Closure operators and radicals

Gonçalo Gutierres *

Using Dikranjan-Giuli notion of closure operator w.r.t. \mathcal{M} [3] and a well-behaved class of \mathcal{M} -subobjects, we present a generalization of preradical which allows us to study simultaneously algebraic torsion theories (see [2, 1]) and factorization systems.

Namely, we show that the following two results are particular instances of a more general result.

Theorem 1. For a pair $(\mathcal{A}, \mathcal{B})$ of subclasses of \mathcal{M} the following assertions are equivalent:

- (i) $(\mathcal{A}, \mathcal{B})$ is a factorization system for morphisms of \mathcal{M} ;
- (ii) there is a weakly hereditary idempotent closure operator c such that \mathcal{A} is the class of c-dense subobjects and \mathcal{B} is the class of c-closed subobjects.

Theorem 2. For a pair $(\mathcal{T}, \mathcal{F})$ of subcategories of an abelian category the following assertions are equivalent:

- (i) $(\mathcal{T}, \mathcal{F})$ is a torsion theory;
- (ii) there is an idempotent radical r such that T is the class of r-torsion objects and F is the class of r-torsion-free objects.

References

- D. Bourn and M. Gran, Torsion theories in homological categories, J. Algebra 305 (2006) 18–47.
- [2] S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966) 223–235.
- [3] D. Dikranjan and E. Giuli, *Closure operators. I*, Proceedings of the 8th international conference on categorical topology (L'Aquila, 1986), Topology Appl. 27 (1987) 129–143.

^{*}Joint work with Maria Manuel Clementino.