varieties } \longrightarrow \mathsf{Classes} \text{ of categories}$

Term conditions \longrightarrow

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories

 $\mathsf{Classes} \text{ of varieties} \longrightarrow \mathsf{Classes} \text{ of categories}$

Term conditions \longrightarrow Closedness properties of internal relations

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

うつつ 川田 ふかく キャー うつつ

 $\mathsf{Congruence} \ \mathsf{permutable} \ \mathsf{varieties} \longrightarrow \mathsf{Mal'tsev} \ \mathsf{categories}$

Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

 $\mathsf{Classes} \text{ of varieties} \longrightarrow \mathsf{Classes} \text{ of categories}$

Term conditions \longrightarrow Closedness properties of internal relations

... $p(x_1, ..., x_i) = p'(x'_1, ..., x'_{i'}), \ p''(x''_1, ..., x''_{i''}) = x'' \dots$

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

 $\mathsf{Classes} \text{ of varieties} \longrightarrow \mathsf{Classes} \text{ of categories}$

Term conditions \longrightarrow Closedness properties of internal relations

$$= p(x_1, ..., x_i) = p'(x'_1, ..., x'_{i'}), \ p''(x''_1, ..., x''_{i''}) = x'' ... \\ \forall_{x_1, ..., x_i} \left[\left(\bigwedge_{j \in \{1, ..., m\}} \varrho(t_{1j}, ..., t_{nj}) \right) \Longrightarrow \exists_{x_{l+1}, ..., x_k} \left(\bigwedge_{j \in \{1, ..., m'\}} \varrho(u_{1j}, ..., u_{nj}) \right) \right]$$

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

 $\mathsf{Classes} \text{ of varieties} \longrightarrow \mathsf{Classes} \text{ of categories}$

 $A^{\prime} \longrightarrow (A^{n})^{m}$

Term conditions \longrightarrow Closedness properties of internal relations

 Closedness properties of internal relations V: Linear Mal'tsev conditions, Algebra Universalis (to appear).

Congruence permutable varieties \longrightarrow Mal'tsev categories Pointed Jónsson-Tarski varieties \longrightarrow Unital categories

Classes of varieties \longrightarrow Classes of categories

Term conditions \longrightarrow Closedness properties of internal relations

$$\begin{split} & \dots p(x_1, \dots, x_i) = p'(x'_1, \dots, x'_{i'}), \ p''(x''_1, \dots, x''_{i''}) = x'' \dots \\ & \forall_{x_1, \dots, x_i} \left[\left(\bigwedge_{j \in \{1, \dots, m\}} \varrho(t_{1j}, \dots, t_{nj}) \right) \Longrightarrow \exists_{x_{l+1}, \dots, x_k} \left(\bigwedge_{j \in \{1, \dots, m'\}} \varrho(u_{1j}, \dots, u_{nj}) \right) \right] \\ & \bullet \longrightarrow R^m \qquad \bullet \longrightarrow R^{m'} \\ & f \downarrow \qquad \downarrow r^m \qquad g \downarrow \qquad \downarrow r^{m'} \\ & A^l \longrightarrow (A^n)^m \qquad A^k = A^l \times A^{k-l} \longrightarrow (A^n)^{m'} \\ & \qquad \pi_1 \downarrow \\ & A^l \end{split}$$