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ALEŠ PULTR

(Text to a short course presented in Coimbra, July 2010)

In 1918 Percy John Daniell published an article

A general form of integral, Annals of Mathematics 19
(1918) 279–294,

for which I would gladly use epithets like “celebrated” or “pioneering”.
Only, in spite of its quality, it has not been in my opinion celebrated
enough. And one uses the adjective “pioneering” usually for works that
found recognition and followers relatively soon (while here it took sev-
eral decades until the ideas started to appear in monographs). Perhaps
one can call it “revolutionary”, also in the original sense of the word,
that is, “turning over”: unlike the more classical approach the roles of
integral and measure are reversed: integral comes first, and measure
second – almost as an afterthought.

The main idea seems to be to head, from the very start, for an
extension of Riemann integral that would be friendlier to limits (no
integral can preserve all limits, see the easy example in 6.8 below, but
Riemann’s integration often fails to behave for the lack of generality
only).

Besides the surprising simplicity there are two main features of the
Daniell’s approach to be emphasized.

First, as already mentioned, there is no measure theory preceding
the construction of the integral and proofs of the most important facts
about it. Lebesgue measure is obtained practically for free, ex post,
as the integral of the characteristic function; its fundamental proper-
ties (σ-additivity, measurability of Borel sets) are easy corollaries of
(relatively easily proved) facts about the integral.

Secondly, the constructions are not in fact concerned with metric
convergence. The limits one uses most of the time are monotone ones,
hence suprema or infima (and hence always existing) – one can say that
everything is happening, rather, in terms of the natural partial order of
real functions; when one has to consider in proving Lebesgue Theorem,
at last, a general limit, one works in fact with the common value of
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limes superior (infimum of suprema) and limes inferior (supremum of
infima).

It has been naturally asked whether Daniell proved that his integral
coincided with the (15 years older) Lebesgue one. In the paper this
fact is just mentioned in passing, without providing details. It does
not seem to be hard, though, and one can surmise that the author
did not find a more explicit treatment of the equivalence interesting
enough.

1. To start with

1.1. Dramatis personae. We will consider a Euclidean space Em

of a fixed dimension. It does not matter which, but it is fixed.
A function is a mapping f : Em → R ∪ {−∞,+∞}. The constant

zero function will be denoted by 0.
A sequence (fn)n of functions is said to be increasing if for all x

f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · ·

(usually this is referred to as non-decreasing, but “increasing” is shorter
and there will not be an occasion for confusion). Similarly we speak of
a decreasing sequence.

Since we allow the infinite values, an increasing (resp. decreasing)
sequence (fn)n always has a limit, namely the supremum resp.infimum.
We write

fn ↗ f resp. fn ↘ f

and if there is a danger of confusion (e.g. in double indexing) we
emphasize the index in question as in

fnk ↗k fn, fnk ↘k fn.

The notation an ↘ a, an ↗ a may be used also for monotone sequences
of numbers.

Note again that for the increasing and decreasing sequences, whether
of functions or of numbers, the limits are suprema resp. infima; the
limit structure is based on the order.

1.2. The class Z. This is the class of

continuous functions with compact carrier,

that is, with values zero on Em r ⟨a1, b1⟩ × · · · × ⟨am, bm⟩ where ai, bi
are finite; the continuity entails finite values f(x).



DANIELL’S VERSION OF LEBESGUE INTEGRAL 3

Note that if fn ↘ 0 and f1 ∈ Z then all fn are in Z: we can take
the carrier of f1 for all of them.

For the f ∈ Z we have the standard Riemann integral which we will
denote, so far, by

If.

1.3. The operations. We will consider the standard sum f+g and
the real multiples αf (so far we avoid the case with opposite infinite
values in the sum; but see 3.6 below). Further we have the maxima
and minima

f ∨ g and f ∧ g

and the positive and negative parts

f+ = f ∨ 0, f− = −(f ∧ 0),

and finally the absolute value

|f | = f+ + f− (note that f = f+ − f−).

1.3.1. Observations. (a) Z is closed under all the operations above.
(b) f ∨ g = 1

2
(f + g + |f − g|) and f ∧ g = 1

2
(f + g− |f − g|). Thus,

if a class of functions is closed under linear combinations and absolute
values, it is closed under maxima and minima as well.

1.4. Theorem. (Dini) Let fn be continuous real functions on a
compact metric space X and let fn ↘ 0. Then fn converges to 0
uniformly.

Proof. It suffices to prove that mn = maxx fn(x) converges to zero,
because then |fn(x) − 0| < ε for sufficiently large n independently on
the choice of x ∈ X.

Suppose it does not. Reducing, possibly, fn to a smaller system we
obtain an example with

fn ↘ 0 and ∀n, mn > ε0

for a fixed ε0 > 0.
Since X is compact there are xn such that fn(xn) = mn; since it is

compact metric we can choose a subsequence of xn converging to some
x ∈ X. After a new reduction of the sequence fn we have

fn ↘ 0, ∀n fn(xn) > ε0 and lim
n

xn = x.

Now for k ≥ n,
fn(xk) ≥ fk(xk) > ε0

and hence
fn(x) = lim

k
fn(xk) ≥ ε0 for all n.
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This is a contradiction since limn fn(x) = 0. �
1.4.1. Corollary. If fn ∈ Z and fn ↘ 0 then limn Ifn (=

inf Ifn) = 0.

1.5. Summary. We have a class Z of functions such that

(Z1) for all α, β ∈ R and f, g ∈ Z, αf + βg ∈ Z,
(Z2) if f ∈ Z then |f | ∈ Z,

and a mapping I : Z → R such that

(I1) if f ≥ 0 then If ≥ 0,
(I2) I is a linear map, and
(I3) if fn ↘ 0 then Ifn ↘ 0.

In the sequel we will consistently use only he properties (Zj) and (Ij)
and their consequences. In particular we easily infer that

f ≤ g ⇒ If ≤ Ig, and

f, g ∈ Z ⇒ f ∨ g, f ∧ g, f+, f− ∈ Z.

2. A modest extension

2.1. Define
Zup = {f | ∃fn ∈ Z, fn ↗ f},
Zdn = {f | ∃fn ∈ Z, fn ↘ f},
Z∗ = Zup ∪ Zdn.

Note. The functions in Z∗ are not necessarily continuous, they do
not have to have a compact carrier, and can reach infinite values. Also
note that Z ⊆ Zup ∩ Zdn and this inclusion is not an equality.

2.2. Proposition. Let f, g ∈ Z∗, witnessed by sequences fn and gn.
Let f ≤ g. Then

lim Ifn ≤ lim Ign.

Proof. (a) If fn ↗ f and gn ↘ g then fn ≤ f ≤ g ≤ gn.

(b) Let fn ↗ f and gn ↗ g. For a fixed k set

hn = gn ∧ fk.

Then hn increases and we have

limhn = g ∧ fk = fk,

and hence

hn ↗n fk, that is, (fk − hn) ↘n 0
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and we obtain, by (I3), that limn Ihn = Ifk. Now gn ≥ hn, hence
Ign ≥ Ihn, and hence

lim
n

Ign ≥ Ifk

for each k so that finally limn Ifn ≤ limk Igk.

(c) If fn ↘ f and gn ↘ g use (b) for −f,−g.

(d) Let fn ↘ f and gn ↗ g. Then fn − gn ≤ hn = (fn − gn)
+; since

hn ↘ 0 we have lim Ihn = 0 and finally

lim Ifn − lim Ign = lim I(fn − gn) ≤ 0. �

2.3. Corollary and definition. For f ∈ Z∗ we can define

If = lim
n

Ifn

where fn is an arbitrary monotone sequence converging to f .

2.4. A few immediate facts. (Note that most of them hold
specifically for functions from Zup resp. Zdn while one holds for the
whole of Z∗.)

(a) f ∈ Zup iff −f ∈ Zdn.
(b) If f, g ∈ Zup resp. Zdn then f + g ∈ Zup resp. Zdn and we have

I(f + g) = If + Ig.
(c) If f ∈ Zup and α ≥ 0 resp. α ≤ 0 then αf ∈ Zup resp. Zdn and

we have I(αf) = αIf .
(d) If f, g ∈ Z∗ and f ≤ g then If ≤ Ig.
(e) If f, g ∈ Zup then f ∨ g, f ∧ g ∈ Zup.

2.5. Proposition. Let fn ∈ Zup and fn ↗ f . Then f ∈ Zup and
Ifn ↗ If .

Similarly for fn ∈ Zdn and fn ↘ f .
Proof. Choose fnk ∈ Z such that fnk ↗k fn and set

gn =
∨

{fij | 1 ≤ i, j ≤ n}.

Then gn ↗ g for some g. Since

gn(x) = fij(x) ≤ fi(x) for some i, j ≤ n

we have

(1) gn ≤ fn ≤ f.

On the other hand, for k ≥ n we have gk ≥ fnk and hence

(2) g ≥ fn.

By (1) and (2), gn ↗ f .
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Now for the value of If : by (2), If = Ig ≥ Ifn and hence If ≥
lim Ifn; on the other hand, by (1), If = lim Ign ≤ lim Ifn. �

3. Lebesgue integral; some basic facts

3.1. For an arbitrary function f set∫
f = sup{Ig | g ≤ f, g ∈ Zdn} and

∫
f = inf{Ig | g ≥ f, g ∈ Zup}.

∫
f is called the lower (Lebesgue) integral of f , and

∫
f is the upper

one.

3.2. Proposition. (1)
∫
f = sup{Ig | g ≤ f, g ∈ Z∗} and

∫
f =

inf{Ig | g ≥ f, g ∈ Z∗}.
(2)

∫
f ≤

∫
f .

(3) If f ≤ g then
∫
f ≤

∫
g and

∫
f ≤

∫
g.

Proof. (a) Let, say, the second equality not hold. Then there is a

g ≥ f , g ∈ Zdn such that Ig <
∫
f . Let gn ↘ g with gn ∈ Z. Then

there has to be a k such that Igk <
∫
f . This is a contradiction since

gn ∈ Z ⊆ Zup.

(2) and (3) are trivial. �

3.3. From 3.2(1) we immediately obtain

Corollary. For f ∈ Z∗ we have
∫
f =

∫
f = If .

3.4. Denote by

L

the set of all functions f such that
∫
f =

∫
f and such that the common

value is finite. This common finite value is called the Lebesgue integral
of f and denoted by ∫

f.

Note. The assumption of finiteness of the common value is essential.

Functions with infinite
∫
f =

∫
f can in general misbehave. We will

have functions with infinite Lebesgue integral later, but their class will
have to be restricted – see 3.9 below.
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3.5. Proposition. f ∈ L iff for every ε > 0 there exist g1 ∈ Zdn

and g2 ∈ Zup, g1 ≤ f ≤ g2, such that Igi are finite and Ig2 − Ig1 < ε.
Proof. The implication ⇒ is obvious.
⇐ : If gi have the properties then

Ig1 ≤
∫
f ≤

∫
f ≤ Ig2 ≤ Ig1 + ε

so that
∫
f −

∫
f is smaller than any ε > 0. �

3.6. Convention. Functions from L can have infinite values. Let
us agree that in case of f(x) = +∞ and g(x) = −∞ the value f(x) +
g(x) will be chosen arbitrarily. We will see that for our purposes such
arbitrariness in the definition of f + g does not matter.

3.7. Proposition. (1) If f, g ∈ L then f + g ∈ L and one has∫
(f + g) =

∫
f +

∫
g.

(2) If f ∈ L then any αf ∈ L and one has∫
αf = α

∫
f.

(3) If f, g ∈ L then f ∨ g ∈ L and f ∧ g ∈ L.
(4) If f, g ∈ L and f ≤ g then

∫
f ≤

∫
g.

(5) If f ∈ L then f+, f− ∈ L.
(6) If f ∈ L then |f | ∈ L and |

∫
f | ≤

∫
|f |

Proof. (1) By 3.5. Choose f1, g1 ∈ Zup and f2, g2 ∈ Zdn such that
f1 ≤ f ≤ f2, g1 ≤ g ≤ g2 and If1 − If2 < ε, Ig1 − Ig2 < ε. Then

(∗) f1 + g1 ≤ f + g ≤ f2 + g2

and the statement follows (realize that the inequalities hold also in
the equivocal points from the convention 3.6: if, say, f(x) = +∞ and
g(x) = −∞ then f2(x) = +∞ and g1(x) = −∞; f1(x) has to be finite,
as a limit of a decreasing sequence of finite numbers, and similarly for
g2(x) so that the inequalities (∗) are satisfied trivially).

(2) follows immediately from 3.5.

(3) Take the fi, gi as in (1) to obtain

f1 ∨ g1 ≤ f ∨ g ≤ f2 ∨ g2 and f1 ∧ g1 ≤ f ∧ g ≤ f2 ∧ g2

and realize that

f2 ∨ g2 − f1 ∨ g1 ≤ (f2 − f1) + (g2 − g1)
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and similarly for the minimum.

(4) is obvious and (5) follows from (3).

(6) |
∫
f | = |

∫
(f+− f−)| = |

∫
f+−

∫
f−| ≤

∫
f++

∫
f− =

∫
|f |. �

3.8. Lemma. If fn ∈ L and if fn ↗ f then

lim

∫
fn =

∫
f.

Notes before the proof. 1. This lemma is very important and
will play a crucial role in the sequel.

2. As
∫
fn ≤

∫
f we have trivially lim

∫
fn ≤

∫
f . Hence, under the

assumptions it follows from the Lemma that limn

∫
fn =

∫
f =

∫
f .

Proof. We obviously have lim
∫
fn ≤

∫
f , and if lim

∫
fn = +∞ the

equality is trivial.
Thus, we can assume that the limit is finite. By the definition of∫
fn choose gn ∈ Zup, gn ≥ fn such that∫

fn +
ε

2n+1
> Ign.

Set hn =
∨n

i=1 gi. Then hn ∈ Zup and the sequence hn increases so that
by 2.5, h = limhn ∈ Zup. Now hn ≥ gn ≥ fn and hence h ≥ f , and

Ih ≥
∫
f .

Here is an important
Claim.

hn − fn ≤ (g1 − f1) + (g2 − f2) + · · ·+ (gn − fn).

(Indeed, in each point x, some of the summands is hn(x) − fj(x) for
a j ≤ n. The summands are ≥ 0 and hence the inequality holds for
j = n; otherwise the sum is ≥ hn(x)− fj(x)+ gn(x)− fn(x) = hn(x)−
fn(x)+gn(x)−fj(x) ≥ hn(x)−fn(x)+gn(x)−fn(x) ≥ hn(x)−fn(x).)

Thus we have

Ihn −
∫

fn ≤
n∑

i=1

ε

2i+1
< ε

so that Ihn ≤
∫
fn + ε and finally

∫
f ≤ Ihn ≤ lim

∫
fn + ε. �

3.9. Some more notation. Set

Lup = {f | ∃fn ∈ L, fn ↗ f}, Ldn = {f | ∃fn ∈ L, fn ↘ f}, and

L∗ = Lup ∪ Ldn.
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Now we obtain from 3.8

3.9.1. Corollary. For each f ∈ L∗ we have
∫
f =

∫
f . Conse-

quently,
Lup ∩ Ldn = L.

3.9.2. Convention. For f ∈ L∗ we will use the symbol
∫
f for the

common value of
∫
f and

∫
f , even if it is infinite.

3.9.3. Proposition. If f ∈ L∗ and if
∫
f from 3.9.2 is finite then

f ∈ L and the integral coincides with the standard integral in L.
Proof. Let, say, f ∈ Lup, let fn ↗ f with fn ∈ L. Then by 3.8 and

Note 2,
∫
f = lim

∫
fn =

∫
f =

∫
f . �

4. Null sets

4.1. The characteristic function of a subset M ⊆ Em will be denoted
by

cM .

Thus we have
M ⊆ N iff cM ≤ cN ,

cM∪N = cM ∨ cN and cM∩N = cM ∧ cN ,

and if M1 ⊆ M2 ⊆ · · · ⊆ Mn ⊆ · · · then we have for M =
∪∞

n=1 Mn

cMn ↗ cM .

M is a null set if
∫
cM = 0 (then, since cm ≥ 0, we also have

∫
cM = 0

and hence cM ∈ L).

4.2. Proposition. (1) If M is a null set and N ⊆ M then N is a
null set.

(2) If Mn are null sets then also
∪∞

n=1 Mn is a null set.
Proof. (1) is trivial. For (2) consider Nn = M1 ∪ · · · ∪ Mn. Then

cNn ≤ cM1 + · · · cMn and hence Nn is a null set by 3.7. Now cNn ↗ cM

and hence
∫
cM = 0 by 3.8. �

4.3. Let V (x) be a proposition concerning points of our Em. We say
that

V holds almost everywhere (briefly, a.e.)

if the set
{x | notV (x)}
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is a null one.
The statement that f(x) = g(x) almost everywhere will be indicated

by
f ∼ g.

4.4. Proposition. (1) If f ∈ L then f(x) is almost everywhere
finite.

(2) If f ∈ Lup (resp. Ldn) then f(x) > −∞ (resp. < +∞) almost
everywhere.

Proof. (1) Recall the convention on sums on 3.6 and Proposition
3.2(1). For f + (−f) we can choose equally well 0 and cM where
M = {x | f(x) = ±∞} and hence

∫
cM =

∫
0 = 0.

(2) For f ∈ Lup take fn ∈ L with fn ↗ f . Then {x | f(x) = −∞} ⊆
{x | f1(x) = ±∞} and the latter set is a null one by (1). �

4.5. Proposition. If f ∼ g then
∫
f =

∫
g and

∫
f =

∫
g.

Proof will be done for
∫
. If we do not have

∫
f =

∫
g = +∞ we can

assume that
∫
f < +∞. Set M = {x | f(x) ̸= g(x)} and rn = n · cM .

By 3.8 we have
∫
r = 0 for r = lim rn.

Choose h1, h2 ∈ Zup such that h1 ≥ f , h2 ≥ r, Ih1 <
∫
f + ε

and Ih2 < ε. Then we have h1 + h2 ∈ Zup, h1 + h2 ≥ g, and hence∫
g ≤ Ih1 + Ih2 <

∫
f + 2ε. Thus,

∫
g ≤

∫
f , in particular

∫
g < +∞,

and we can repeat the procedure with f, g interchanged. �

4.6. Corollary. (1) If f ∈ L and f ∼ g then g ∈ L.
(2) If f ∈ Lup resp. Ldn and f ∼ g then g ∈ Lup resp. Ldn.

4.7. Proposition. If f ≥ 0 and
∫
f = 0 then f ∼ 0.

Proof. Set Mn = {x | f(x) ≥ 1
n
}. Since 0 ≤ cMn ≤ nf we have∫

cMn = 0, hence Mn is a null set, and consequently {x | f(x) ̸= 0} =∪∞
n=1 Mn is a null set. �

5. Levi and Lebesgue theorems

5.1. Theorem. (Levi) Let fn ∈ Lup and let fn ↗ f a.e.. Then
f ∈ Lup and

∫
f = lim

∫
fn. Similarly for fn ∈ Ldn and fn ↘ f .

Proof. We can assume that fn ↗ f . Choose fnk ∈ L such that
fnk ↗k fn and set

gn =
∨

{fij | i, j ≤ n}.
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Now gn ↗ g with gn ∈ L. Since gn ≤ f we have g ≤ f . On the other
hand, however, gp ≥ fmp for p ≥ n and hence g ≥ fn, and finally g ≥ f
Thus, f = g ∈ Lup.

Now about the value of
∫
f . If lim

∫
fn = +∞ the equality is trivial;

hence we can assume that lim
∫
fn is finite. Then fn ∈ L and we can

use 3.8 to obtain lim
∫
fn =

∫
f =

∫
f . �

5.2. Theorem. (Lebesgue) Let fn ∈ L, let lim fn(x) = f(x) a.e.,
and let there exist a g ∈ L such that |fn(x)| ≤ g(x) a.e.. Then f ∈ L
and

∫
f = lim

∫
fn.

Note. An attentive reader may worry about the sloppy formulation:
does one mean “almost everywhere one has for all n that |fn(x)| ≤
g(x)” or “for each n one has almost everywhere that |fn(x)| ≤ g(x)”?
But it is an easy exercise to show it is the same.

Proof. Again, we can forget about the provisa of almost everywhere.
Set

hn =
∨

{fk | k ≥ n}, gn =
∧

{fk | k ≥ n}.

Since
∨p

j=0 fn+j ↗p hn we have hn ∈ Lup, and similarly gn ∈ Ldn. But
we have, moreover,

−g ≤ gn ≤ fn ≤ hn ≤ g

and hence
∫
gn and

∫
hn are finite and we have in fact gn, hn ∈ L, and

consequently gn ∈ Lup and hn ∈ Ldn and we can use Levi theorem. Now
obviously gn ↗ f and hn ↘ f , by Levi theorem we have lim

∫
gn =

lim
∫
hn =

∫
f , and finally since gn ≤ fn ≤ hn we conclude that∫

f = lim
∫
fn. �

5.3. Proposition. Let g ∈ L, let fn ∈ L∗, let fn ≥ g a.e. and let
limn fn(x) = f(x) a.e.. Then f ∈ Lup. Similarly for fn ≤ f we obtain
f ∈ Ldn.

Proof. Since −∞ <
∫
g ≤

∫
fn, fn ∈ Lup (if fn ∈ Ldn it has,

hence, a finite integral so that, by 3.9.3, fn ∈ L ⊆ Lup as well). Set
φ = supn fn. We have

∨
k≤n fk ↗n φ and hence φ ∈ Lup by 5.1, and

there exist φn ∈ L such that φn ↗ φ. Obviously φ ≥ f ≥ g and we
can assume that φn ≥ g (else replace φn by φn ∨ g). Set

gkn = φk ∧ fn.

We have g ≤ gkn ≤ φk and hence gkn ∈ L and, moreover, we can use
Lebesgue theorem for limn gkn and obtain

φk ∧ f = lim
n

gkn ∈ L.
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Now we conclude that φk ∧ f ↗k f and hence f ∈ Lup. �

6. The class Λ (measurable functions)

6.1. Stating that limn fn = f will be abbreviated by writing fn → f .
Set

Λ = {f | ∃fn ∈ L, fn → f}
(unlike in the definition of Lup and Ldn there is no assumption on the
nature of the convergence).

6.2. Proposition. If f ∼ g and f ∈ Λ then g ∈ Λ.
Proof. Let fn ∈ L and fn → f . Define M = {x | f(x) ̸= g(x)} and

set
gn(x) = g(x) for x ∈ M, gn(x) = fn(x) otherwise.

Then by 4.6, gn ∈ L. �

6.3. From 5.3 we immediately infer

Corollary. If f ∈ Λ and f ≥ 0 then f ∈ Lup.

6.4. The following is trivial.

Proposition. (a) If f, g ∈ Λ and if f + g makes sense a.e. then
f + g ∈ Λ.

(b) If f ∈ Λ and α ∈ R then αf ∈ Λ.
(c) If f, g ∈ Λ then f ∨ g, f ∧ g ∈ Λ.
(d) If f ∈ Λ then |f | ∈ Λ.

6.5. Proposition. f ∈ Λ if and only if both f+ and f− are in Lup.
Proof. If fn are in L and fn → f then obviously f+

n → f+ and
f−
n → f−. Use 6.3. The other implication is trivial. �
6.5.1. Corollary. Let f ∈ Λ and let there be a g ∈ L such that

|f | ≤ g. Then f ∈ L.

6.6. Proposition. If fn ∈ Λ and if fn → f a.e. then f ∈ Λ.
Proof. We have f+

n , f
−
n ∈ Lup and f+

n → f+, f−
n → f−. Thus, by

5.3, both f+ and f− are in Lup. �

6.7. Proposition. f ∈ L∗ iff f+ and f− are in Lup and if the
difference

∫
f+ −

∫
f− makes sense.

Consequently, f ∈ Λ r L∗ iff f+ and f− are in Lup and
∫
f+ =∫

f− = +∞.
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Proof. ⇒ : Let, say, f ∈ Lup and let fn ↗ f and fn ∈ L. As
f1 = f+

1 − f−
1 ≤ f = f+ − f− we have f− ≤ f−

1 ∈ L and hence the
value of

∫
f− is finite.

⇐ : If
∫
f+ −

∫
f− makes sense then at least one of the integrals is

finite and either f+ or f− is in L. Thus, f+ − f− is either in Lup or in
Ldn. �

6.8. Remark. Some of the statements in this section may be
somewhat surprising. It turns out that for integrability of a limit of
integrable functions, the nature of the limiting process is not very im-
portant: all what one needs is that the positive and negative parts of
the limit are not both infinite.

For the value of the integral of the limit, however, the nature of the
convergence is of the essence.

Example. Define functions fn, gn on E1 by setting

fn(x) =

{
0 for x ̸= 0,

n for x = 0,
gn(x) =


0 for x ≤ − 1

n
and x ≥ 1

n
,

n+ n2x for − 1
n
≤ x ≤ 0,

n− n2x for 0 ≤ x ≤ 1
n
.

Then fn ↗ f and gn → f where f(x) = 0 for x ̸= 0 and f(0) = +∞,∫
fn =

∫
f = 0 and

∫
gn = 1. The functions gn converge to f the

wrong way.

7. Lebesgue measure

7.1. A set A ⊆ Em is said to be (Lebesgue) measurable if the char-
acteristic function cA is in Λ (then, of course, it is in Lup, by 6.3). We
set

µ(A) =

∫
cA

and call µ(A) the (Lebesgue) measure of A.
Note that the null sets from 3.4 are precisely the measurable sets

with measure zero.

7.2. General facts. For measurable A,B we have A∪B measurable
and

µ(A ∪B) ≤ µ(A) + µ(B)

(by 6.4 we have cA∪B = cA ∨ cB (≤ cA + cB) in Λ) and if A,B are
disjoint then

(7.2.1) µ(A ∪B) = µ(A) + µ(B)



14 ALEŠ PULTR

as then cA∪B = cA + cB.
But we have much more: the measure is countably additive (σ-

additive, as this fact is usually expressed). Here are some facts on
measurability.

Proposition. (1) Let An, n = 1, 2, . . . , be measurable. Then∪∞
n=1 An is measurable. If for any two n, k the intersection An ∩Ak is

a null set then

µ(
∞∪
n=1

An) =
∞∑
n=1

µ(An).

(2) The intersection of a countable system of measurable sets is mea-
surable.

(3) If A,B are measurable then the difference ArB is measurable.
(4) µ(∅) = 0 and for measurable A ⊆ B, µ(A) ≤ µ(B).
Proof. (1) We have cA1∪···∪An ↗n c∪∞

n=1 An and hence c∪∞
n=1 An ∈ Lup.

In the almost disjoint case we obtain the value from the finite additivity
(7.2.1) and from Levi Theorem.

(2) We have cA1∩···∩An ↘n c∩∞
n=1 An .

(3) cArB = (cA − cB) ∨ 0.
(4) is trivial. �

7.3. Special sets.

Proposition. (1) Each open set in Em is measurable.
(2) Each closed set in Em is measurable.
(3) For the interval J = ⟨a1, b1⟩ × · · · × ⟨am, bm⟩ one has

µ(J) = (b1 − a1)(b2 − a2) · · · (bn − an).

(4) Each countable set is measurable, with measure 0.

Proof. The distance in Em will be denoted by ρ(x, y).

(1) It suffices to show that bounded open sets are measurable: for a
general open U consider the open balls Bn = {x | ρ(x, (0, . . . , 0)) < n}
and use Proposition 7.2(1) for U =

∪
n U ∩ Bn.

Thus, let U be a bounded open set. Set

An = {x | ρ(x,Em r U) ≥ 1

n
}

and define fn : Em → R by

fn(x) =
ρ(x,Em r U)

ρ(x,Em r U) + ρ(x,An)
.

Since An and Em r U are disjoint closed sets, fn is a continuous map.
Since fn(x) = 0 for x /∈ U , we have Fn ∈ Z ⊆ Λ. Now if x ∈ U then



DANIELL’S VERSION OF LEBESGUE INTEGRAL 15

ρ(x,Em r U) ≥ 1
n0

for some n0 and hence x ∈ An – and fn(x) = 1 –
for all n ≥ n0. Thus,

fn → cU
and cU ∈ Λ.

(2) Use (1) and 7.2(3).

(3) Note that for a bounded closed set C we can use a similar pro-
cedure like in (1): this time set

An = {x | ρ(x,C) ≥ 1

n
}

and define fn : Em → R by

fn(x) =
ρ(x,An)

ρ(x,An) + ρ(x,C)
.

Now obviously fn(x) = 1 for x ∈ C and fn(x) = 0 for ρ(x,C) ≥ 1
n
if

n. Furthermore, if k ≥ n then ρ(x,Ak) ≤ ρ(x,An), and fk(x) ≤ fn(x).
Thus,

fn ↘ cC .

In particular this holds for the interval J . Moreover, fn(x) = 0 outside

⟨a1 −
1

n
, b1 +

1

n
⟩ × · · · × ⟨am − 1

n
, bm +

1

n
⟩

and 0 ≤ fn(x) ≤ 1 so that by the standard estimate of Riemann
integrals

(b1 − a1) · · · (bn − an) ≤
∫

fn ≤ (b1 − a1 +
2

n
) · · · (bn − an +

2

n
)

and
∫
cJ = (b1 − a1)(b2 − a2) · · · (bn − an) by Levi Theorem (actually

already by Dini Theorem).

(4) By (3), µ({x}) = 0. Use 7.2(1). �

7.4. Borel sets. The smallest class of subsets of Em containing all
open subsets and closed under

• complements,
• countable unions, and
• countable intersections

(of course, the last follows from the first two) is called the class of Borel
sets.

Thus one has here e.g. all the open sets, all the closed ones, the Gδ,
Fσ, Gσδ etc. – the sets of the Baire classification.

From 7.2 and 7.3 we immediately obtain

7.4.1. Corollary. Each Borel set is measurable.
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7.5. Let us finish this section with a trivial remark. From 7.2(1)
and 7.3(1) we immediately obtain the often used somewhat paradoxical
observation that for every ε > 0 there is a dense open set U of the unit
interval I such that µ(U) < ε: order all the rationals in I in a sequence
r1, r2, . . . , rn, . . . and set

U =
∞∪
n=1

(rn −
1

2n+2
, rn +

1

2n+2
)

(where (a, b) designate open intervals).

8. The integral over a set

8.1. Unlike the additivity of the classes L etc. we do not have
anything like multiplicativity. Nevertheless, multiplying by measurable
cM gives satisfactory results.

Proposition. Let M be a measurable set and let f be in L. Then
cM · f is in L.

Proof. Set φn = ncM ∧ (f ∨ (−n · cM)). Then φn ∈ Λ and since
|φn| ≤ |f | we have cMf = limφn in L by 6.5.1. �

8.2. By 8.1. we can define for measurable M and f ∈ L,∫
M

f ≡df

∫
cMf,

the integral of f over M .

8.3. Sometimes we have a real function defined on a measurable set
M only. Then, before determining about an “integral of f over M”
one has to decide whether f can be extended to a function f on the
whole of Em belonging to L (by 3.1 this amounts to deciding whether
f defined by

(3.3.1) f(x) =

{
f(x) for x ∈ M,

0 otherwise

is in L. This is often obvious (and often, of course, we have another
obvious extension). Here is an expedient

Proposition. Let M be compact. Consider the class of all the
functions f obtainable from continuous maps g : M → R by subsequent
taking limits. Then all the associated f are in Λ.

Thus, f
+
and f

−
are in Lup, and if at least one of the

∫
f
+
and

∫
f
−

is finite then
∫
M
f makes sense.
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Proof. By Tietze theorem we can extend a continuous f : M → R
to a continuous f : En → R such that

fn(x) = 0 for ρ(x,M) ≥ 1

n
, and

a ≤ fn(x) ≤ b where a = min
M

f(x) and b = max
M

f(x).

Then fn converge to the f from (3.3.1) and by Lebesgue theorem,
f ∈ L. Now replace the limits gn → g in the subsequent constructions
by gn → g.

8.4. Proposition. Let Mn, n = 1, 2, . . . be measurable.
(a) Let for n ̸= k, Mn,Mk be almost disjoint, f ∈ Λ, and let for

M =
∪

Mn

∫
M
f make sense. Then∫

M

f =
∞∑
n=1

∫
Mn

f.

(b) Let M1 ⊆ M2 ⊆ · · · , M =
∪
Mn and let

∫
M
f make sense. Then∫

M

f = lim
n

∫
Mn

f.

(c) Let M1 ⊇ M2 ⊇ · · · , M =
∩

Mn and let
∫
M
f make sense. Then∫

M

f = lim
n

∫
Mn

f.

Proof. For f ≥ 0 the statement immediately follows from Levi the-
orem and the fact that the sum formula obviously holds for finitely
many Mn. Thus, we have the equality for f+ and f−. Now if

∫
M
f

makes sense then by 6.7 one of
∫
m
f+,

∫
m
f− is finite, and hence at

least one of the series
∑∞

n=1

∫
Mn

f+,
∑∞

n=1

∫
Mn

f− converges, and since
the summands are non-negative, it converges absolutely. Thus,∫
M

f =

∫
M

f+−
∫
M

f− =
∞∑
n=1

∫
Mn

f+−
∞∑
n=1

∫
Mn

f− =
∞∑
n=1

∫
Mn

(f+−f−),

the last reshuffling being made possible by the absolute convergence of
at least one of the series (and the other being a sum of non-negative
numbers).

(b) Apply (a) for M1,M2 rM1,M3 rM2, . . . .

(c) Set Nn = M1 rMn. Then M = M1 r
∪

Nn. Use (b). �
8.4.1. Note. For the general statement the assumption that

∫
M
f

make sense is essential. The point is that we could have both
∫
M
f+
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and
∫
M
f− infinite. If this is excluded by some other information, we

do not have to make the assumption explicitly.

9. Parameters

This section is included for completeness sake only. Unlike in the
others, there is nothing specific Daniel here: we just use the already
proved Lebesgue theorem.

9.1. Theorem. Let T be a metric space, t0 ∈ T , and let f :
T × Em → R ∪ {+∞,−∞} be a function such that

(1) for almost all x, f(−, x) is continuous in a point t0,
(2) there is a neighbourhood U of t0 such that the functions f(t,−)

belong to L for all t ∈ U r {t0}, and
(3) there exists a g ∈ L and a neighbourhood U of t0 such that for

almost all x and for all t ∈ U r {t0} one has |f(t, x)| ≤ g(x).

Then f(t0,−) is in L and we have∫
f(t0,−) = lim

t→t0

∫
f(t,−).

Proof. Choose tn ∈ Ur{t0} such that limn tn = t0 and use Lebesgue
Theorem. �

9.2. Theorem. Let f : R× Em → R ∪ {+∞,−∞} be such that in
a neighbourhood U of t0

(1) there exist partial derivatives ∂f(t,x)
∂t

for almost all x,
(2) there is a g ∈ L such that for almost all x and for all f ∈ U

one has ∣∣∣∣∂f(t, x)∂t

∣∣∣∣ ≤ g(x),

(3) and for t ∈ U there exist
∫
f(t,−).

Then there exist the integral
∫ ∂f(t0,−)

∂t
and one has∫

∂f(t0,−)

∂t
=

d

dt

∫
f(t0,−).

Proof. We have ∂f(t0,x)
∂t

= limh→0
1
h
(f(t0 + h, x) − f(t0, x)). Set

φ(h, x) = 1
h
(f(t0 + h, x)− f(t0, x)). By Lagrange theorem we have

|φ(h, x)| =
∣∣∣∣∂f(t0 + θh, x)

∂t

∣∣∣∣ ≤ g(x)

and hence we can apply Theorem 9.1. �
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10. Fubini Theorem

In this section we will have to indicate the Euclidean space in which
we work. In case of Em we will specify the Z,Zup,L etc. as Zm,Z

up
m ,Lm

etc., and for the integral symbols we will use
∫ (m)

,
∫ (m)

,
∫ (m)

instead

of plain
∫
,
∫
,
∫
.

We will abandon the integral symbol I since we already know that
for f ∈ Z∗ we have If =

∫
f .

Finally, to avoid confusion in the case of two variables we will some-
times use the classical∫

f(x, y)dy or

∫
f(x, y)dx for

∫
f(x,−) or

∫
f(−, y).

10.1. Lemma. For a function f defined on Em+n define functions
F and F on Em by setting

F (x) =

∫ (m+n)

f(x, y)dy (resp. F (x) =

∫ (m+n)

f(x, y)dy ).

Then one has∫ (m+n)

f ≥
∫ (m)

F (resp.

∫ (m+n)

f ≤
∫ (m)

F ).

Proof. I. If f ∈ Zm+n then we have equalities, by the standard Fubini
theorem for continuous maps on compact intervals. Furthermore we
have for F = F = F ,

F ∈ Zm.

Indeed, choose a compact interval J carrying the function f . The
function F obviously has a compact carrier, namely the projection of
J (the values elsewhere are integrals of 0). Further, let K be the
volume of J . For an ε > 0 there is a δ > o such that for ρ(x, x′) < δ,
|f(x, y)− f(x′, y)| < ε

K
, independently on y. Thus we have∣∣∣∣∫ F (x)−

∫
F (x′)

∣∣∣∣ < ε

K
·K = ε,

and F is continuous.

II. Now let fk ∈ Zm+n, fk ↗k f . Then

Fk(x) =

∫
fk(x, y)dy ↗ F (x) and also fk(x,−) ↗ f(x,−)
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for all y. Thus we still have∫ (m+n)

f(x, y)dy = lim
k

∫ (m+n)

fk = lim
k

∫ (m)

Fk =

∫ (m)

F.

III. Now let f be general and let g ∈ Zup be such that g ≥ f . Set

G(x) =
∫ (m+n)

g(x, y)dy, Then G ≥ F and by II we have∫ (m+n)

g =

∫ (m)

G ≥
∫ (m)

F

and hence ∫
f = inf{

∫
g | g ∈ Zup, g ≥ f} ≥

∫
F. �

10.2. Theorem. (Fubini) Let f ∈ L∗
m+n. Then for almost all

x there exists the integral
∫ (m+n)

f(x, y)dy. If we denote its value by
F (x), and define the values F (x) arbitrarily in the remaining points,
we have F ∈ L∗

m and ∫ (m+n)

f =

∫ (m)

F.

Proof. Set F (x) =
∫
f(x, y)dy and F (x) =

∫
f(x, y)dy. By Lemma

10.1 we have

∫
f =

∫
f ≥

∫
F ≥


∫
F∫
F

 ≥
∫
F ≥

∫
f =

∫
f.

Let f be in Lm+n. Then the values are finite and we obtain, first of

all, that
∫
F =

∫
F finite and hence F ∈ Lm, and similarly F ∈ Lm.

Further,
∫
F =

∫
F and hence

∫
(F − F ) = 0 and hence F − F = 0

almost everywhere, by 4.7. If f ∈ L∗
m+n use Levi theorem. �
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