Graph-theoretic fibring of logics

João Rasga

reporting on

A. Sernadas, C. Sernadas, J. Rasga, and M. Coniglio. Graph-theoretic fibring of logics Part I - Completeness. 2008. Submitted for publication.

A. Sernadas, C. Sernadas, J. Rasga, M. Coniglio. Graph-theoretic fibring of logics Part II - Completeness preservation. Submitted for publication.

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

V Portuguese Category Seminar

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

▲ 同 ▶ → 三 ▶

Introduction	Logic systems	Conclusions
Context		

Logic

- language: typically freely generated from a signature
- deductive system
 - Hilbert calculi
 - tableaux systems
 - Gentzen systems
 - ▶ ...
- semantics
 - algebraic
 - relational
 - games
 - ▶ ...

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Introduction	Logic systems	Conclusions
Contout		

Context

Classical propositional logic

language:

freely generated from a set of propositional symbols Π_c by using the unary connective \neg_c and the binary connective \supset_c

semantics:

the class of all valuations from Π_c into $\{0,1\}$

deductive system:
 Hilbert system with the following axioms

$$\begin{split} \xi \supset_c (\xi' \supset_c \xi) \\ (\xi \supset_c (\xi' \supset_c \xi'')) \supset_c ((\xi \supset_c \xi') \supset_c (\xi \supset_c \xi'')) \\ ((\neg_c \xi) \supset_c (\neg_c \xi')) \supset_c (\xi' \supset_c \xi) \end{split}$$

and the rule of Modus Ponens stating that from ξ and $\xi \supset_c \xi'$ it is possible to conclude ξ'

J Rasga

Introduction	Logic systems	Conclusions
Context		

Fibring

operation on logic systems:

the fibring of two logic systems is a logic system such that

- language: obtained by interleaving the constructors of both logics in formulas
- deductive system: should be such that the set of consequences are in some sense minimal
- semantics:

should be sound and complete with respect to the deductive system

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Introduction	Basics	Logic systems	Soundness and completeness	Conclusions
Motivation				
Multi-gra	phs: very	appropriate for d	escribing a logic system	

language:

constructors are seen as edges between sorts:

and formulas as paths (or trees) in a multi-graph:

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Introduction	Logic systems	Conclusions
Motivation		

Multi-graphs: very appropriate for describing:

semantics:

graph representation of the operations:

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Introduction		Logic systems		Conclusions
Motivation				
Multi-grap	hs: very a	ppropriate for o	describing:	

 deductive systems: rules are m-edges between formulas:

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Introduction	Logic systems	Conclusions
Motivation		

Multi-graphs: very appropriate for describing fibring:

- offer a natural way to represent interleaving which is at the heart of fibring
- allow the fibring of an interpretation structure of a logic with any interpretation structure of the other logic
- make possible the definition of the semantic aspects of fibring in such a way that the collapsing problem does not appear

Introduction	Logic systems	Conclusions
Motivation		

Moreover, multi-graphs allow the representation of a wide class of logics:

- logics with an algebraic semantics
- substructural logics
- logics with a partial semantics
- logics endowed with a nondeterministic semantics

•

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

□→ < □→</p>

	Basics	Logic systems	Conclusions
Multi-graphs			

By a *multi-graph* (in short, a *m-graph*) we mean a tuple

$$G = (V, E, \operatorname{src}, \operatorname{trg})$$

where:

- V is a set (of vertexes or nodes);
- E is a set (of *m*-edges);
- src : $E \rightarrow V^+$;
- trg : $E \rightarrow V$.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

- ∢ ≣ ▶

	Basics	Logic systems	Conclusions
Multi-graphs			

and by a *m*-graph morphism $h: G_1 \rightarrow G_2$ we mean a pair of maps

$$\begin{cases} h^{\mathsf{v}}: V_1 \to V_2 \\ h^{\mathsf{e}}: E_1 \to E_2 \end{cases}$$

such that:

•
$$\operatorname{src}_2 \circ h^{\mathsf{e}} = h^{\mathsf{v}} \circ \operatorname{src}_1;$$

•
$$\operatorname{trg}_2 \circ h^{\mathsf{e}} = h^{\mathsf{v}} \circ \operatorname{trg}_1$$

We denote by **mGraph** the category of m-graphs and their morphisms.

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Basics	Logic systems	Conclusions

Generation of a category with binary products out of a m-graph

- 1. from a m-graph G to a graph G^{\dagger} where:
 - the set of vertexes of G^{\dagger} is V^+
 - ► the edges of G[†] are the edges of G plus edges for projections and tuples
- 2. from the graph G^{\dagger} to the category G^{\ddagger} freely generated by G^{\dagger}
- 3. from the category G^{\ddagger} to the category G^{+} with binary products: quotient over the class of morphisms ensuring that projections and tuples have the required universal properties

	Logic systems	Conclusions
Language		

A language signature or, simply, a signature is a tuple

 $\Sigma = (G, \pi, \diamond)$

where G = (V, E, src, trg) is a m-graph, and π and \diamond are in V.

Example The propositional signature Σ_{Π_c} where Π_c is a set of propositional symbols, is a m-graph with sorts π and \diamond and the following m-edges:

▶ $p : \diamond \rightarrow \pi$ for each p in Π_c ;

$$\blacktriangleright \neg_c : \pi \to \pi;$$

 $\triangleright \supset_{c} : \pi\pi \to \pi.$

< 🗇 🕨 < 🖻 🕨 <

	Logic systems	Conclusions

Language

Given a signature $\Sigma = (G, \pi, \diamond)$

- the objects of G⁺ are the finite and non-empty sequences of sorts in Σ
- the morphisms of G⁺ play the role of *expressions* (schema formulas, schema terms, whatever) over Σ.

The morphisms of G^+ constitute the *language* generated by the signature, denoted by $L(\Sigma)$.

	Logic systems	Conclusions

Language

For instance, the schema formula

$$(\xi_1 \supset_c (\xi_1 \supset_c \xi_1)) \supset_c \xi_2$$

is represented by the morphism

$$\supset_{c} \circ \langle \supset_{c} \circ \langle \xi_{1}, \supset_{c} \circ \langle \xi_{1}, \xi_{1} \rangle \rangle, \xi_{2} \rangle : \pi \pi \to \pi$$

where ξ_i is $\hat{\mathbf{p}}_i^{\pi\pi}$, for i = 1, 2.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Conclusions
Semantics		

An interpretation structure I over a signature (G, π, \diamond) is a tuple

 (G', α, D, \bullet)

such that

- G' is a m-graph (operations graph)
- $\alpha: G' \to G$ is a m-graph morphism (*abstraction morphism*)
- D is a non-empty set contained in $(\alpha^{v})^{-1}(\pi)$
- • is an element of $(\alpha^{\mathsf{v}})^{-1}(\diamond)$.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Conclusions

Semantics

concretization vs abstraction

- concretization: from syntax to semantics, that is, a syntactic constructor gets a concrete meaning when interpreted for instance as an operation in a algebra
- abstraction: from semantics to syntax, that is, each semantic component is abstracted to its syntactic counterpart

		Logic systems	Conclusions
Semantics			
Fxamn	le		

The interpretation structure (G', α, D, \bullet) for the signature Σ_{Π_c} where $\Pi_c = \{q_1, q_2, q_3\}$ over a valuation $v : \{q_1, q_2, q_3\} \rightarrow \{0, 1\}$ such that $v(q_1) = 1$ and $v(q_2) = v(q_3) = 0$, is defined as follows:

G' is such that:

$$\begin{split} V' &= \{0,1\} \cup \{\bullet\}; \\ E' &= \{q'_1, q'_2, q'_3, \neg_0, \neg_1, \bigcirc_{00}, \bigcirc_{01}, \bigcirc_{10}, \bigcirc_{11}\}; \\ \text{src' and trg' are such that:} \\ q'_1 &: \bullet \to 1; \\ q'_i &: \bullet \to 0 \text{ for } i = 2, 3; \\ \neg_{v'} &: v' \to (1 - v') \text{ for each } v' \text{ in } V'_{\pi}; \\ \bigcirc_{v'_1v'_2} &: v'_1v'_2 \to ((1 - v'_1) + v'_2) \text{ for each } v'_1 \text{ and } v'_2 \text{ in } V'_{\pi}. \end{split}$$

	Logic systems	Conclusions

Semantics

 $\begin{array}{l} \bullet \ \alpha: \ G' \to G \ \text{is such that:} \\ \alpha^{\mathsf{v}}(0) = \pi; \\ \alpha^{\mathsf{v}}(1) = \pi; \\ \alpha^{\mathsf{v}}(\bullet) = \diamond; \\ \alpha^{\mathsf{e}}(q'_i) = q_i \ \text{for } i = 1, 2, 3; \\ \alpha^{\mathsf{e}}(\neg_{\mathsf{v}'}) = \neg \ \text{for each } \mathsf{v}' \ \text{in } V'_{\pi}; \\ \alpha^{\mathsf{e}}(\supset_{\mathsf{v}'_1\mathsf{v}'_2}) = \supset \ \text{for each } \mathsf{v}'_1 \ \text{and } \mathsf{v}'_2 \ \text{in } V'_{\pi}. \\ \bullet \ D = \{1\}. \end{array}$

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

→ < ∃ → </p>

		Logic systems	Conclusions
Deductive s	ystems		

A deductive signature or meta-signature is a tuple

$$\Phi = (\Sigma, \top, \mathsf{R})$$

where $\Sigma = (G, \pi, \diamond)$ is a language signature such that

$$G^{\Phi} = (V^{\Phi}, E^{\Phi}, \operatorname{src}^{\Phi}, \operatorname{trg}^{\Phi})$$

is a m-graph extending G with

►
$$V^{\Phi} = V$$
;
► $E^{\Phi} = E \cup \mathbb{R}$ where $\mathbb{R} = \{\mathbb{R}_n : \overrightarrow{\pi \dots \pi} \to \pi\}_{n>0}$;
and \top is a set $\{\top^s : s \to \pi\}_{s \in V^+}$.

	Logic systems	Conclusions

Deductive systems

Example Graphical representation of part of the m-graph G^{ϕ} based on Σ_{Π_c} :

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems	Conclusions
Deductive sy	/stems		

A deductive system over a meta-signature Φ is a pair

 (G'',β)

where G'' is a m-graph such that

- ▶ V'' is the class of morphisms of G_{\top}^+ whose target is in V;
- ▶ $E''(\widehat{w}_1 : s \to v_1 \dots \widehat{w}_n : s \to v_n, \widehat{w} : s \to v)$, for \widehat{w} in G^+ , contains, among others, the m-edges $e : v_1 \dots v_n \to v$ of E such that $\widehat{w} = e \circ \langle \widehat{w}_1, \dots, \widehat{w}_n \rangle$ in G^+ ;
- ▶ $E''(\widehat{w}_1 : s_1 \rightarrow v_1 \dots \widehat{w}_n : s_n \rightarrow v_n, \widehat{w} : s \rightarrow v) = \emptyset$ whenever \widehat{w} is not in G^+ or $s_i \neq s$ for some $i = 1, \dots, n$, or \widehat{w}_i is not in G^+ and $n \neq 1$;

	Logic systems	Conclusions

Deductive systems

and β is a m-graph morphism from G'' to G such that

$$\blacktriangleright \beta^{\mathsf{v}}(\widehat{\mathsf{w}}: \mathsf{s} \to \mathsf{v}) = \mathsf{v};$$

- $\blacktriangleright \beta^{e}(e:(\widehat{w}_{1}:s \to v_{1} \dots \widehat{w}_{n}:s \to v_{n}) \to (\widehat{w}:s \to v)) = e \text{ if } e \text{ is in } E \text{ and } \widehat{w} = e \circ \langle \widehat{w}_{1}, \dots, \widehat{w}_{n} \rangle;$
- ▶ $\beta^{e}(f') \in \mathsf{R}$ otherwise.

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems		Conclusions				
Deductive sy	Deductive systems							
Example Deductive system $(\Phi_{\Pi_c}, G'', \beta)$ for classical logic:								
• Φ_{Π_c} is the meta-signature $(\Sigma_{\Pi_c}, \top, R)$;								
\blacktriangleright G" has the mandatory m-edges for connectives, and								

- m-edge $ax_1 : \top^{\pi\pi} \to ax_1$ where ax_1 is $(\xi \supset_c (\xi' \supset_c \xi)) : \pi\pi \to \pi;$
- m-edge ax₂ : $\top^{\pi\pi\pi} \to ax_2$ where ax_2 is $((\xi \supset_c (\xi' \supset_c \xi'')) \supset_c ((\xi \supset_c \xi') \supset_c (\xi \supset_c \xi''))) : \pi\pi\pi \to \pi;$
- ▶ m-edge $ax_3 : \top^{\pi\pi} \to ax_3$ such that ax_3 is $(((\neg_c \xi) \supset_c (\neg_c \xi')) \supset_c (\xi' \supset_c \xi)) : \pi\pi \to \pi;$
- m-edge $MP: \widehat{p}_1^{\pi\pi} \supset_c \rightarrow \widehat{p}_2^{\pi\pi};$
- $\beta: G'' \to G^{\Phi_{\Pi}}$ is such that:
 - $\beta^{e}(ax_{i}) = R_{1}$ for i = 1, 2, 3;
 - ▶ $\beta^{\mathsf{e}}(\mathrm{MP}) = \mathsf{R}_2.$

Introduction	Dasics	Logic systems	Soundness and completeness	Conclusions		
Deductive systems						
Example Graphical representation of part of the m-graph of the						

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

Derivations are seen as a sequence of *derivation steps*, also called *derivation levels*, where in each level one or several rules may be applied to different schema formulas coming from the preceding level.

The morphism $id_{id_{\pi}}$ is applied in a level to a schema formula when no rule is applied to it in that level.

Axioms are seen as unary rules whose antecedent is a verum schema formula.

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems	Conclusions
Deductive syst	tems		

Examples Derivation of $p \supset_c q$ from q:

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems	Conclusions
Deductive s	vstems		

In order to define derivations we consider a new category with binary products, G''^* , obtained from G''^+ by adding the morphisms

►
$$f_1 \otimes \cdots \otimes f_n : (\widehat{a}_{11} \dots \widehat{a}_{1m_1}) \circ \widehat{p}_{s_1}^{s_1 \dots s_n} \dots (\widehat{a}_{n1} \dots \widehat{a}_{nm_n}) \circ \widehat{p}_{s_n}^{s_1 \dots s_n} \rightarrow (\widehat{c}_1 \circ \widehat{p}_{s_1}^{s_1 \dots s_n} \dots \widehat{c}_n \circ \widehat{p}_{s_n}^{s_1 \dots s_n})$$
 where $f_i : \widehat{a}_{i1} \dots \widehat{a}_{im_i} \rightarrow \widehat{c}_i$ is $\mathrm{id}_{\mathrm{id}_{\pi}}$ or is in $(\beta^e)^{-1}(\mathsf{R})$ and $\mathrm{src}(c_i) = s_i$;

▶
$$\ell \odot \widehat{u} : (\widehat{a}_1 \dots \widehat{a}_m) \circ \widehat{u} \to (\widehat{c}_1 \dots \widehat{c}_n) \circ \widehat{u}$$
 if \widehat{u} in G^+ is composable
with \widehat{c}_1 and $\ell : \widehat{a}_1 \dots \widehat{a}_m \to \widehat{c}_1 \dots \widehat{c}_n$ is of the form $f_1 \otimes \dots \otimes f_n$;

while imposing:

 $\blacktriangleright \operatorname{id}_{\operatorname{id}_{\pi}} \odot \widehat{u} = \operatorname{id}_{\widehat{u}};$

$$\blacktriangleright \ \ell \odot \mathsf{id}_s = \ell;$$

$$\blacktriangleright (\ell \odot \widehat{u}_2) \odot \widehat{u}_1 = \ell \odot (\widehat{u}_2 \circ \widehat{u}_1);$$

 $\blacktriangleright (f_1 \otimes \cdots \otimes f_n) \odot \widehat{u} = (f_1 \odot (\widehat{p}_{s_1}^{s_1 \dots s_n} \circ \widehat{u})) \otimes \cdots \otimes (f_n \odot (\widehat{p}_{s_n}^{s_1 \dots s_n} \circ \widehat{u})).$

		Logic systems		Conclusions
Deductive sy	stems			
M_{0}	to l j j who	nover there is a	substitution û (a marphis	m in

We write $\ell \star \vec{\varphi}$ whenever there is a substitution \hat{u} (a morphism in G^+) with $\vec{\varphi} = ANT(\ell) \circ \hat{u}$. In this case we define $\ell \star \vec{\varphi}$ as being equal to $\ell \odot \hat{u}$.

By a *derivation* we mean a pair

$$d = \ell_1, \ldots, \ell_n; \vec{\varphi}_1$$

where each ℓ_i is a derivation step and $\vec{\varphi}_1$ is a sequence of morphisms in V'' such that the sequence given by $\vec{\varphi}_{i+1} = \text{CONC}(\ell_i \star \vec{\varphi}_i)$, for $i = 1, \ldots, n$, is well defined, and so there exists the composite morphism

$$(\ell_n \star \vec{\varphi}_n) \circ \ldots \circ (\ell_1 \star \vec{\varphi}_1)$$

in G''^* .

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Conclusions

Deductive systems

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems		Conclusions
Deductive sy	stems			
Examp	le Derivatio	n of ξ_1 from ξ_2 a	and $\neg \xi_2$:	

in the Hilbert calculus for classical logic, ξ_1 is derived from ξ_2 and $\neg\,\xi_2$ as follows:

1.	ξ2	Нур
2.	$\neg \xi_2$	Нур
3.	$(\neg \xi_2) \supset ((\neg \xi_1) \supset (\neg \xi_2))$	ax_1
4.	$(\neg \xi_1) \supset (\neg \xi_2)$	MP 2,3
5.	$((\neg \xi_1) \supset (\neg \xi_2)) \supset (\xi_2 \supset \xi_1)$	ax3
6.	$\xi_2 \supset \xi_1$	MP 4,5
7.	ξ1	MP 1,6

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems		Conclusions
Doductivo sv	stoms			
Deductive sy	Sterns			
which c	can be depict	ed graphically by	the following picture:	
ξ2	$\neg \xi_2 \top^{\pi}$	$\pi^{\pi} \circ \langle \neg \xi_2, \neg \xi_1 \rangle$	$ op\pi\pi\circ\langle\xi_1,\xi_2 angle$	
idid	d_{π} id _{id_{\pi}}	ax_1	ax ₃	
Ý	¥,	¥ - (`
ξ2	$\neg \xi_2 \neg \xi_2$	$(\neg \xi_1 \supset \neg \xi_2)$	$(\neg \xi_1 \supset \neg \xi_2) \supset (\xi_2 \supset \xi_2)$	1)
↓ ic	$I_{id_{\pi}} \bigvee MF$)	$\bigvee_{v}id_{id_\pi}$	
ξ_2	$\neg \xi_1 \supset \neg \xi$	2	$(\neg \xi_1 \supset \neg \xi_2) \supset (\xi_2 \supset \xi_2)$	1)
ic				
¥ ···	·Iα _π	* MP		
ξ2		$\xi_2 \supset \xi_1$		
	↓ MH)		
	ξ_1		・ロン ・雪 と ・ 声	 王 のへの

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Conclusions

Deductive systems

in our setting this corresponds to the derivation given by

MP, $(id_{id_{\pi}} \otimes MP)$, $(id_{id_{\pi}} \otimes MP \otimes id_{id_{\pi}})$, $(id_{id_{\pi}} \otimes id_{id_{\pi}} \otimes ax_1 \otimes ax_3)$; $\vec{\varphi}_1$ where $\vec{\varphi}_1$ is the sequence $\xi_2, \neg \xi_2, \neg^{\pi\pi} \circ \langle \neg \xi_2, \neg \xi_1 \rangle, \neg^{\pi\pi} \circ \langle \xi_1, \xi_2 \rangle$

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Conclusions

Logic system

A logic system is a triple

$$\mathcal{L} = (\Sigma, \mathcal{I}, \mathcal{D})$$

such that:

- $\mathcal{I} = (\Sigma, \mathfrak{I})$ is an interpretation system;
- D = (Φ, G", β) is a deductive system where Φ is a meta-signature over Σ.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Soundness and completeness	Conclusions
Coundation			

Soundness

A logic system \mathcal{L} is said to be *sound* if $\Gamma \vDash_{\mathcal{I}} \varphi$ whenever $\Gamma \succ_{\mathcal{D}} \varphi$, where φ is a formula and Γ is a set of formulas of G^+ .

An interpretation structure I in \mathfrak{I} is said to be *sound for a deductive rule r* in \mathcal{D} , if $I, \rho \Vdash \text{CONC}(r)$ whenever $I, \rho \Vdash \text{proper}(\text{ANT}(r))$ for every assignment ρ over I.

A logic system \mathcal{L} is said to be *sound for a deductive rule r* in \mathcal{D} , if all its interpretation structures over its signature are sound for *r*.

	Logic systems	Soundness and completeness	Conclusions

Soundness

Theorem A logic system is sound if it is sound for its deductive rules.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems	Soundness and completeness	Conclusions
Completenes	s			

The canonical interpretation structure $S^{\Gamma}(\mathcal{D}) = (\Sigma, (G', \alpha, D, \bullet))$ generated by \mathcal{D} and Γ , is such that:

- $G' = (V', E', \operatorname{src}', \operatorname{trg}')$ where
 - \blacktriangleright V' are the morphisms of G^+ whose target is an element of V
 - $E'(\widehat{w}_1 \dots \widehat{w}_n, \widehat{w})$ is composed by all the m-edges e of E such that $\widehat{w} = \widehat{e} \circ \langle \widehat{w}_1, \dots, \widehat{w}_n \rangle$ in G^+

•
$$\alpha^{\mathsf{v}}(\widehat{w}: s \to v) = v$$
 and $\alpha^{\mathsf{e}}(e) = e$

$$\blacktriangleright D = \{ \widehat{w} \in V' : \Gamma \vdash_{\mathcal{D}} \widehat{w} \}$$

• • is the morphism
$$id_{\Diamond}$$
 in G^+ .

	Logic systems	Soundness and completeness	Conclusions

Proposition For every deductive rule r in \mathcal{D} , set of formulas Γ , and assignment ρ over $S^{\Gamma}(\mathcal{D})$, then $S^{\Gamma}(\mathcal{D}), \rho \Vdash \text{CONC}(r)$ whenever $S^{\Gamma}(\mathcal{D}), \rho \Vdash \text{proper}(\text{ANT}(r))$.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Soundness and completeness	Conclusions

In order for completeness to hold in a logic system it is not necessary to impose as sufficient condition that its interpretation system contains canonical structures.

It is enough to guarantee that its interpretation system contains structures that share with canonical structures some characteristics.

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Soundness and completeness	Conclusions

A logic system contains a representative of the canonical structure over a set Γ when it contains an interpretation structure I_{Γ} such that

- $I_{\Gamma} \Vdash \varphi$ implies $S^{\Gamma}(\mathcal{D}) \Vdash \varphi$;
- ► *I*_Γ ⊩ Γ;

for every formula φ and set of formulas Γ in G^+ .

	Logic systems	Soundness and completeness	Conclusions

Theorem

A logic system with representatives of the canonical structures over all sets of formulas is complete.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

	Logic systems	Soundness and completeness	Conclusions

Theorem

A logic system is weakly complete if it contains a representative of the canonical structure over the empty set.

Corollary

A logic system is (weakly) complete whenever it contains all the interpretation structures that are sound with respect to the rules.

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações

		Logic systems	Soundness and completeness	Conclusions
Completence	_			

Some logics to which our completeness results apply:

- classical propositional logic;
- classical propositional modal logic T;
- intuitionistic propositional logic;
- relevance logic R;
- mbC paraconsistent logic;
- one-sorted equational logic;

► ...

□→ < □→</p>

Conclusions and future work

- Graph-theoretic account of logics with provisos and quantification
- Graph-theoretic account of deductive systems like sequents and labelled deduction
- Study in this context other preservation results like cut elimination, interpolation, quantifier elimination, decidability
- Graph-theoretic account of fibring of protoalgebraic and weakly algebraizable logics
- Extension of fusion to the graph-theoretic setting

	Logic systems	Conclusions

A. Sernadas, C. Sernadas, J. Rasga, and M. Coniglio. Graph-theoretic fibring of logics Part I - Completeness. 2008. Submitted for publication.

A. Sernadas, C. Sernadas, J. Rasga, M. Coniglio. Graph-theoretic fibring of logics Part II - Completeness preservation. Submitted for publication.

http://sqig.math.ist.utl.pt/publications.html

Thank you!!

J Rasga

Departamento de Matemática, Instituto Superior Técnico SQIG-Instituto de Telecomunicações