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Abstract. Subfitness and its relation to openness and
completeness is studied in the context of Heyting semilattices.
A formally weaker condition (c-subfitness) is shown to be
necessary and sufficient for openness and completeness to
coincide. For a large class of spatial frames, c-subfit = subfit.

Preliminaries. Recall that a Heyting semilattice (also

implicative semilattice [11], or Brouwerian semilattice [10])

1s a —

(meet-)semilattice with the (Heyting) operation satisfying
arb e © @ éhac

We study ideals and complete ideals (see Definition 2.1
below) in these objects, show that some standard facts about
subfitness (an important concept of topology and logic) hold
in this general context, and discuss the question of openness
confronted with completeness.



One of the motivations comes from modelling open
continuous maps in pointfree topology. The condition that
images of open sublocales under a frame homomorphism h :
[—M are open reduces to the existence of a map 9: M->L
such that

XAq(a) = yAq(a) iff h(x)aa =h(y)aa. (Open)

From this equivalence one can easily deduce the famous
theorem by Joyal and Tierney ([9]) stating that

h : ->M 1s open iff it 1s a complete Heyting homomorphism,

that 1s, if it preserves all joins, all meets and, moreover, also
the Heyting operation (always existing due to the frame
distributivity).

The condition (Open) can be viewed as a comparison of two
frame congruences
E = {(x,y) | x24(a) = ya4(a)} and
F={x,y)[h(x)aa=h(y)ra}.
Now under a certain condition (called fitness, weaker than the
point-free variant
of regularity), frame congruences coincide iff the classes of
the top element do, and
(Open) further reduces to
xag(a) =q(a) iff h(x)A a =a,
that 1s,



q(a)¢ x iff agh(x).
Hence, h is here open iff it is complete, the Heyting part
being automatic.
In fact, fitness is not really necessary, and the question
naturally arises how far it can be relaxed. It turns out that for
every complete homomorphism h : LM being Heyting, it
suffices that L 1s subfit (in spaces, a condition weaker than
T1).
We prove a necessary and sufficient condition (formally
weaker than subfitness, but a dividing example is still
lacking).
Working in the context of Heyting semilattices makes the
results substantially more general. Our main aim is to prove
as much as possible without using infinite joins or
meets (completeness, for instance, 1s expressed by the
existence of a Galois adjoint, not by preserving arbitrary
meets — which do not have to exist at all).

We use the standard notions and notation for posets (partially
ordered sets) as e.g. in [3]. We write

TM = {x€X | x3meM} and similarly M for M €X = (X, ).
The least (resp. largest) element, if it exists, will be usually
denoted by 0 (resp. 1).

Monotone maps f: X-Y and g : Y—2X are (Galois) adjoint (f
on the left, g on the right) if f(x)<y iff x< g(y).



It is a well-known fact that
(*) left (resp. right) adjoints preserve all the existing
suprema (resp. infima).

Definition 1.1.

A (meet-)semilattice is a poset L = (X, €) such that every
couple {x, y}€X has an infimum, usually called meet and
denoted by xay. If all the {x, y}¢X also have suprema these
will be denoted by x vy and referred to as joins; L is then said
to be a lattice.

Convention. We use the symbol sup{x, y} (as opposed to
xvy) in the cases where the suprema do not have to exist.
Thus, “sup{a, b} = ¢” states that sup{a, b} exists and is equal
to c; or, if 1 exists, “sup{a, b} 6# 1” states that a and b have a
common upper bound ¢ < 1.

[f there are suprema and infima of all subsets one speaks of a
complete lattice.
Here one has the converse of the (*) above, namely

a monotone map between complete lattices preserving all
the suprema (resp. infima) is a left (resp. right) adjoint.

A pseudocomplement of an element a of a semilattice L with
a least element is an a®€ L such that
xAa=01ff x¢a*.



A non-empty semilattice is a Heyting semilattice if there is a
binary operation satisfying
aAb¢ciff agbac. (H)

Note that

if a Heyting semilattice has a least element 0, it has

pseudocomplements,

namely a* = a-0.
Lattices with an operation - satisfying (H) are called Heyting
algebras.
In the sequel, the use of (H) 1s mostly automatic.

Proposition 1.2. (A few Heyting formulas.) In a Heyting
semilattice H we have:

(1) a¢bac iff be¢a-c,

(2) as(bac) = (asb)a (a=c),

(3) there is a largest element 1 and a»a = 1 for all a,
(4)agb iff a»b=1,

(5) a¢ b=a,

(6) a»b = as(aab),

(7) aa(a»b) =aab,

(8) aab=aaciff asb = asc,

(9) (aa b)=c = a=(b=c).

If H is a Heyting algebra we have, furthermore, that
(10) H 1s a distributive lattice, and

(11) for every a, b€H, b= (bva)a (a=b).

Proof. (1) follows immediately from (H) and the
commutativity of .



(2) since a=>(—) is a right adjoint (recall the beginning of
Section 1).

(3): x¢ a»a iff xa a ¢ a, that 1s, always.

(4): 1¢ asb iffa=1aa¢bh.

(5) since a~ b ¢ a.

(6): by (2) and (3).

(7): an(asb)¢ b since a=*b ¢a=b, and anb ¢aa(asb) by (5).
(8) follows from (2) and (7).

(9): x¢(arb)»ciff xaarbsc iff xaagebaciff x ¢a»(b-c).
(10): (—)a a1s a left adjoint and hence preserves all the
existing suprema.

(11): b¢(bva)~(a*b) by (5); by (10) and (7), (bva) a(ash) =
(ba(a=b))v (an~ (a=b)) ¢ b.

2. Ideals in Heyting semilattices. There are two main
reasons for working with Heyting semilattices. First, the
central notion of 1deal fits to this structure rather than to
Heyting algebras. Second, in the facts about subfitness
(Section 3, applied in Section 5) the join does not play any
role. Some specific facts concernine Heyting algebras are
discussed in Section 4.
The system of Heyting semilattices can be viewed as a variety
of algebras (if we use the suggestive + for  and -, or just a
juxtaposition, for —, it can be determined by the equations
at(b+c)=(a+b)+c,at+tb=b+a,ata=a,
alb+c)=ab+ac,a+b(atb)=a,atab=a+b;
since one of the equations 1s the one-sided distributivity law
the definition of 1deal



below i1s natural: it is a non-void subset S¢ H closed under +
and such that for s¢ S and any a€H, as €S).

Definition 2.1. (1) A non-void subset S of a Heyting
semilattice H is an ideal if

(I1)s,t€S 9 sat€S, and

(I2) a€¢ H & s€S Ha+s&S.
(2) We speak of a strong ideal if, moreover,

(Istr) the embedding js: S€ H i1s a right adjoint, that is,
there is a
monotone mapping ¥ : H='S such that
VacH,seS, )(a)¢esiffags
(in other words, %jg = id, and j¢%? id).
(3) A complete ideal has, furthermore, a left adjoint @ to &
(hence ¥ is both a right and a left adjoint), that is
(Icpl) there is a monotone mapping < : S = H such that
¥acH, s<S, %(s) ¢ aiffs¢d(a)
(in other words, 44=id, and ¢Jc4id).

Observations 2.2. (1) Each ideal contains the top 1 (indeed,
let s€S;then 1 =s=—s €S).

(2) Ideals in H are Heyting sub-semilattices of H.

Obviously, the intersection of any system S, 1 € J, of ideals is
an ideal. The complete lattice of ideals of H will be denoted
by IdI(H).

Note that the least element in this lattice is O = {1}.



Proposition 2.3. The join of two ideals in IdI(H) is given by
SvT={sat|s€S,teT}.

Proof. Obviously any ideal U containing S, T contains SVT

which is an ideal (as

a=(sat) = (a=s)4 (a=t) by Proposition 1.2(2)).

Proposition 2.4. If S, T are strong ideals then SvT is strong.

Thus, the system

TEIT(H) of strong ideals is a sub-join-semilattice of IdI(H).

Proof. Set ¥ (x) = (x) a A(x). Thus, for a general X, x € 2 (x),

and for s a t

(s€S,teT)wehave d(sat)=K(sat)a 2(sat) =saR(t)a X (Dab
@ t=sat.

Proposition 2.5. IdI(H) is a distributive lattice.
Proof. Let S1, S2, T be ideals. Then trivially (SIaS2)vT ¢
(S1vT)n(S2vT).
Now let x€(S1V T)n (S2¥T). Then x =5,4 § = $,AF, with s.€
Siand €,,t, €7

D.Sett=t, A%, Thenx=(s,at)aA (s,a%,) &sat ¢ X
and we have
5a¥ =x = s,at and by Proposition 1.2(8) €3¢, =t=s, . Thus Eas,€
S1 AS2
and we have x =(£98)at ¢ (S1aS2)vT.

Note. It has been pointed out to us by P.T. Johnstone that the
first short proof of the distributivity in similar vein, for the



case of sublocales in frames, 1s due to Dana Scott — see also

[8].

Proposition 2.6. Let S, T be ideals (strong ideals, complete
ideals, resp.) in H and let S ¢ T. Then S is an ideal (strong
ideal, complete 1deal, resp.) in T.
Proof. The statement for ideals is straightforward. Now for
the strong case, let jg: SeB 3 ST .
and Y1 :T ¢ W be the embeddings and let J )t
be the :
adjoints. Thus,
)¢ =id, Ay =id, As% 7 id and )1 5zid.
Set ¥'=¥%,;¢ .Then 'y’ =k’ =Pjs =id,
and 313')'2 jg#’;j‘; 7,18 )‘1 and
hence (as ¢ is an order embedding), )P 5 id.
For the complete case consider the left adjoints 9s 'ﬁ- to
Yg ,¥7 . We have
Defg= id;) ikt =id, %% ; idand Q425 ¢id.
Set @' =J7qs .Then Q'»' =DrfcPcst & Ppir =id
and 7??'=*’$J1)‘r‘f_( - "'3151 Mg = :
Mhrithds= Vg = A4 =id @A
since JTi'=13s ,and  rith="Y1
1s standard).

2.1. Open (principal) ideals. The operation = distributes

over meets on the left, and Y (eax)s we()-u)(recall

Proposition 1.2(9)). Thus, we have the principal ideals in H
o(a)={a-=>x|x € H}



(in the (+,")-notation at the beginning of Section 2 of the
distributivity a(x+y) =
ax+ay and the equation y(ax) = a(yx) we have &(a) = {ax | x €
H}). Because of their role in point-free topology we speak of
them as of open ideals. Observe that

o(a)={x|a="vx=x} (2.7.1)
(use Proposition 1.2(9)). Each e(a) is a complete ideal. It is
strong (set "(a)(x) = & <hal
a x;then Pj(#) s @=3%z% and ) Ny)= 9339 and we
have Coegfx)=a A x
adjoint to ~ gy ey

Proposition 2.7. (1) &¢b iff o(e) ¢ o(h)
2) S(wab)=eed Nk
Proof. (Proposition 1.2(9) used repeatedly)
(1) Ifa¢b and x =0-29€(adwe have b>% = hafedy)
=(baa) » y= &% s X celhb)
Let &(@) co®)then a2(@b)is in @(b) and hence @ +(a.«b)
= b3(as (eab)):z(aabd¥ab)= | 5o that & ¢ 2 ab

and finally @g&b .
(2) Trivially o(e)n ¢(8)30(ask) Now let o ¢ a)n &(b) Then
aprd henee A z vt = bar =) (2ab)a2 -

s X A(ban) = wI9a =m

Proposition 2.8. For any open ideal 2s(&) in an ideal SE H
we have og(a)= #9)nS Consequently, an open ideal in
an open ideal in H 1s itself an open ideal
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in H.
Proof. The first is obvious: we have ¢¢(@) =
= {a|eS ar . )
Now in particular @ g¢ey(® = oahn eCl): °(°"‘|') zo(a)
by Proposition 2.7(2) @ Ale = & by Proposition 2.7(1)).

Proposition 2.9. An ideal S € H i1s open iff it is complete

and Ys preserves the

Heyting operation.

Proof. Let S = ¢(&)  be open. We already know it is

complete. Now for 2= ),ce.) we have Z(x29): & 3(x%) = ,.
(by Proposition 1.2(7) and (9)) and proceed, by Proposition

1.2(9), ... =

Conversely, let S be complete and let 2= /¢ preserve

the Heyting operation.

Seta= qg¢(4) Then we have 5 (e=32)=V(¢())32(») = 1543
and

hence o.am ¢2(*

On the other hand, 1 = (™) = (%) =2 (2(2) 3 2(») NP 92)

2njgir:§e$ Y (D2, a4 (™) &%

Y(*)se-> % and hence FICY R ek
and S= P [H] = {@& =) n€ H}= o)

, and finally

Corollary 2.10. Principal ideals are retracts in the category of
Heyting semilattices.

A4



The Closed ideals are
<(e) = to = f"" l""’lok

€ (% is indeed an ideal : meet is trivial and if =& 272/
then (by Proposition 1.2(5))
y-2a22 7% In the general case it is not strong, but see
Observation 4.1 below.
For an 1deal S set

m(s)zjmn€H|mgs<S ¢z

';S ?.J (S\{‘i)

)
Observations 2.11. (1) In the strong case, m (8) =2¢ (1)

(2) For closed ideals, méC () = {x | sup{a, x} = 1}.

Lemma 2.12. If a€ M(S) then for every s¢ S, @=s= s

Proof, As & al®&4$)$ s ,we have & ¢(@=8)= ¢ | hence
~Famwd (Q@238)28 3 A anel 0,28 ¢ ¢

,while §¢ @ =>¢ 1s trivial.

Proposition 2.13. The following statements are equivalent:
(1) S ¢ ea)

(2) “9S s 9olad

(3) e,em(8) (in the strong case, J¢Coh = 4\ =),
4) <()nS <0



Proof. (1) &2) is trivial.

(2y%3): Let 0% S € S.Suppose $ 4 m(S) , that is, s€@$
.Then s ¢ @o(e) and

there is an x < 1 such that $¢ » = @=3% hencea= $4@ ¢ 2
and M = @3n =1,

a contradiction. For the statement on the »  see
Observationg2.11.

(3)®4) is just a reformulation.

(3% 1) follows from Lemma 2.12.

Comparing (1) and (4) in Proposition 2.13 we immediately
obtain

Corollary 2.14. o(%) is the pseudocomplement of -cCe)
in [dI(H).

Proposition 2.15. (Properties of ¥%.)
(1) For every x¢ H and s ¢S, x2s=Vs(») =2 §
(2) x ¢ %(x), e (Ps(0)= I (=)
(3) Ps(mx9) =Y (2)a Yo ()
Proof. (1): y¢n=>s iff m¢y=2s iff (by (I12)) (=)< 9=
iff y ¢ Pg(™)=>$
(2) is in condition (Istr) in Definition 2.1.
(3): Ay ¢ =AYy hence m$93)(xay), hence Nx) ¢Y3HnAY)
,hence 4 $J(*)2Amay), Y6 )¢ 2(x) 22 =A%)
(™) a2(y) ¢ 2(~ 49) and finally

The other inequality i1s trivial.
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Note. The properties in (2) and (3) are the properties of a
nucleus as considered in the case of complete Heyting
algebras (frames).

3. Subfit Heyting semilattices. A Heyting semilattice is
subfit (cf. [6], conjunctive in [14], [15]) if we have the
implication

o 4 b D ac' t'ﬂPic'.“S =14 s""’&""‘!(subﬁt)

(Recall the Convention in Definition 1.1(1): “sup{a, c} =14
sup{b, ¢} says that a, ¢ do not have a common upper bound
in H other than the top while b, ¢ do.)

Theorem 3.1. Let H be a Heyting semilattice. Then the

following statements are equivalent.

(1) H 1s subfit.

(2) For a strong ideal SE€ H, S\ {1} is cofinal in H\ {1} only

if S = H.

(3) If S 1s a strong ideal such that S = H then there is a closed
«<(x) ¥ {1} such that Sn <(x) = {1}.

(4) Each open ideal o~(a) is the supremum in Idl(H) of the

system {«(X) | sup{x, a} = 1}.

(5) Each open ideal in H is a supremum in Idl(H) of a system

of closed 1deals.

Proof. (1)9(2): Let b&H and & =¥ (k). Let sup{a, b} =1

and let x <1 be

14



such that a2 b,e¢ . By the cofinality there is an s€ S,

s<1.Then $2. b

and being in S, itis % a. Thuss 7 a,c,hences=1,a

contradiction proving that b=a € S.

(2)®(3): (3) is just a reformulation of (2).

(3)3(4): By Proposition 2.13, ¢(a) is an upper bound of the

system. Now let S be a general upper bound; thus, for all x

with sup{a, x} =1, S 2, & (x). Let <(y)le(o)v S)= {4}
= #4. Then in particular ,c(g\rs‘(ﬁ):{l} and

hence sup{y, a} =1,

by Proposition 2.13(4), and = .e(9) € S. Thus, ()=

= {1} and by T C (%\f\@(&)vs)z

3), £(@yS = H,and o(e)= o(2)a(«(a)v )z o(})n)
and o(@ &S

(4)=(5) is trivial.

(5)eX1): Ifag bwe have <(b)¢<@)and hence o(ay §e(b)
If o(®) isasupremum of a system of closed ideals
there is a ¢ such that -e(e) €,0(2) | so that

sup{a, ¢} = 1, while <(s) Qo(b) and consequently
sup{c, b} # 1.

From Proposition 2.8 and Theorem 3.1(5) we immediately
obtain

Corollary 3.2. An open ideal in a subfit Heyting semilattice
is itself subfit.

AR



Proposition 3.3. Let S be a complete ideal in a subfit Heyting
semilattice. Then S is open. Thus, completeness yields in the
subfit case the automatic preservation of the Heyting peration.

Proof. Set @Qu=q¢(A) . Then, first, Dg(a) = Jg (¢ @))z1and
hence, by Proposition

2.13, $¢o(wv)

We will show that SX {1} is cofinal in 6(a) % {1}. Indeed, if 1 ¢
fx=a->y

1s an element of 0’(0))\9’3 then a g’ y,hence a A a g

y and 3(& —ado >y =x

so that 4¢& () that is, ot ¢ D () :} 1. Thus, by Corollary
3.2 and Theorem 3.1(2), S:o(a)

Note. In the previous proof, in fact, the subfitness was not
used in formally the full strength. It would have sufficed to
replace (subfit) by the formally weaker

(c-subfit) for a complete ideal S€H, S\ {1} is
cofinal in HX {1} only if S = H.

Or, in other words, by

.)
(c-subfit’) for a complete ideal S H, JS (1)= {1}
only if S = H.

We do not know whether this formally weaker condition is
really weaker than (subfit). It seems to be likely, but we will
show that in an important class of



Heyting algebras these two conditions coincide; see
Definition 5.4 below.

Proposition 3.4. A Heyting semilattice is subfit (resp.
satisfies (c-subfit)) iff for a strong 1deal (resp. a complete
ideal) S and any open ideal o(a)

s Pola) = Sceo()

Proof. & is obvious: apply the formula for a = 1, that is,
ofa)=H.

=? : By Proposition 2.13, S €o(a) . Since o) is subfit

(see Corollary 3.2), and since 98<96(hakes the subset

Sco(a) cofinal, S =olasy by Theorem 3.1.

Proposition 3.5. A Heyting semilattice satisfies (c-subfit) iff
every complete ideal in H 1s open.

Proof. We already know that the condition suffices. Now let
each complete ideal be open. By Proposition 3.4, to show that
it is necessary it suffices to prove that @ o-(a) @ e(b)
implies a = b. Now if the first holds we have &gy =1

iff Dyeay = I, thatis, bax =1iff a>a =1,

thatis @< iff be o

The case of Heyting algebras. In this section we will discuss
Heyting algebras H instead of Heyting semilattices (recall
Definition 1.1(4)).

In this case every strong ideal S 1s again a Heyting algebra,
with the binary join being D¢(2vy)and the mapping Vg a
lattice homomorphism.

1



If H is a complete Heyting algebra (frame) then the fact

that ';5 has a left adjoint says precisely that S€ H is closed
under arbitrary meets, so that the condition (Istr) is in fact an
extension of (I1) to all meets. S 1s then again a frame,

with the joins given by %(Va;), and D¢ is a frame
homomorphism (a sublocale, modelling a generalized
subspace if a frame is viewed as a generalized space;

the e(a) resp.<(a) then model the open resp. closed ones).
If S is complete, ¥s is a complete lattice homomorphism.
Frame homomorphisms (preserving finite meets and general
joins) model continuous maps, and complete Heyting
homomorphisms model the open continuous ones (see also
the beginning of Section 5 below).

Observation 4.1. If H is a Heyting algebra then each <(@)is a
strong ideal, with x?“ L L
Proposition 4.2. If H is a Heyting algebra then o{2) and ¢ (a’)
are complements to each other in IdI(H) (and in Ta‘l(H))
Proof. If xea(a)vf-"fhen Xxpaand x =% =1 [fxe&H is
general, then, by Proposition 1.2(11), x=(xva)a(a = x)€

< c(a)Vveola)

Proposition 4.3. Let S¢ H be a strong ideal in a Heyting
algebra. Then

S =N {cGyvol=x)]| LE)=(y)}.

18



Proof. Leta€ S and let J(x)= Yg(y). Thenx = a =Jg (2}
=Kly)s%— 9->% and (recall Proposition 1.2(11)) a=(avx)A
(x>a)=(av X)A(y-a)e cbdvoly) (asy - (y = a) = y = a).
Let a be in the intersection. Then for any x, y with Jg(ae) =
=¥%(w), a€<(xyvoly). In partlcular a€ f.()s(a.))v o(a)so that & =
an(a->%) for some n 7, % (@)'and y¢ H. Then by Proposition
1.2(3), (2) and (9), 1 =@ = (&> % ) A (@ (g9 =

I A@>%)=a - y,anda=x2 /(%) .

A Heyting algebra is fit (cf. [6]) if we have the implication
a¢b DIAc,avezl (»b b (fit)
Recall the @$ from 2.10.

Theorem 4.4. Let H be a Heyting algebra. Then the following
statements are
equivalent.
(1) H 1s fit.
(2) For a strong ideal S and an ideal T,
9F€0S ©Te S
(3) For each strong ideal S ¢ H,
S =n{o(x)| (%) =1}.

(4) For each closed ideal,

Ya=n {ox)|avx=1)}.

Remark. Note that in (2) one will not use even the (I1).
Proof. (1) = (2): Let @T€9S and letb€T, b+ 1. Set

a= Qs(b).

19



Suppose avc=1;ifbvc¢s€S we have a¢s, hence sy ave =
1. Thus, bv c493§and hence bvc f.?l'. We have, by Proposition
1.2(11), b= (bvcY*c-2b) so that bvce (c-»b)>b €T, and
(cab)-»b=1. Hence c=b ¢ b, that 1s, c»b =b. Thus, a¢ b,
and b =X()€S.

(2) (3): Set T =N &) %)= 1}. By Proposition 2.13,
SC€T.Nowlet a¢dT. Thenthereisat ¥ 1,t€T and a<t.
Since t€ T we have x-»t =t whenever J (x) = 1. Suppose

a 4 9S.Then Jg(a)=1andwehavea at=t.

But since a &€ t we have (Proposition 1.2(4)) a=»t=1and a
contradictiont= 1. Thus, @T¢& S and, by (2), T€ S.
(3) (4) is immediate.

4) (1):If fa=9fe(x)|avx=1}thenifc>b=>bforallc
such that avc =1 we obtain a¢ b and H is fit.

Proposition 4.5. Let H be a subfit Heyting algebra and let S
be a strong ideal in H that has a complement in IdI(H). Then
S 1s subfit.

Proof. Obviously if $, is a strong ideal in S and if S is a strong
ideal in H then S, is one in H. Now let S\ {1} be cofinal in
SN{l1}.Let SvT=Hand SaT = {1}.

Consider S,vT. If 1 # a H then in a representation a=s "t,
s€S,teT, eithert # 1 and a¢t€SyvT, or s # 1 and we have
s,€S,,s¢s,<1,and ags,eS,vT. Thus, Sw T\ {1} is cofinal
in Hx {1}, hence Siv T = H by Theorem 3.1, and S = Sa(SvT)
=SnS,€8S,¢ S.

Compare Proposition 4.5 with Corollary 3.2. Also, recall
Proposition 3.4 and compare it with



“ for any two strong ideals S, T, @S = @ T implies S=T ”
that holds for fit Heyting algebras by Theorem 4.4(2). We
have here a similar statement for a special T. It is natural to
ask how special the T has to be. Now, a particular feature of
the open ideal o(a) is that it is complemented, and hence
subfit whenever H is. This may lead to the conjecture that
something like the complementarity might be the required
special property. But this statement does not hold even for
closed ideals. Indeed, consider a Heyting algebra H that is
subfit but not fit, and such that intersections of strong ideals
are strong (for instance, the lattice of the open sets

of a T1-space that is not fit). Then there exists a closed

ideal ta such that <«@)=fta+ S =n{el@d xva=1}.

We will prove that, however, @ ®a) =" S, or,

in other words, d(x) = 1 iff ‘).om(x) =xv a=1. First,
obviously J ¢ ¥, caysince Tae S. Hence if Jg(x) = 1 then
xva = 1. On the other hand, let xvc =1 and let x¢ t€S. Then
in particular s € o(») , thatis,x => s=s. AsXx & S, Xx=2s= 1,
and Jg(x) = 1.

The case of spatial frames. Recall the beginning of Section
4. A typical frame is the lattice O(X) of open sets of a
topological space X, and if f: X = Y 1s a continuous map
then O(f) = (U v {"(U)) is a frame homomorphism

O(Y ) =0O(X). Frame homomorphisms give a good
representation of continuous maps since for a large class of
spaces such h : O(Y ) = O(X) are precisely the O(f). For more
about frames see, e.g., [7] or [12].



Open homomorphisms h : L= M between frames are
characterized, among the frame homomorphisms, by the
existence of amap @ : M = L such that for all
a€M and x, yeL

x"q(a)=y " q(a) iff h(x) *a=h(y) “a, (Open)
or equivalently

x "q(a) ¢y iff h(x) " a € h(y) (Open’)

from which, by setting x = 1 we immediately infer that 4 is a
left adjoint to h. In general the existence of a left adjoint does
not suffice. From (Open’) one easily infers

Theorem 5.1. (Joyal & Tierney, [9]) A frame homomorphism
h: L~ M is open iff it is a complete homomorphism
preserving the Heyting operation.

(Compare with Proposition 2.9.)

Frame congruences on L (that is, equivalence relations
preserving all joins and finite meets) can be equivalently
represented by ideals S€L resp. their nuclei #¢ ,
namely

% ()= % (x) Ny | yEx}, S¢ =% [L].

[f the congruence preserves, furthermore, all meets we speak
of a complete congruence.
The open ideals e@.)above correspond to the open
congruences

af
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The formula (Open) above says, hence, that
oy {(x,y) [h(x)"a=h(y) ~a} =E.
Thus, requiring that a complete congruence be open is
expressed by the implication .
Agant =84 2 Bq(ar®

Applying Proposition 3.5 we obtain

- congruences
Proposition 5.2. For a frame L, the open heﬁaén;;ph-hsms

coincide with the complete ﬁam‘é’h’&wﬁ:ﬁsms iff
(c-subfit) for complete congruences E on L,

El=15E={(x, x)| x€L}.
The condition (subfit) assumes this for any frame congruence.
We do not have a dividing example.

Note. Up to isomorphism, if L is a frame, the 95 : L=¥§ are
precisely the onto frame homomorphisms. Thus, the condition
above characterizes the L for which all the complete onto
homomorphisms are open, too. This is explained by the
Following

Observation 5.3. Each complete one-one frame
homomorphism is open (without any condition on the frames
involved).

(Indeed, for the left adjoint 4 to be a one-one homomorphism

h : L-»M we have @h = id and h¢ % id. Consider the
condition (Open’) in 5.1. If x "q(a) ¢ y

%



then h(x) * a¢h(x) ~ hi@(a)) ¢ h(y), and if h(x) * ag h(y) then
x "@(a) =q(h(x)) "q (a) ¢ q (h(y))=y.)

Definition 5.4. A subset A of a space X is quasiopen (see [5])
if for every open U the setT(Un A) (Yin the specialization
order x¢ ysx €{y}) is open.

Proposition 5.5. ([4]) The congruence
UEWY = UnA=Van A
1s complete 1ff A 1s quasiopen.

Recall that a space X 1s TD (see, e.g.,[1]) if for every x€ X
there 1s an open U 3 x such that U~ {x} is open. We will need
a weaker condition

(*) if there is an x such that {x} # {X} then there is an a such
that {a} # {a} and an open U a such that U~ {a} 1s open.
The role of (*) in the following theorem is basically in
localizing the fact that in a TD space Eq=Eg=»A =B ([13],

12].

Theorem 5.6. Let L = O(X) and let X satisfy (*). Then the
following statements are equivalent.

(1) A frame homomorphism h : L=» M is open iff it is
complete.

(2) L 1s subfit.

(3) X1s T1.

Proof. (3)3(2) is trivial and (2)3(1) we already know.

Uy



(1)2(3): Let X not be T1; choose a as in (*) and set

A =X~ {a}. Then A is not open, but it is quasiopen: if U¢ X
1s open then UnA = U~{a} and either U\ {a} = U~ {a} and it
is open itself, or there is an x in {a}aUn A and ¥(Un A)=U.
Now if UEX then Ux{a} = Xs{a} and hence U = X (since it
contains Xn{a} and X~{a} is not open). Hence EX is trivial
and 1f (1) holds then the whole of E, is trivial, by Proposition
5.2. But this is a contradiction since for the U from

(* ) we have UEA(U\ {a}).



