
WEAKLY MAL’TSEV AND DISTRIBUTIVE LATTICES
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Abstract. In this short note we prove that a variety of lattices is distributive

if and only if it is weakly Mal’tsev.

1. Introduction

A category is said to be weakly Mal’tsev if it has all pullbacks of split epi-
morphisms along split epimorphisms, and for every such pullback the two canoni-
cal morphisms induced by the sections into the pullback are jointly epimorphic [7].
This is to say that for every diagram as

A
f //

B
r

oo
s

// C
goo

where fr = 1B = gs, the pullback of f along g exists always and the canonical
induced morphisms e1 and e2, as in

A×B C
π2 //

π1

��

C
e2

oo

g

��
A

f //

e1

OO

B
r

oo

s

OO

, (1)

into the pullback, are jointly epimorphic. In other words, for every diagram as

A
f //

α
  @

@@
@@

@@
B

r
oo

s
//

β

��

C
goo

γ
~~~~

~~
~~

~

D

(2)

with fr = 1B = gs and αr = β = γs there is at most one morphism

φ : A×B C → D

satisfying the two conditions

φe1 = α , φe2 = γ.

The name weakly Mal’tsev is motivated by the fact that if, in the definition of a
weakly Mal’tsev category, we require that e1 and e2 are jointly strongly epimorphic,
then the result is precisely a Mal’tsev category (usually assumed with finite limits,
see for instance [4], p. 3836, but also [3, 5] and [2]).
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A general class of examples, containing in particular all the Mal’tsev varieties,
may be described as follows.

Let V denote a variety of algebras containing at least one ternary operation,
p(x, y, z), satisfying the following identity

p(x, y, y) = p(y, y, x). (3)

If the quasi-identity

p(x, y, y) = p(x′, y, y) ⇒ x = x′ (4)

also holds in V then V is weakly Mal’tsev.
A particular case of condition (4) is

p(x, y, y) = x

which, combined with (3), gives

p(x, x, y) = y,

the usual Mal’tsev identities.
To see that any variety of universal algebras, containing at least one ternary

operation p, and satisfying identity (3) and quasi-identity (4), is a weakly Mal’tsev
category: consider a diagram like (2) and the existence of a morphism φ satisfying
the required conditions φe1 = α and φe2 = γ; use the identity (3) in order to get

p(φ(a, c), β(f(a)), β(f(a))) = p(α(a), β(f(a)), γ(c));

conclude from (4) that any other morphism φ′ with the same property as φ must
be equal to φ.

Even though this (see also [8]) shows evidence of a general class of varieties with
the weakly Mal’tsev property (other than Mal’tsev varieties themselves), there were
no known examples of weakly Mal’tsev varieties (besides Mal’tsev ones) defined only
in terms of identities, i.e., not involving a quasi-identity as (4) above.

It was a surprise to discover that (a) the variety of distributive lattices is weakly
Mal’tsev, and (b) any algebra in a weakly Mal’cev variety of lattices is distributive.

2. A variety of lattices is distributive if and only if it is weakly
Mal’tsev

In the following we assume the reader is familiar with basic lattice theory as
explained for example in the first two chapters of [6].

A lattice L = (L,∧,∨) is distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all
x, y, z ∈ L. We will say that a variety of lattices is distributive if every algebra in
it is in particular a distributive lattice.

Theorem 2.1. Let L be a variety of lattices. The following conditions are equiva-
lent.

(i) L is distributive;
(ii) for every lattice L, given any element a ∈ L, the following implication{

x ∧ a = x′ ∧ a
x ∨ a = x′ ∨ a

⇒ x = x′

holds;
(iii) L is a weakly Mal’tsev category.
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Proof. (i) ⇒ (ii) Using the absorption, commutative and distributive laws, together
with the hypotheses in (ii), (see for example [1], p. 340) we have

x = x ∧ (x ∨ a) = x ∧ (x′ ∨ a) = (x ∧ x′) ∨ (x ∧ a) =

(x′ ∧ x) ∨ (x′ ∧ a) = x′ ∧ (x ∨ a) = x′ ∧ (x′ ∨ a) = x′.

(ii) ⇒ (iii) Consider a diagram as displayed in (2) and suppose that two
morphisms φ,φ′ : A×B C → D exist such that φe1 = φ′e1 = α and φe2 = φ′e2 = γ.

For every a ∈ A and c ∈ C, with f(a) = b = g(c), a consequence of the lattice
axioms (and the fact that e1(a) = (a, s(b)) and e2(c) = (r(b), c)), is that{

φ(a, c) ∧ β(b) = α(a) ∧ γ(c) = φ′(a, c) ∧ β(b)
φ(a, c) ∨ β(b) = α(a) ∨ γ(c) = φ′(a, c) ∨ β(b)

.

The implication of condition (ii) is now used to conclude that the two morphisms
φ and φ′ are the same, and hence the category L is weakly Mal’tsev.

(iii) ⇒ (i) We will show that if L is not distributive then it is not weakly
Mal’tsev.

A useful result in Lattice Theory states that a lattice L is distributive if and
only if L does not contain a sublattice isomorphic to M3 or N5, the two lattices
displayed in the following picture.

5
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�������
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������
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N5 1

333333 ~~~

Assume L is not distributive, and suppose D is a lattice containing M3 as a
sublattice. If considering A = {1, 2}, B = {2} and C = {2, 5} as sublattices of M3,
and hence of D, together with the obvious morphisms

A
f //

B
r

oo
s

// C
goo , fr = 1 = gs,

the resulting A×B C is the lattice

(2, 5)

(2, 2)

xxxxxxxx
(1, 5)

GGGGGGGG

(1, 2)

xxxxxxxx

GGGGGGGG

and then there are two different lattice homomorphisms

φ,φ′ : A×B C → D
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with the property that φe1 = φ′e1 and φe2 = φ′e1, namely:

φ φ′

(1, 2) 1 1
(2, 2) 2 2
(1, 5) 3 4
(2, 5) 5 5

Similarly, if some lattice D has a sublattice isomorphic to N5 we may consider
A = {1, 2}, B = {2} and C = {2, 5} in the same way (now considered as sublattices
of N5 and hence D) and conclude again the existence of two different morphisms
φ,φ′ : A×B C → D, such that φe1 = φ′e1 and φe2 = φ′e1, namely the ones defined
by the table above. This shows that the category L is not weakly Mal’tsev, and
concludes the proof. �

3. Commutative semigroups

A lattice is build up from two commutative and idempotent semigroup struc-
tures with two compatibility conditions. A semilattice is just a commutative and
idempotent semigroup. We could ask what is the role of weakly Mal’cev in a vari-
ety of semilattices. The following result provides a characterization for the weakly
Mal’tsev property in the more general context of commutative semigroups.

Theorem 3.1. Let S be a variety of commutative semigroups. The following two
conditions are equivalent:

(i) Given any three elements a, b, c in a commutative semigroup D (in S), the
equation

x · b = a · c
has at most one solution x ∈ D;

(ii) The category S is weakly Mal’tsev.

Proof. (i) ⇒ (ii) Given any diagram of commutative semigroups of the form

A
f //

α
  @

@@
@@

@@
B

r
oo

s
//

β

��

C
goo

γ
~~~~

~~
~~

~

D

,

such that fr = 1B = gs and αr = β = γs, suppose there is a morphism φ : A×B C → D
such that

φ(a, sf(a)) = α(a) , φ(rg(c), c) = γ(c).

This morphism is uniquely determined since it satisfies the equation

φ(a, c) · β(b) = α(a) · γ(c)
for every a ∈ A and c ∈ C, with f(a) = b = g(c). Indeed we have

φ(a, c) · β(b) = φ(a, c) · φ(r(b), s(b))
= φ(a · r(b), c · s(b))
= φ(a · r(b), s(b) · c)
= φ(a, s(b)) · φ(r(b) · c)
= α(a) · γ(c).
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(ii) ⇒ (i) Given any three elements a, b, c in a commutative semigroup D (in S),
we may consider A, B and C the free commutative semigroups generated by the
sets {a, b}, {b} and {b, c}, respectively, together with the obvious maps

{a, b}
f // {b}
r

oo
s

// {b, c}
goo , fr = 1 = gs.

Note that A, B and C are not necessarily in S, nevertheless we observe that the
following argument still holds if we trade A, B and C by their respective inclusions
in D.

Suppose the equation

x · b = a · c (5)

has a solution x in D, we will show that if the variety S is weakly Mal’tsev then
this solution is unique.

The existence of a solution x ∈ D to the equation (5) gives us a morphism

φ : A×B C → D

with the property that φe1 = α and φe2 = γ, where e1, e2 are the already mentioned
canonical morphisms into the pullback whilst α and γ are the inclusions of A and C,
respectively, into D, considered as subobjects. This means that the existence of any
other solution x′ ∈ D to equation (5) would produce a morphism φ′ : A×B C → D
satisfying the two conditions φ′e1 = α and φ′e2 = γ, however, the weakly Mal’tsev
property requires the existence of at most one such morphism. Hence the solution
is unique, provided it exist.

The construction of the morphism φ may be obtained as described in the fol-
lowing procedure.

Considering that a generic element of A (resp. C) is of the form anbm (resp.
cnbm) where n and m are two nonnegative integers that cannot be zero at the same
time, we have

f(anbm) = bn+m = g(cnbm);

a generic element of B is then of the form bn with n a positive integer, and

r(bn) = a0bn , s(bn) = c0bn.

In this case, a generic element in the pullback A×B C is of the form

(anbm, cn
′
bm

′
)

where n, m, n′, m′ are nonnegative integers (n and m are not both zero at the
same time, nor n′ and m′) such that

n+m = n′ +m′.

The existence of an element x ∈ D, satisfying x · b = a · c, induces a morphism
φ : A×B C → D defined in the following way

φ(anbm, cn
′
bm

′
) =

{
xncn

′−nbm
′

if n ≤ n′

xn′
an−n′

bm if n > n′ .

Indeed φ is a morphism of semigroups, i.e, for every n,m, n′,m′, u, v, u′, v′ nonne-
gative integers satisfying n+m = n′ +m′ ̸= 0 ̸= u+ v = u′ + v′,

φ((anbm, cn
′
bm

′
) · (aubv, cu

′
bv

′
)) = φ(anbm, cn

′
bm

′
) · φ(aubv, cu

′
bv

′
)
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or even

φ(an+ubm+v, cn
′+u′

bm
′+v′

) = φ(anbm, cn
′
bm

′
) · φ(aubv, cu

′
bv

′
).

Several cases have to be checked:

• if n ≤ n′ and u ≤ u′, then n+ u ≤ n′ + u′ and we have

xn+ucn
′+u′−(n+u)bm

′+v′
= (xncn

′−nbm
′
)(xucu

′−ubv
′
);

• if n ≤ n′ and u > u′ then we have to consider two further cases:
– if n+ u ≤ n′ + u′, then

xn+u cn
′+u′−(n+u) bm

′+v′
=

= xn+u′
xu−u′

bu−u′
cn

′+u′−n−u bm
′+v′−u+u′

= xn+u′
au−u′

cn
′−n bm

′+v′−u+u′
, since xb = ac

= xn+u′
au−u′

cn
′−n bm

′+v , since v + u = v′ + u′

= (xn cn
′−n bm

′
)(xn′

au−u′
bv);

– if n+ u > n′ + u′, then

xn′+u′
an+u−(n′+u′) bm+v =

= xn+u′
xn′−n bn

′−n an+u−n′−u′
bm+v−n′+n

= xn+u′
cn

′−n au−u′
bm+v−n′+n , since xb = ca

= xn+u′
cn

′−n au−u′
bm

′+v , since m′ + n′ = m+ n

= (xn cn
′−n bm

′
)(xu′

au−u′
bv);

and similarly for the remaining cases.
Finally we observe that this morphism is such that

φ(anbm, c0bm+n) = x0an−0bm = anbm

φ(a0bm
′+n′

, cn
′
bm

′
) = x0cn

′−0bm
′
= cn

′
bm

′
.

�
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