The third cohomology group classifies double central extensions

Tim Van der Linden Joint work with Diana Rodelo
Universidade de Coimbra | Vrije Universiteit Brussel

17 October 2008

Connecting two branches of non-abelian (co)homology

Bourn-Rodelo direction approach to cohomology
Bourn, Baer sums and fibered aspects of Mal'cev operations (1999)
Bourn, Aspherical abelian groupoids and their directions (2002)
Bourn, Baer sums in homological categories (2007)
Bourn-Rodelo, Cohomology without projectives (2007)
Rodelo, Directions for the long exact cohomology sequence in Moore categories (2008)

Semi-abelian homology via categorical Galois theory

Janelidze What is a double central extension? (1091)
Gran-Rossi, Galois theory and double central extensions (2004)
Everaert-Gran-VdL, Higher Hopf formulae for homology via Galois Theory (2008)

Connecting two branches of non-abelian (co)homology

Bourn-Rodelo direction approach to cohomology
Bourn, Baer sums and fibered aspects of Mal'cev operations (1999)
Bourn, Aspherical abelian groupoids and their directions (2002)
Bourn, Baer sums in homological categories (2007)
Bourn-Rodelo, Cohomology without projectives (2007)
Rodelo, Directions for the long exact cohomology sequence in Moore categories (2008)

Semi-abelian homology via categorical Galois theory

Janelidze, What is a double central extension? (1991)
Gran-Rossi, Galois theory and double central extensions (2004)
Everaert-Gran-VdL, Higher Hopf formulae for homology via Galois Theory (2008)

The second cohomology group classifies central extensions

$H^{2}(Z, A) \cong \operatorname{Centr}^{1}(Z, A)$ for group Z and abelian group A
A central extension f of Z by A induces a short exact sequence

$$
0 \longrightarrow A \stackrel{\text { ker } f}{\longrightarrow} X \xrightarrow{f} Z \longrightarrow 0
$$

where $a x a^{-1} x^{-1}=1$ for all $a \in A$ and $x \in X$ ．
－ $\operatorname{Centr}^{1}(Z, A)=$ \｛equivalence classes of central extensions $\}$
－group structure on Centr $^{1}(Z, A)$ ：Baer sum

Generalised to semi－abelian context

Bourn－Janelidze，Extensions with abelian kernels in protomodular categories（2004）
Gran－VdL，On the second cohomology group in semi－abelian
categories（2008）

The second cohomology group classifies central extensions

$H^{2}(Z, A) \cong \operatorname{Centr}^{1}(Z, A)$ for group Z and abelian group A

A central extension f of Z by A induces a short exact sequence

$$
0 \longrightarrow A \stackrel{\text { ker } f}{\longrightarrow} X \xrightarrow{f} Z \longrightarrow 0
$$

where $a x a^{-1} x^{-1}=1$ for all $a \in A$ and $x \in X$.

- Centr ${ }^{1}(Z, A)=$ \{equivalence classes of central extensions $\}$
- group structure on $\operatorname{Centr}^{1}(Z, A)$: Baer sum

Generalised to semi-abelian context

Bourn-Janelidze, Extensions with abelian kernels in protomodular categories (2004)
Gran-VdL, On the second cohomology group in semi-abelian categories (2008)

The third cohomology group $H^{3}(Z, A)$

Definition (Bourn, Bourn-Rodelo)

Let \mathcal{A} be a Moore category, Z an object of \mathcal{A}. An aspherical internal groupoid in $\mathcal{A} \downarrow Z$ is a groupoid

in $\mathcal{A} \downarrow Z$ with f and $(d, c): X \rightarrow Y \times_{Z} Y$ regular epic.

- category $\operatorname{Asph}(\mathcal{A} \downarrow Z)$

Definition (Bourn, Bourn-Rodelo)

- The direction functor $\partial: \operatorname{Asph}(\mathcal{A} \downarrow Z) \rightarrow \operatorname{Mod}_{Z} \mathcal{A}$ maps \mathbf{A} to the Z-module (A, ξ) corresponding to (p, s) in

$$
\begin{aligned}
& R[(d, c)] \longrightarrow Z \ltimes(A, \xi) \\
& \operatorname{pr}_{\nabla} \mid \prod_{\nabla}\left(\overrightarrow{\left.1_{X}, 1_{X}\right)} \quad p \mid \prod_{\nabla} s\right. \\
& X \longrightarrow Z \circ \text {. }
\end{aligned}
$$

- The third cohomology group of Z with coefficients in (A, ξ) is the group $H^{3}(Z,(A, \xi))=\pi_{0} \partial^{-1}(A, \xi)$.
- If ξ is the trivial action then (A, ξ) is just the abelian object A and we denote $H^{3}(Z,(A, \xi))=H^{3}(Z, A)$.
- Note that $A=K[p]=K\left[\mathrm{pr}_{0}\right]=K[(d, c)]=K[d] \cap K[c]$.

The third cohomology group $H^{3}(Z, A)$

Definition (Bourn, Bourn-Rodelo)

- The direction functor $\partial: \operatorname{Asph}(\mathcal{A} \downarrow Z) \rightarrow \operatorname{Mod}_{Z} \mathcal{A}$ maps \mathbf{A} to the Z-module (A, ξ) corresponding to (p, s) in

$$
\begin{aligned}
& R[(d, c)] \longrightarrow Z \ltimes(A, \xi) \\
& \mathrm{pr}_{0} \int_{\nabla \lambda}\left(\overrightarrow{\left.1_{X}, 1_{X}\right)} \quad p \mid \prod_{\nabla} s\right. \\
& X \longrightarrow Z \circ \text {. }
\end{aligned}
$$

- The third cohomology group of Z with coefficients in (A, ξ) is the group $H^{3}(Z,(A, \xi))=\pi_{0} \partial^{-1}(A, \xi)$.
- If ξ is the trivial action then (A, ξ) is just the abelian object A and we denote $H^{3}(Z,(A, \xi))=H^{3}(Z, A)$.
- Note that $A=K[p]=K\left[\operatorname{pr}_{0}\right]=K[(d, c)]=K[d] \cap K[c]$.

Double central extensions: Γ-covers

Central extensions, in general

\mathcal{A} semi-abelian, \mathcal{B} Birkhoff subcategory give Galois structure

$$
\Gamma_{0}=(\mathcal{A} \underset{\underset{\supset}{\stackrel{I}{\longrightarrow}}}{\stackrel{I}{\longrightarrow}},|\operatorname{Ext} \mathcal{A}|,|\operatorname{Ext} \mathcal{B}|)
$$

- Ext $\mathcal{A}=(\{$ regular epis in $\mathcal{A}\},\{$ commutative squares $\})$
- central extensions: $\operatorname{CExt}_{\mathcal{B}} \mathcal{A}$

Double central extensions, in general

Galois structure

$$
\Gamma=\left(\operatorname{Ext}_{\mathcal{A}}^{\mathcal{A}} \stackrel{I_{1}}{\stackrel{\perp}{\longrightarrow}} \mathrm{CExt}_{\mathcal{B}} \mathcal{A},\left|\operatorname{Ext}^{2} \mathcal{A}\right|,\left|\operatorname{Ext}^{2} \mathcal{B}\right|\right)
$$

- notion of double central extension $=\Gamma$-cover
- used in computation of $H_{3}(-, I)$

Double central extensions: Γ-covers

Central extensions, w.r.t. abelianisation

\mathcal{A} semi-abelian, $\mathcal{B}=\mathrm{Ab} \mathcal{A}$ give Galois structure

$$
\Gamma_{0}=(\mathcal{A} \underset{\underset{\nu}{\stackrel{a b}{L}}}{\stackrel{\mathrm{ab}}{\longrightarrow}} \mathrm{Ab},|\operatorname{Ext} \mathcal{A}|,|\operatorname{Ext} \mathrm{Ab} \mathcal{A}|)
$$

- Ext $\mathcal{A}=(\{$ regular epis in $\mathcal{A}\},\{$ commutative squares $\})$
- central extensions: $|\operatorname{CExt} \mathcal{A}|=\{f \in|\operatorname{Ext} \mathcal{A}| \mid[R[f], \nabla]=\Delta\}$

Double central extensions, w.r.t. abelianisation
Galois structure

$$
\Gamma=\left(E x t \mathcal{A} \underset{\supset}{\stackrel{\text { centr }}{\stackrel{\perp}{\longrightarrow}}} \mathrm{CExt} \mathcal{A},\left|\mathrm{Ext}^{2} \mathcal{A}\right|,\left|\mathrm{Ext}^{2} \mathrm{Ab} \mathcal{A}\right|\right)
$$

- notion of double central extension $=\Gamma$-cover
- used in computation of $H_{3}(-, a b)$

Double extensions: aspherical spans in $\mathcal{A} \downarrow Z$

Definition

A span $(X, d, c)={ }_{D}^{{ }^{d} \swarrow^{X}} \searrow_{C}^{c}$ in a regular category \mathcal{A}

- has global support when $!_{D}: D \rightarrow 1$ and $!_{C}$ regular epic;
- is aspherical when also $(d, c): X \rightarrow D \times C$ is regular epic.

Proposition

A commutative square in \mathcal{A} is a double extension if and only if it represents an aspherical span in $\mathcal{A} \downarrow Z$.

Double extensions: aspherical spans in $\mathcal{A} \downarrow Z$

Definition

A span $(X, d, c)={ }_{D}^{d} \swarrow^{X} \searrow_{C}^{c}$ in a regular category \mathcal{A}

- has global support when $!_{D}: D \rightarrow 1$ and $!_{C}$ regular epic;
- is aspherical when also $(d, c): X \rightarrow D \times C$ is regular epic.

Proposition

A commutative square in \mathcal{A} is a double extension if and only if it represents an aspherical span in $\mathcal{A} \downarrow Z$.

Double extensions: aspherical spans in $\mathcal{A} \downarrow Z$

Definition

A span $(X, d, c)={ }_{D}^{d} \swarrow^{X} \searrow_{C}^{c}$ in a regular category \mathcal{A}

- has global support when $!_{D}: D \rightarrow 1$ and $!_{C}$ regular epic;
- is aspherical when also $(d, c): X \rightarrow D \times C$ is regular epic.

Proposition

A commutative square in \mathcal{A} is a double extension if and only if it represents an aspherical span in $\mathcal{A} \downarrow Z$.

Double central extensions: commutator version

Theorem (Janelidze, Gran-Rossi)
In a Mal'tsev variety \mathcal{A}, a double extension

$$
\begin{aligned}
& X \xrightarrow{c} C
\end{aligned}
$$

is central if and only if
$11[R[d], R[c]]=\Delta_{X}$;
$2\left[R[d] \cap R[c], \nabla_{X}\right]=\Delta_{X}$.

Double central extensions: internal pregroupoids, $[R[d], R[c]]=\Delta_{X}$

Definition (Kock, Johnstone, Pedicchio)
Let \mathcal{A} be a finitely complete category. A pregroupoid or herdoid (X, d, c, p) in \mathcal{A} is a $\operatorname{span}(X, d, c)$

with a partial ternary operation p on X satisfying
$1 p(\alpha, \beta, \gamma)$ is defined iff $c(\alpha)=c(\beta)$ and $d(\gamma)=d(\beta)$;
$2 d p(\alpha, \beta, \gamma)=d(\alpha)$ and $c p(\alpha, \beta, \gamma)=c(\gamma)$;
$3 p(\alpha, \alpha, \gamma)=\gamma$ and $p(\alpha, \gamma, \gamma)=\gamma$;
$4 p(\alpha, \beta, p(\gamma, \delta, \epsilon))=p(p(\alpha, \beta, \gamma), \delta, \epsilon)$.

Double central extensions: internal pregroupoids, $[R[d], R[c]]=\Delta_{X}$

Definition (Kock, Johnstone, Pedicchio)

Let \mathcal{A} be a finitely complete category. A pregroupoid or herdoid (X, d, c, p) in \mathcal{A} is a $\operatorname{span}(X, d, c)$

with a partial ternary operation p on X satisfying

$$
\begin{aligned}
& d(\alpha) \xrightarrow[\beta]{\alpha} c(\alpha) \\
& d(\gamma) \xrightarrow[\gamma]{\longrightarrow} c(\gamma)
\end{aligned} \quad p(\alpha, \beta, \gamma): d(\alpha) \rightarrow c(\gamma)
$$

Double central extensions: internal pregroupoids, $[R[d], R[c]]=\Delta_{X}$

Proposition

- A pregroupoid structure $p: R[d] \times_{X} R[c] \rightarrow X$ on a span (X, d, c) is a cooperator between $R[d]$ and $R[c]$.
- In a semi-abelian category, a span (X, d, c) carries at most one pregroupoid structure-precisely when $[R[d], R[c]]=\Delta_{X}$.
- A double extension

satisfies $[R[d], R[c]]=\Delta_{X}$ iff the aspherical span (X, d, c) in $\mathcal{A} \downarrow Z$ is an internal pregroupoid.

Double central extensions: internal pregroupoids, $[R[d], R[c]]=\Delta_{X}$

Proposition

- A pregroupoid structure $p: R[d] \times{ }_{X} R[c] \rightarrow X$ on a span (X, d, c) is a cooperator between $R[d]$ and $R[c]$.
- In a semi-abelian category, a span (X, d, c) carries at most one pregroupoid structure-precisely when $[R[d], R[c]]=\Delta_{X}$.

- A double extension

satisfies $[R[d], R[c]]=\Delta_{X}$ iff the aspherical span (X, d, c) in $\mathcal{A} \downarrow Z$ is an internal pregroupoid.

Double central extensions: internal pregroupoids, $[R[d], R[c]]=\Delta_{X}$

Proposition

- A pregroupoid structure $p: R[d] \times{ }_{X} R[c] \rightarrow X$ on a span (X, d, c) is a cooperator between $R[d]$ and $R[c]$.
- In a semi-abelian category, a span (X, d, c) carries at most one pregroupoid structure-precisely when $[R[d], R[c]]=\Delta_{X}$.
- A double extension

satisfies $[R[d], R[c]]=\Delta_{X}$ iff the aspherical span (X, d, c) in $\mathcal{A} \downarrow Z$ is an internal pregroupoid.

Double central extensions: commutator version

Theorem (Janelidze, Gran-Rossi)
In a Mal'tsev variety \mathcal{A}, a double extension

$$
\begin{aligned}
& X \xrightarrow{c} C
\end{aligned}
$$

is central if and only if
$11[R[d], R[c]]=\Delta_{X}$;
$2\left[R[d] \cap R[c], \nabla_{X}\right]=\Delta_{X}$.

Double central extensions: $\left[R[d] \cap R[c], \nabla_{X}\right]=\Delta_{X}$

Definition

An aspherical pregroupoid (X, d, c) in $\mathcal{A} \downarrow Z$ is central when $(d, c): X \rightarrow D \times_{Z} C$ is a central extension in \mathcal{A}.

Proposition

category \mathcal{A} such that (X, d, c) is an aspherical pregroupoid in $\mathcal{A} \downarrow Z$. Then this square is a double central extension if and only if (X, d, c) is a central pregroupoid in $\mathcal{A} \downarrow Z$.

Double central extensions: equivalent conditions

Theorem

Let, in a semi-abelian category \mathcal{A},

(B)
be a double extension. The following are equivalent:
$1 \mathbf{B}$ is a double central extension;
2 $[R[d], R[c]]=\Delta_{X}$ and $\left[R[d] \cap R[c], \nabla_{X}\right]=\Delta_{X}$;
3 (X, d, c) is a central pregroupoid in $\mathcal{A} \downarrow Z$.

The third cohomology group $H^{3}(Z, A)$

Definition (Bourn, Bourn-Rodelo)
The direction functor $\partial: \operatorname{Asph}(\mathcal{A} \downarrow Z) \rightarrow \operatorname{Mod}_{Z} \mathcal{A}$ maps

to the Z-module (A, ξ) corresponding to (p, s) in

$$
\begin{aligned}
& R[(d, c)] \longrightarrow Z \ltimes(A, \xi) \\
& \left.\mathrm{pr}_{0} \int_{\nabla 人}^{\wedge}\left(\overrightarrow{1_{X}, 1_{X}}\right) \quad p\right|_{\nabla} s \\
& X \longrightarrow Z \text {. }
\end{aligned}
$$

Double central extensions: the direction functor

Proposition

An aspherical groupoid (X, d, c) in $\mathcal{A} \downarrow Z$ has for direction a trivial module $A=(A, \xi)$ if and only if (X, d, c) is central.

Proof

\square

Double central extensions: the direction functor

Proposition

An aspherical groupoid (X, d, c) in $\mathcal{A} \downarrow Z$ has for direction a trivial module $A=(A, \xi)$ if and only if (X, d, c) is central.

Proof

$$
\begin{aligned}
& R[(d, c)] \longrightarrow Z \ltimes(A, \xi) \\
& \operatorname{pr}_{0} \int_{\nabla \lambda}\left(\overrightarrow{\left.1_{X}, 1_{X}\right)} \quad p \mid \|_{\|} s\right. \\
& X \longrightarrow Z .
\end{aligned}
$$

$(p, s)=\left(\operatorname{pr}_{Z},\left(1_{Z}, 0\right)\right): Z \times A \leftrightarrows Z$
$\Leftrightarrow \quad\left(\mathrm{pr}_{0},\left(1_{X}, 1_{X}\right)\right)=\left(\mathrm{pr}_{X},\left(1_{X}, 0\right)\right): X \times A \leftrightarrows X$
$\Leftrightarrow \quad R[(d, c)]=R[d] \cap R[c]$ is central
$\Leftrightarrow \quad\left[R[d] \cap R[c], \nabla_{X}\right]=\Delta_{X}$

Double central extensions: the direction functor

Proposition

An aspherical groupoid (X, d, c) in $\mathcal{A} \downarrow Z$ has for direction a trivial module $A=(A, \xi)$ if and only if (X, d, c) is central.

Definition

- The direction functor $\partial: \mathrm{CExt}_{Z}^{2} \mathcal{A} \rightarrow \mathrm{Ab} \mathcal{A}$ maps a double

$$
\begin{aligned}
& X \xrightarrow{c} C \\
& \text { central extension } d{ }_{\nabla} \\
& { }^{g} \text { of } Z \text { to } A=K[d] \cap K[c] . \\
& D \xrightarrow[f]{\longrightarrow} Z
\end{aligned}
$$

- Centr ${ }^{2}(Z, A)=\pi_{0} \partial^{-1} A$ is the set of equivalence classes of double central extensions of Z by A.

Double central extensions：the direction functor

Double central extensions of Z by A are 3×3 diagrams

Double central extensions: the group $\operatorname{Centr}^{2}(Z, A)$

Definition

Centr ${ }^{2}(Z, A)=\pi_{0} \partial^{-1} A$ is the set of equivalence classes of double central extensions of Z by A.

Proposition

We have a finite product-preserving functor

$$
\operatorname{Centr}^{2}(Z,-): \mathrm{Ab} \mathcal{A} \rightarrow \text { Set }
$$

hence a functor

$$
\operatorname{Centr}^{2}(Z,-): \mathrm{Ab} \mathcal{A} \rightarrow \mathrm{Ab}
$$

Double central extensions: a representing groupoid

Definition of a bijection $\operatorname{Centr}^{2}(Z, A) \rightarrow H^{3}(Z, A)$
We map a central pregroupoid (X, d, c) in $\mathcal{A} \downarrow Z$ to its associated central groupoid in $\mathcal{A} \downarrow Z$: via the pullback

$$
\begin{aligned}
& X \times{ }_{Z} X \underset{d \times{ }_{Z} c}{ } D \times_{Z} C .
\end{aligned}
$$

- $(Y$, dom, $\operatorname{cod})$ is a groupoid, $($ dom, cod) is a central extension in \mathcal{A} and $\partial(p, d, c)=1_{A}$

Conclusion

Theorem

The third cohomology group classifies double central extensions: If Z is an object and A is an abelian object in a Moore category, then

$$
H^{3}(Z, A) \cong \operatorname{Centr}^{2}(Z, A)
$$

Conjecture
The $(n+1)$-st cohomology group classifies n-fold central
extensions:
If Z is an object and A is an abelian object in a Moore category, then

Conclusion

Theorem

The third cohomology group classifies double central extensions: If Z is an object and A is an abelian object in a Moore category, then

$$
H^{3}(Z, A) \cong \operatorname{Centr}^{2}(Z, A)
$$

Conjecture

The $(n+1)$-st cohomology group classifies n-fold central extensions:
If Z is an object and A is an abelian object in a Moore category, then

$$
H^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)
$$

for all $n \geq 1$.

The third cohomology group classifies double central extensions

Tim Van der Linden Joint work with Diana Rodelo
Universidade de Coimbra | Vrije Universiteit Brussel

17 October 2008

