Weak Galois Extensions

Ramón González Rodríguez

Departamento de Matemática Aplicada II, Universidade de Vigo.

V Portuguese Category Seminar

Universidade de Coimbra. October 17, 2008

Let *H* be a Hopf algebra over a commutative base ring *R*, and *A* a right *H*-comódule algebra with comodule structure $\rho_A : A \to A \otimes H$, $\rho_A(a) = a_{(0)} \otimes a_{(1)}$. The extension $B \subset A$, where $B = A^{coH} = \{a \in A ; \rho_A(a) = a \otimes 1\}$ is the subalgebra of coinvariants elements, is said to be an *H*-Galois extension if the Galois map (canonical map) $\beta_A : A \otimes_B A \to A \otimes H$ defined by $\beta_A(a \otimes b) = ab_{(0)} \otimes b_{(1)}$

is a bijection.

Let *H* be a Hopf algebra over a commutative base ring *R*, and *A* a right *H*-comódule algebra with comodule structure $\rho_A : A \to A \otimes H$, $\rho_A(a) = a_{(0)} \otimes a_{(1)}$. The extension $B \subset A$, where $B = A^{coH} = \{a \in A ; \rho_A(a) = a \otimes 1\}$ is the subalgebra of

coinvariants elements, is said to be an *H*-Galois extension if the Galois map (canonical map)

 $\beta_A: A \otimes_B A \to A \otimes H$

defined by

$$\beta_A(a\otimes b) = ab_{(0)}\otimes b_{(1)}$$

is a bijection.

A relevant question is the following:

When does surjectivity of β_A already imply bijectivity?

Let *H* be a Hopf algebra over a commutative base ring *R*, and *A* a right *H*-comódule algebra with comodule structure $\rho_A : A \to A \otimes H$, $\rho_A(a) = a_{(0)} \otimes a_{(1)}$. The extension $B \subset A$, where $B = A^{coH} = \{a \in A ; \rho_A(a) = a \otimes 1\}$ is the subalgebra of

coinvariants elements, is said to be an *H*-Galois extension if the Galois map (canonical map)

 $\beta_A: A \otimes_B A \to A \otimes H$

defined by

$$\beta_A(a\otimes b) = ab_{(0)}\otimes b_{(1)}$$

is a bijection.

A relevant question is the following:

When does surjectivity of β_A already imply bijectivity?

The Kreimer-Takeuchi Theorem (Indiana Univ. Math. J. (1981)) says that if β_A is surjective and H is finite, then β_A is bijective and A is a projective B-module.

Using the notion of entwining structure Schauenburg and Schneider (J. of Pure and Appl. Algebra. (2005)) proved the following theorem in *R*-Mod:

Using the notion of entwining structure Schauenburg and Schneider (J. of Pure and Appl. Algebra. (2005)) proved the following theorem in *R*-Mod:

Theorem. Let (A, C, ψ) be an entwining structure. Assume that (A, μ_A, ρ_A) belongs to $\mathcal{M}_A^C(\psi)$ and put

$$B = A^{coC} = \{a \in A ; \rho_A(a) = a\rho_A(1)\}$$

Consider the following statements:

(i) The morphism $\beta'_A : A \otimes A \to A \otimes C$ is surjective and splits as a *C*-comodule map. (ii)

(ii-1) The morphism $\beta_A : A \otimes_B A \to A \otimes C$ is an isomorphism.

(ii-2) A is relative projective as right B-module.

Then (ii) implies (i). If ψ is bijective and the map $s_A : A \otimes B \to (A \otimes A)^{coC}$ (for example if A is R-flat) is an isomorphism, then (i) implies (ii).

For weak Galois extensions (for example, Galois extension associated to weak Hopf algebras), Brzeziński, Turner and Wrightson (Comm. in Algebra (2006)) using invertible weak entwining structures (A, C, ψ_R, ψ_L) , obtained a generalization of the Kreimer-Takeuchi Theorem in the category of *R*-Mod assuming the conditions

 $A \otimes A^{coC} \approx (A \otimes A)^{coC}.$

C is R-flat and projective as C-module.

For weak Galois extensions (for example, Galois extension associated to weak Hopf algebras), Brzeziński, Turner and Wrightson (Comm. in Algebra (2006)) using invertible weak entwining structures (A, C, ψ_R, ψ_L) , obtained a generalization of the Kreimer-Takeuchi Theorem in the category of *R*-Mod assuming the conditions

 $A \otimes A^{coC} \approx (A \otimes A)^{coC}.$

 \square C is R-flat and projective as C-module.

The previous arguments can be formulated almost without modification in terms of entwining structures over non-commutative algebras with bijective entwining map, i.e. entwining structures over A - A-Bimod where A is an algebra in R-Mod, to prove a generalization of Kreimer-Takeuchi Theorem for Hopf algebroids Böhm (Ann. Univ. Ferrara-Sez. VII-Sc. Mat. (2005)).

Let $C = (C, \otimes, K)$ be a strict monoidal category with equalizers and coequalizers.

Let $C = (C, \otimes, K)$ be a strict monoidal category with equalizers and coequalizers.

Let $C = (C, \otimes, K)$ be a strict monoidal category with equalizers and coequalizers.

$$Y \xrightarrow{\nabla_Y} Y$$

Let $C = (C, \otimes, K)$ be a strict monoidal category with equalizers and coequalizers.

Let $C = (C, \otimes, K)$ be a strict monoidal category with equalizers and coequalizers.

 $\nabla_Y = i_Y \circ p_Y, \quad p_Y \circ i_Y = id_Z.$

Let $C = (C, \otimes, K)$ be a strict monoidal category with equalizers and coequalizers.

Under these conditions every idempotent morphism splits, i.e. if $\nabla_Y : Y \to Y$ is a morphism such that $\nabla_Y = \nabla_Y \circ \nabla_Y$, we have a commutative diagram

$$\nabla_Y = i_Y \circ p_Y, \quad p_Y \circ i_Y = id_Z.$$

We assume that the algebras are associative with unit and the coalgebras are coassociative with counit. If A is an algebra and C a coalgebra:

$$\eta_A: K \to A, \quad \mu_A: A \otimes A \to A, \quad \varepsilon_C: C \to K, \quad \delta_C: C \to C \otimes C$$

denotes the unit, the product, the counit and the coproduct respectively.

If A is an algebra, B is a coalgebra and $\alpha: B \to A$, $\beta: B \to A$ are morphisms in C,

$$\alpha \wedge \beta = \mu_A \circ (\alpha \otimes \beta) \circ \delta_B.$$

is the convolution product of α and β .

If A is an algebra, B is a coalgebra and $\alpha: B \to A$, $\beta: B \to A$ are morphisms in C,

$$\alpha \wedge \beta = \mu_A \circ (\alpha \otimes \beta) \circ \delta_B.$$

is the convolution product of α and β .

For M, N, P objects in C and $f : M \to N$ a morphism in C, we write $P \otimes f$ by $id_P \otimes f$ and $f \otimes P$ by $f \otimes id_P$,

where id_P denotes the identity morphism of P.

Let A be an algebra in C.

We will say that (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C such that:

Let A be an algebra in C.

We will say that (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C such that:

 $\varphi_M \circ (\eta_A \otimes M) = id_M, \quad \varphi_M \circ (A \otimes \varphi_M) = \varphi_M \circ (\mu_A \otimes M).$

Let A be an algebra in C.

We will say that (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C such that:

 $\varphi_M \circ (\eta_A \otimes M) = id_M, \quad \varphi_M \circ (A \otimes \varphi_M) = \varphi_M \circ (\mu_A \otimes M).$

If (M, φ_M) and (N, φ_N) are left *A*-modules, $f : M \to N$ is a morphism of left *A*-modules if $\varphi_N \circ (A \otimes f) = f \circ \varphi_M$. We denote the category by $_A \mathcal{M}(\mathcal{M}_A)$.

Let A be an algebra in C.

We will say that (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C such that:

 $\varphi_M \circ (\eta_A \otimes M) = id_M, \quad \varphi_M \circ (A \otimes \varphi_M) = \varphi_M \circ (\mu_A \otimes M).$

If (M, φ_M) and (N, φ_N) are left *A*-modules, $f : M \to N$ is a morphism of left *A*-modules if $\varphi_N \circ (A \otimes f) = f \circ \varphi_M$. We denote the category by $_A \mathcal{M}(\mathcal{M}_A)$.

Let C be a coalgebra in C.

We will say that (M, ρ_M) is a left *C*-comodule if *M* is an object in *C* and $\rho_M : M \to C \otimes M$ is a morphism in *C* such that:

Let A be an algebra in C.

We will say that (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C such that:

 $\varphi_M \circ (\eta_A \otimes M) = id_M, \quad \varphi_M \circ (A \otimes \varphi_M) = \varphi_M \circ (\mu_A \otimes M).$

If (M, φ_M) and (N, φ_N) are left *A*-modules, $f : M \to N$ is a morphism of left *A*-modules if $\varphi_N \circ (A \otimes f) = f \circ \varphi_M$. We denote the category by $_A \mathcal{M}(\mathcal{M}_A)$.

Let C be a coalgebra in C.

We will say that (M, ρ_M) is a left *C*-comodule if *M* is an object in *C* and $\rho_M : M \to C \otimes M$ is a morphism in *C* such that:

$$(\varepsilon_H \otimes M) \circ \varrho_M = id_M, \quad (C \otimes \varrho_M) \circ \varrho_M = (\delta_C \otimes M) \circ \varrho_M.$$

Let A be an algebra in C.

We will say that (M, φ_M) is a left A-module if M is an object in C and $\varphi_M : A \otimes M \to M$ is a morphism in C such that:

 $\varphi_M \circ (\eta_A \otimes M) = id_M, \quad \varphi_M \circ (A \otimes \varphi_M) = \varphi_M \circ (\mu_A \otimes M).$

If (M, φ_M) and (N, φ_N) are left *A*-modules, $f : M \to N$ is a morphism of left *A*-modules if $\varphi_N \circ (A \otimes f) = f \circ \varphi_M$. We denote the category by $_A \mathcal{M}(\mathcal{M}_A)$.

Let C be a coalgebra in C.

We will say that (M, ρ_M) is a left *C*-comodule if *M* is an object in *C* and $\rho_M : M \to C \otimes M$ is a morphism in *C* such that:

 $(\varepsilon_H \otimes M) \circ \varrho_M = id_M, \quad (C \otimes \varrho_M) \circ \varrho_M = (\delta_C \otimes M) \circ \varrho_M.$

If (M, ϱ_M) and (N, ϱ_N) are morphism of left *C*-comodules, $f : M \to N$ is a morphism of left *C*-comodules if $\varrho_N \circ f = (C \otimes f) \circ \varrho_M$. We denote the category by ${}^C\mathcal{M}(\mathcal{M}^C)$.

Definition. A right-right weak entwining structure over C is a triple (A, C, ψ_R) , where A is an algebra, C is a coalgebra, and

$$\psi_R: C \otimes A \to A \otimes C$$

is a morphism such that

- (1) $\psi_R \circ (C \otimes \mu_A) = (\mu_A \otimes C) \circ (A \otimes \psi_R) \circ (\psi_R \otimes A),$
- (2) $(A \otimes \delta_C) \circ \psi_R = (\psi_R \otimes C) \circ (C \otimes \psi_R) \circ (\delta_C \otimes A),$
- (3) $\psi_R \circ (C \otimes \eta_A) = (e_{RR} \otimes C) \circ \delta_C$,
- (4) $(A \otimes \varepsilon_C) \circ \psi_R = \mu_A \circ (e_{RR} \otimes A),$

where $e_{RR}: C \rightarrow A$ is the morphism

 $e_{RR} = (A \otimes \varepsilon_C) \circ \psi_R \circ (C \otimes \eta_A).$

(1) If C = R-Mod, where R is a commutative ring, the last definition is the one introduced by Caenepeel and De Groot (Contemp. Math. (2000)).

- (1) If C = R-Mod, where R is a commutative ring, the last definition is the one introduced by Caenepeel and De Groot (Contemp. Math. (2000)).
- (2) If $e_{RR} = \varepsilon_C \otimes \eta_A$ we obtain the definition of entwining structure introduced by Brzeziński and Majid (Com. in Math. Phys. (1998)).

- (1) If C = R-Mod, where R is a commutative ring, the last definition is the one introduced by Caenepeel and De Groot (Contemp. Math. (2000)).
- (2) If $e_{RR} = \varepsilon_C \otimes \eta_A$ we obtain the definition of entwining structure introduced by Brzeziński and Majid (Com. in Math. Phys. (1998)).
- (3) If A is an algebra in R-Mod and C = A A-Bimod we have the definition of entwining structure over a non-commutative algebra introduced by Böhm (Contemp. Math. (2005)).

Definition. Let (A, C, ψ_R) be a right-right entwining structure in C. By $\mathcal{M}_A^C(\psi_R)$ we denote the category whose objects are triples (M, ϕ_M, ρ_M) , where (M, ϕ_M) is a right *A*-module, (M, ρ_M) is a right *C*-comodule and

$$\rho_M \circ \phi_M = (\phi_M \otimes C) \circ (M \otimes \psi_R) \circ (\rho_M \otimes A).$$

The morphisms in $\mathcal{M}_A^C(\psi_R)$ are the obvious, i.e., morphisms of right *A*-modules and right *C*-comodules.

The objects of $\mathcal{M}_{A}^{C}(\psi_{R})$ will called right entwined modules.

Definition. Let (A, C, ψ_R) be a right-right entwining structure in C. By $\mathcal{M}_A^C(\psi_R)$ we denote the category whose objects are triples (M, ϕ_M, ρ_M) , where (M, ϕ_M) is a right *A*-module, (M, ρ_M) is a right *C*-comodule and

$$\rho_M \circ \phi_M = (\phi_M \otimes C) \circ (M \otimes \psi_R) \circ (\rho_M \otimes A).$$

The morphisms in $\mathcal{M}_A^C(\psi_R)$ are the obvious, i.e., morphisms of right *A*-modules and right *C*-comodules.

The objects of $\mathcal{M}_A^C(\psi_R)$ will called right entwined modules.

If $(A, \mu_A, \rho_A) \in \mathcal{M}_A^C(\psi_R)$, the morphism

 $\Delta_{A\otimes C}^R = (\mu_A \otimes C) \circ (A \otimes \psi_R) \circ (A \otimes C \otimes \eta_A) : A \otimes C \to A \otimes C$

is idempotent and as a consequence, there exist an object $A \Box C$ and morphisms $i_{A \otimes C}^R$: $A \Box C \rightarrow A \otimes C$, $p_{A \otimes C}^R$: $A \otimes C \rightarrow A \Box C$ such that $\Delta_{A \otimes C}^R = i_{A \otimes C}^R \circ p_{A \otimes C}^R$, $id_{A \Box C} = p_{A \otimes C}^R \circ i_{A \otimes C}^R$.

The triple $(A \Box C, \phi_{A \Box C}, \rho_{A \Box C})$ is a right entwined module, where the action and the coaction are defined by

 $\phi_{A \square C} = p_{A \otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes \psi_R) \circ (i_{A \otimes C}^R \otimes A), \ \ \rho_{A \square C} = (p_{A \otimes C}^R \otimes C) \circ (A \otimes \delta_C) \circ i_{A \otimes C}^R$

respectively.

The triple $(A \Box C, \phi_{A \Box C}, \rho_{A \Box C})$ is a right entwined module, where the action and the coaction are defined by

$$\phi_{A \square C} = p_{A \otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes \psi_R) \circ (i_{A \otimes C}^R \otimes A), \quad \rho_{A \square C} = (p_{A \otimes C}^R \otimes C) \circ (A \otimes \delta_C) \circ i_{A \otimes C}^R$$

respectively.

If $(M, \phi_M, \rho_M) \in \mathcal{M}_A^C(\psi_R)$, with M_C^R we denote the subobject of right coinvariants of M, i.e., M_C^R is the equalizer of ρ_M and

$$\zeta_M^R = (\phi_M \otimes C) \circ (M \otimes (\rho_A \circ \eta_A)).$$

If M=A the triple $(A^R_C,\eta_{A^R_C},\mu_{A^R_C})$ is an algebra in $\mathcal C,$ where

$$\eta_{A^R_C}: K \to A^R_C, \qquad \mu_{A^R_C}: A^R_C \otimes A^R_C \to A^R_C$$

are the factorization through the equalizer i_A^R of η_A and $\mu_A \circ (i_A^R \otimes i_A^R) : A_C^R \otimes A_C^R \to A$, respectively. This is the subalgebra of the right coinvariants in this setting

If M = A the triple $(A_C^R, \eta_{A_C^R}, \mu_{A_C^R})$ is an algebra in \mathcal{C} , where

$$\eta_{A^R_C}: K \to A^R_C, \qquad \mu_{A^R_C}: A^R_C \otimes A^R_C \to A^R_C$$

are the factorization through the equalizer i_A^R of η_A and $\mu_A \circ (i_A^R \otimes i_A^R) : A_C^R \otimes A_C^R \to A$, respectively. This is the subalgebra of the right coinvariants in this setting

The pair $(M_C^R, \phi_{M_C^R})$ is a right A_C^R -module where $\phi_{M_C^R} : M_C^R \otimes A_C^R \to M_C^R$ is the factorization of $\phi_M \circ (i_M^R \otimes i_A^R) : M_C^R \otimes A_C^R \to M$

through the equalizer i_M^R .

The morphism

$$r_A^R = p_{A \otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes \rho_A) : A \otimes A \to A \Box C$$

admits a factorization through the coequalizer $q^{R}_{\boldsymbol{A}}$ of

 $A \otimes (\mu_A \circ (i_A^R \otimes A)) : A \otimes A_C^R \otimes A \to A \otimes A, \quad (\mu_A \circ (i_A^R \otimes A)) \otimes A : A \otimes A_C^R \otimes A \to A \otimes A.$

Then there exists a morphism called right canonical morphism

$$\beta_A^R: A \otimes_{A_C^R} A \to A \Box C$$

such that $\beta^R_A \circ q^R_A = r^R_A$.

The morphism

$$r_A^R = p_{A \otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes \rho_A) : A \otimes A \to A \Box C$$

admits a factorization through the coequalizer $q^{\cal R}_{\cal A}$ of

 $A\otimes (\mu_A\circ (i^R_A\otimes A)):A\otimes A^R_C\otimes A\to A\otimes A, \quad (\mu_A\circ (i^R_A\otimes A))\otimes A:A\otimes A^R_C\otimes A\to A\otimes A.$

Then there exists a morphism called right canonical morphism

$$\beta_A^R : A \otimes_{A_C^R} A \to A \square C$$

such that $\beta^R_A \circ q^R_A = r^R_A$.

The morphisms r_A^R and β_A^R are morphisms of right *C*-comodules where $\rho_{A\otimes A} = A \otimes \rho_A$ and $\rho_{A\otimes_{A_C^R}A}$ is the factorization of $(q_A^R \otimes C) \circ (A \otimes \rho_A)$ through the coequalizer q_A^R . If the functor $A \otimes -$ preserves coequalizers, β_A^R is a morphism of left *A*-modules where $\varphi_{A\otimes_{A_C^R}A}$ is the factorization of $q_A^R \circ (\mu_A \otimes A)$ through the coequalizer of $A \otimes q_A^R$ and $\varphi_{A\square C} = p_{A\otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes i_{A\otimes C}^R)$.

The morphisms r_A^R and β_A^R are morphisms of right *C*-comodules where $\rho_{A\otimes A} = A \otimes \rho_A$ and $\rho_{A\otimes_{A_C^R}A}$ is the factorization of $(q_A^R \otimes C) \circ (A \otimes \rho_A)$ through the coequalizer q_A^R . If the functor $A \otimes -$ preserves coequalizers, β_A^R is a morphism of left *A*-modules where $\varphi_{A\otimes_{A_C^R}A}$ is the factorization of $q_A^R \circ (\mu_A \otimes A)$ through the coequalizer of $A \otimes q_A^R$ and $\varphi_{A\square C} = p_{A\otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes i_{A\otimes C}^R)$.

Definition. Let (A, C, ψ_R) a right-right weak entwining structure in C such that $A \otimes -$ preserves coequalizers and there exist a coaction ρ_A satisfying that (A, μ_A, ρ_A) belongs to $\mathcal{M}_A^C(\psi_R)$. We will say that $A_C^R \hookrightarrow A$ is a right weak C-Galois extension if the morphism β_A^R is an isomorphism.

The morphisms r_A^R and β_A^R are morphisms of right *C*-comodules where $\rho_{A\otimes A} = A \otimes \rho_A$ and $\rho_{A\otimes_{A_C^R}A}$ is the factorization of $(q_A^R \otimes C) \circ (A \otimes \rho_A)$ through the coequalizer q_A^R . If the functor $A \otimes -$ preserves coequalizers, β_A^R is a morphism of left *A*-modules where $\varphi_{A\otimes_{A_C^R}A}$ is the factorization of $q_A^R \circ (\mu_A \otimes A)$ through the coequalizer of $A \otimes q_A^R$ and $\varphi_{A\square C} = p_{A\otimes C}^R \circ (\mu_A \otimes C) \circ (A \otimes i_{A\otimes C}^R)$.

Definition. Let (A, C, ψ_R) a right-right weak entwining structure in C such that $A \otimes -$ preserves coequalizers and there exist a coaction ρ_A satisfying that (A, μ_A, ρ_A) belongs to $\mathcal{M}_A^C(\psi_R)$. We will say that $A_C^R \hookrightarrow A$ is a right weak C-Galois extension if the morphism β_A^R is an isomorphism.

We have similar results and definitions for the left side.

(1)
$$(A, C, \psi_L), \quad \psi_L : A \otimes C \to C \otimes A, \quad e_{LL} = (\varepsilon_C \otimes A) \circ \psi_L \circ (\eta_A \otimes C).$$

(1) $(A, C, \psi_L), \quad \psi_L : A \otimes C \to C \otimes A, \quad e_{LL} = (\varepsilon_C \otimes A) \circ \psi_L \circ (\eta_A \otimes C).$ (2) ${}^C_A \mathcal{M}(\psi_L), \quad (M, \varphi_M, \varrho_M).$

- (1) $(A, C, \psi_L), \quad \psi_L : A \otimes C \to C \otimes A, \quad e_{LL} = (\varepsilon_C \otimes A) \circ \psi_L \circ (\eta_A \otimes C).$
- (2) ${}^{C}_{A}\mathcal{M}(\psi_{L}), (M, \varphi_{M}, \varrho_{M}).$
- (3) $\Delta_{C\otimes A}^{L} = (C\otimes \mu_{A}) \circ (\psi_{L}\otimes A) \circ (\eta_{A}\otimes C\otimes A) : C\otimes A \to C\otimes A$

(1)
$$(A, C, \psi_L), \quad \psi_L : A \otimes C \to C \otimes A, \quad e_{LL} = (\varepsilon_C \otimes A) \circ \psi_L \circ (\eta_A \otimes C).$$

(2) ${}^C_A \mathcal{M}(\psi_L), \quad (M, \varphi_M, \varrho_M).$
(3) $\Delta^L_{C \otimes A} = (C \otimes \mu_A) \circ (\psi_L \otimes A) \circ (\eta_A \otimes C \otimes A) : C \otimes A \to C \otimes A$
(4) $\Delta^L_{C \otimes A} = i^L_{C \otimes A} \circ p^L_{C \otimes A}, \quad Im(\Delta^L_{C \otimes A}) = C \Box A, \quad p^L_{C \otimes A} \circ i^L_{C \otimes A} = id_{C \Box A}.$

4

(1)
$$(A, C, \psi_L), \quad \psi_L : A \otimes C \to C \otimes A, \quad e_{LL} = (\varepsilon_C \otimes A) \circ \psi_L \circ (\eta_A \otimes C).$$

(2) ${}^C_A \mathcal{M}(\psi_L), \quad (M, \varphi_M, \varrho_M).$
(3) $\Delta^L_{C \otimes A} = (C \otimes \mu_A) \circ (\psi_L \otimes A) \circ (\eta_A \otimes C \otimes A) : C \otimes A \to C \otimes A$
(4) $\Delta^L_{C \otimes A} = i^L_{C \otimes A} \circ p^L_{C \otimes A}, \quad Im(\Delta^L_{C \otimes A}) = C \Box A, \quad p^L_{C \otimes A} \circ i^L_{C \otimes A} = id_{C \Box A}.$
(5) If $(A, \mu_A, \varrho_A) \in {}^C_A \mathcal{M}(\psi_L)$ then $(C \Box A, \varphi_{C \Box A}, \varrho_{C \Box A}) \in {}^C_A \mathcal{M}(\psi_L).$

For the morphism

$$r_A^L = p_{A \otimes C}^L \circ (C \otimes \mu_A) \circ (\varrho_A \otimes A) : A \otimes A \to C \Box A$$

there exists a factorization through the coequalizer q_A^L of

 $(\mu_A \circ (A \otimes i_A^L)) \otimes A : A \otimes A_C^L \otimes A \to A \otimes A, \quad A \otimes (\mu_A \circ (i_A^L \otimes A)) : A \otimes A_C^L \otimes A \to A \otimes A.$

As a consequence, there exists a morphism called left canonical morphism

$$\beta_A^L : A \otimes_{A_C^L} A \to C \Box A$$

such that $\beta^L_A \circ q^L_A = r^L_A$.

For the morphism

$$r_A^L = p_{A \otimes C}^L \circ (C \otimes \mu_A) \circ (\varrho_A \otimes A) : A \otimes A \to C \Box A$$

there exists a factorization through the coequalizer $q^{L}_{\boldsymbol{A}}$ of

 $(\mu_A \circ (A \otimes i_A^L)) \otimes A : A \otimes A_C^L \otimes A \to A \otimes A, \quad A \otimes (\mu_A \circ (i_A^L \otimes A)) : A \otimes A_C^L \otimes A \to A \otimes A.$

As a consequence, there exists a morphism called left canonical morphism

$$\beta_A^L : A \otimes_{A_C^L} A \to C \Box A$$

such that $\beta_A^L \circ q_A^L = r_A^L$.

The morphisms r_A^L and β_A^L are morphisms of left *C*-comodules where $\varrho_{A\otimes A} = \varrho_A \otimes A$ and $\varrho_{A\otimes_{A_C^L}A}$ is the factorization of $(C \otimes q_A^L) \circ (\varrho_A \otimes A)$ through the coequalizer q_A^L . If the functor $- \otimes A$ preserves equalizers, then β_A^L is a morphism of right *A*-modules where $\phi_{A\otimes_{A_C^L}A}$ is the factorization of $q_A^L \circ (A \otimes \mu_A)$ through the coequalizer $q_A^L \otimes A$ and $\phi_{C\square A} = p_{C\otimes A}^L \circ (C \otimes \mu_A) \circ (i_{A\otimes C}^L \otimes A)$.

The morphisms r_A^L and β_A^L are morphisms of left *C*-comodules where $\varrho_{A\otimes A} = \varrho_A \otimes A$ and $\varrho_{A\otimes_{A_C^L}A}$ is the factorization of $(C \otimes q_A^L) \circ (\varrho_A \otimes A)$ through the coequalizer q_A^L . If the functor $- \otimes A$ preserves equalizers, then β_A^L is a morphism of right *A*-modules where $\phi_{A\otimes_{A_C^L}A}$ is the factorization of $q_A^L \circ (A \otimes \mu_A)$ through the coequalizer $q_A^L \otimes A$ and $\phi_{C\square A} = p_{C\otimes A}^L \circ (C \otimes \mu_A) \circ (i_{A\otimes C}^L \otimes A)$.

Definition. Let (A, C, ψ_L) left-left weak entwining structure in C such that $-\otimes A$ preserve coequalizers and there exists a coaction ρ_A satisfying that (A, μ_A, ρ_A) belongs to ${}^C_A \mathcal{M}(\psi_L)$. We will say that $A^L_C \hookrightarrow A$ is a left weak C-Galois extension if β^L_A is an isomorphism.

Invertible weak entwining structures

Definition. (Brzeziński, Turner y Wrightson, Comm. in Algebra., 2006, C = R-Mod) If (A, C, ψ_R) is a right-right weak entwining structure in C and (A, C, ψ_L) is a left-left weak entwining structure in C, we will say that (A, C, ψ_R, ψ_L) is an invertible weak entwining structure in C, if $\psi_R \circ \psi_L = \Delta_{A \otimes C}^R$ and $\psi_L \circ \psi_R = \Delta_{C \otimes A}^L$. **Definition.** (Brzeziński, Turner y Wrightson, Comm. in Algebra., 2006, C = R-Mod) If (A, C, ψ_R) is a right-right weak entwining structure in C and (A, C, ψ_L) is a left-left weak entwining structure in C, we will say that (A, C, ψ_R, ψ_L) is an invertible weak entwining structure in C, if $\psi_R \circ \psi_L = \Delta_{A \otimes C}^R$ and $\psi_L \circ \psi_R = \Delta_{C \otimes A}^L$.

Nota.

(1) If (A, C, ψ_R, ψ_L) is an invertible weak entwining structure in C and $\psi_R \circ \psi_L = id_{A\otimes C}$ y $\psi_L \circ \psi_R = id_{C\otimes A}$, then (A, C, ψ_R) is an entwining structure.

(2) As a consequence of this definition we have $e_{RR} = e_{LL}$.

Invertible weak entwining structures

Invertible weak entwining structures

Definition. Let *D* be a weak Hopf algebra in a strict braided monoidal category *C*. Let *A* be an algebra with structure of right *D*-comodule $\rho_A : A \to A \otimes D$ and such that $\mu_{A \otimes D} \circ (\rho_A \otimes \rho_A) = \rho_A \circ \mu_A$ where $\mu_{A \otimes D} = (\mu_A \otimes \mu_D) \circ (A \otimes c_{D,A} \otimes D)$. We will say that *A* is a right *D*-comodule algebra if any of the following equivalent conditions holds: (i) $(\rho_A \otimes D) \circ \rho_A \circ \eta_A = (A \otimes (\mu_D \circ c_{D,D}^{-1}) \otimes D) \circ (\rho_A \otimes \delta_D) \circ (\eta_A \otimes \eta_D)$, (ii) $(\rho_A \otimes D) \circ \rho_A \circ \eta_A = (A \otimes \mu_D \otimes D) \circ (\rho_A \otimes \delta_D) \circ (\eta_A \otimes \eta_D)$, (iii) $(A \otimes \overline{\Pi}_D^R) \circ \rho_A = (\mu_A \otimes D) \circ (A \otimes \rho_A) \circ (A \otimes \eta_A)$, (iv) $(A \otimes \overline{\Pi}_D^R) \circ \rho_A = ((\mu_A \circ c_{A,A}^{-1}) \otimes D) \circ (A \otimes \rho_A) \circ (A \otimes \eta_A)$, (v) $(A \otimes \overline{\Pi}_D^R) \circ \rho_A \circ \eta_A = \rho_A \circ \eta_A$. **Proposition.** Let *D* be a weak Hopf algebra in a strict braided monoidal category C such that λ_D is an isomorphism. Let *A* be a *D*-comodule algebra. Then (A, D, ψ_R, ψ_L) with

$$\psi_R = (A \otimes \mu_D) \circ (c_{D,A} \otimes D) \circ (D \otimes \rho_A) : D \otimes A \to A \otimes D$$

and

$$\psi_L = c_{D,A}^{-1} \circ (A \otimes (\mu_D \circ c_{D,D}^{-1} \circ (\lambda_D^{-1} \otimes D))) \circ (\rho_A \otimes D) : A \otimes D \to D \otimes A$$

is an invertible weak entwining structure.

Proposition. Let (A, C, ψ_R, ψ_L) be an invertible weak entwining structure in C. (1) $\Phi_{A,C} = p_{C\otimes A}^L \circ \psi_L \circ i_{A\otimes C}^R : A \Box C \to C \Box A$ is an isomorphism with inverse

$$\Phi_{A,C}^{-1} = p_{A\otimes C}^R \circ \psi_R \circ i_{C\otimes A}^L.$$

(2) If (A, μ_A, ρ_A) is a right entwined module, (A, μ_A, ρ^L_A = ψ_L οζ^R_A) is a left entwined module. Also, if (A, μ_A, ρ_A) ∈ ^C_AM(ψ_L) then (A, μ_A, ρ^R_A = ψ_R οζ^L_A) ∈ M^C_A(ψ_R). Moreover, ρ^{LR}_A = ρ_A and ρ^{RL}_A = ρ_A
(3) If (A, μ_A, ρ_A) ∈ M^C_A(ψ_R) there exists an algebra isomorphism a_A : A^L_C → A^R_C (a_A is the unique morphism such that i^R_A ο a_A = i^L_A).
(4) If (A, μ_A, ρ_A) ∈ M^C_A(ψ_R), then β^L_A = Φ_{A,C} ο β^R_A ο h_A where

$$h_A: A \otimes_{A_C^L} A \to A \otimes_{A_C^R} A$$

is an isomorphism and the unique morphism such that $h_A \circ q_A^L = q_A^R$.

Proposition. Let (A, C, ψ_R, ψ_L) be an invertible weak entwining structure. Then, if the functors $A \otimes -$ and $- \otimes A$ preserve coequalizers, $A_C^R \hookrightarrow A$ is a right weak *C*-Galois extension iff, $A_C^L \hookrightarrow A$ is a left weak *C*-Galois extension.

Proposition. Let (A, C, ψ_R, ψ_L) be an invertible weak entwining structure in C. Let (M, ϕ_M, ρ_M) be an object in $\mathcal{M}_A^C(\psi_R)$. There exists a bijective map

$$\Theta_M^R : Hom_{\mathcal{M}^C}(C, M) \to Hom_{\mathcal{M}^C_A}(A \Box C, M).$$

defined by

$$\Theta_M^R(f) = \phi_M \circ (f \otimes A) \circ \psi_L \circ i_{A \otimes C}^R$$

and with inverse

$$(\Theta_M^R)^{-1}(g) = g \circ p_{A \otimes C}^R \circ (\eta_A \otimes C).$$

Moreover, each morphism in $Hom_{\mathcal{M}_{A}^{C}}(M, A \Box C)$ that splits in \mathcal{M}^{C} , splits also in \mathcal{M}_{A}^{C} .

Theorem. Let (A, C, ψ_R) be a right-right weak entwining structure in C. Suppose that (A, μ_A, ρ_A) belongs to $\mathcal{M}_A^C(\psi_R)$. Consider the following statements:

(i) The morphism $r_A^R : A \otimes A \to A \square C$ splits in \mathcal{M}^C .

(ii)

- (ii-1) The morphism $\beta_A^R : A \otimes_{A_C^R} A \to A \Box C$ is an isomorphism.
- (ii-2) $(A, \phi_A = \mu_A \circ (A \otimes i_A^R))$ is relative projective in $\mathcal{M}_{A_C^R}$, i.e., $\phi_A : A \otimes A_C^R \to A$ splits as morphism of right A_C^R -modules.

Then (ii) implies (i). If (A, C, ψ_R, ψ_L) is an invertible weak entwining structure in C and s_A^R : $A \otimes A_C^R \to (A \otimes A)_C^R$ is an isomorphism then (i) implies (ii).

Particular cases.

(1) The Schauenburg-Schneider Theorem (J. of Pure and Appl. Algebra (2005)).

Particular cases.

- (1) The Schauenburg-Schneider Theorem (J. of Pure and Appl. Algebra (2005)).
- (2) The Brzeziński-Turner-Wrightson Theorem (weak version of Kreimer-Takeuchi Theorem)(**Comm. in Algebra** (2006)).

Particular cases.

- (1) The Schauenburg-Schneider Theorem (J. of Pure and Appl. Algebra (2005)).
- (2) The Brzeziński-Turner-Wrightson Theorem (weak version of Kreimer-Takeuchi Theorem)(**Comm. in Algebra** (2006)).
- (3) The Böhm Theorem for algebroids (algebroid version of Kreimer-Takeuchi Theorem)(Ann. Univ. Ferrara-Sez. VII-Sc. Mat. (2005)).

Corollary. Let *D* be a weak Hopf algebra in a strict braided monoidal category C with equalizers and coequalizers. Suppose that the antipode λ_D is an isomorphism. Let (A, ρ_A) be a right *D*-comodule algebra.

Consider the following statements:

(i) The morphism
$$r_A^R : A \otimes A \to A \Box D$$
 splits in \mathcal{M}^D .

(ii)

- (ii-1) The morphism $\beta_A^R : A \otimes_{A_D^R} A \to A \Box D$ is an isomorphism.
- (ii-2) $(A, \phi_A = \mu_A \circ (A \otimes i_D^R))$ is relative projective in $\mathcal{M}_{A_D^R}$.

Then (ii) implies (i). If $s_A^R : A \otimes A_D^R \to (A \otimes A)_D^R$ is an isomorphism, then (i) implies (ii).

References

(1) Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R. y Rodríguez Raposo A. B.: Invertible weak entwining structures and weak C-cleft extensions. Applied Categorical Structures 14, N. 5-6 (special issue Categorical methods in Hopf algebras), 411-419 (2006).

(2) Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R. y López López
M. P.: A characterization of projective weak Galois extensions, Israel J. of Math. (in press)
(2008).

(3) Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: Strong connections and invertible weak entwining structures, preprint (2008).

(4) Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: Weak Hopf algebras and weak Yang-Baxter operators, J. of Algebra 320, N.6, 2101-2143 (2008).
(5) Alonso Álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R.: Weak braided Hopf algebras, Indiana University Mathematics Journal (2008) (in press: http://www.iumj.indiana.edu/IUMJ/forthcoming.php).