Extensions in the theory of lax algebras

Christoph Schubert (joint work with Gavin Seal)

University of Dortmund http://www.ls10.de/~schubert

Coimbra, October 2007 Workshop on Categorical Methods in Algebra, Topology and Computer Science

(A) → (A) =

University of Dortmund

Christoph Schubert

Barr's Theorem

Barr's Theorem (1970)

A relation $r \subset \beta X \times X$ is the convergence relation of some topology on X if and only if $1_X \subset r \cdot e_X$ and $r \cdot \overline{\beta} r \subset r \cdot m_X$. In diagrams

Equivalently, $e_X^{\circ} \subset r$ and $r \cdot \overline{\beta} r \cdot m_X^{\circ} \subset r$.

Here $s \cdot r = \{ (x, z) \mid \exists y : (x, y) \in r, (y, z) \in s \}$ and $\overline{\beta}$ is some extension of β to relations.

Barr-extension

Fact: Every relation $r: X \rightarrow Y$ factors as $r = r_1 \cdot r_0^{\circ}$ with

Given a functor $T : \mathbf{Set} \longrightarrow \mathbf{Set}$, we define $\overline{T} : \mathbf{Rel} \longrightarrow \mathbf{Rel}$ via

$$\overline{T}(r)=Tr_1\cdot(Tr_0)^\circ.$$

 \overline{T} preserves identities and commutes with $-^{\circ}$. Moreover:

 \overline{T} is lax \iff T nearly preserves pullbacks, \overline{T} is oplax \iff T preserves regular epimorphisms.

University of Dortmund

Christoph Schubert

▶ identity monad ~→ ordered sets;

- ▶ powerset monad ~→ "closure spaces" without monotonicity;
- ▶ filter monad ~→ "topological closure spaces" without monotonicity.

Other extension needed?

University of Dortmund

< 4 ₽ > < 3

Christoph Schubert Extensions in the theory of lax algebras

- ▶ identity monad ~→ ordered sets;
- ▶ powerset monad ~→ "closure spaces" without monotonicity;
- ▶ filter monad ~→ "topological closure spaces" without monotonicity.

Other extension needed?

Christoph Schubert Extensions in the theory of lax alge<u>bras</u>

< 4 ₽ > < 3

- ▶ identity monad ~→ ordered sets;
- ▶ powerset monad ~→ "closure spaces" without monotonicity;

University of Dortmund

▶ filter monad ~→ "topological closure spaces" without monotonicity.

Other extension needed?

Christoph Schubert Extensions in the theory of lax algebras

- ▶ identity monad ~→ ordered sets;
- ▶ powerset monad ~→ "closure spaces" without monotonicity;
- ▶ filter monad ~→ "topological closure spaces" without monotonicity.

Other extension needed?

Christoph Schubert Extensions in the theory of lax algebras University of Dortmund

Life w/o extensions: Kleisli algebras (t.a.f.k.a. monadic topologies)

Let $\mathbb{F} = (F, e, m)$ denote the filter monad.

Proposition

 $a: X \longrightarrow FX$ arises as the "neighborhood function" of a topology on X if and only if

$$e_X \leq a$$
 $a * a \leq a$

University of Dortmund

with $a * a = m_X \cdot Fa \cdot a$ the Kleisli-composition.

Replacing \mathbb{F} with an arbitrary (ordered) monad \mathbb{T} yields *Kleisli-algebras*.

Christoph Schubert

Proof:

and $X \xrightarrow{a} 2^{2^X}$ factors through FX if and only if the corresponding function $2^X \xrightarrow{\hat{a}} 2^X$ preserves finite intersections. Moreover,

$$e_X \leq a \iff \hat{a} \subset 1_{2^X},$$

 $a * a \leq a \iff \hat{a} \subseteq \hat{a} \cdot \hat{a}.$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Dortmund

Christoph Schubert

Sup-enriched monads

A sup-enriched monad is a monad \mathbb{T} with a monad morphism $\mathbb{P} \xrightarrow{\tau} \mathbb{T}$; \mathbb{P} the powerset monad.

Thus, every TX is a complete lattice, each m_X and each Tf preserve suprema.

A sup-enriched monad is called *coherently sup-enriched* if the associated extension operations $-^{\mathbb{T}}$, given by

$$(X \xrightarrow{a} TY) \longmapsto m_Y \cdot Ta,$$

University of Dortmund

is monotone.

Kleisli-extensions

For a coherently sup-enriched monad (\mathbb{T}, τ) , we define the Kleisli-extension $\mathcal{T}^{\tau} : \mathbf{Rel} \longrightarrow \mathbf{Rel}$ via

$$(\mathfrak{x},\mathfrak{y})\in T^ au r\iff \mathfrak{x}\leq r^ au(\mathfrak{y})$$

with $r^{\tau} = (\tau_X \cdot r^{\flat})^{\mathbb{T}} = m_X \cdot T(\tau_X \cdot r^{\flat})$ and $r^{\flat} : Y \longrightarrow PX$ given by pre-image under r.

Christoph Schubert

Properties of the Kleisli-extension

Let (\mathbb{T}, τ) be a coherently sup-enriched monad. Then:

- $e: 1 \longrightarrow T^{\tau}$ and $m: T^{\tau}T^{\tau} \longrightarrow T^{\tau}$ are oplax transformations.
- $T^{\tau}1_X$ is the order-relation on TX induced by τ .
- T^{τ} preserves compositions.
- The categories of Kleisli-algebras for (T, τ) and of lax algebras with respect to T^τ are isomorphic.
- \rightsquigarrow topological spaces via filter-convergence.

What about ultrafilter convergence?

Image: A math a math

Properties of the Kleisli-extension

Let (\mathbb{T}, τ) be a coherently sup-enriched monad. Then:

- $e: 1 \longrightarrow T^{\tau}$ and $m: T^{\tau}T^{\tau} \longrightarrow T^{\tau}$ are oplax transformations.
- $T^{\tau} 1_X$ is the order-relation on TX induced by τ .
- T^{τ} preserves compositions.
- The categories of Kleisli-algebras for (T, τ) and of lax algebras with respect to T^τ are isomorphic.
- \rightsquigarrow topological spaces via filter-convergence.

What about ultrafilter convergence?

Image: A math a math

Back to ultrafilters: initial extensions

Let \mathbb{T} be a monad with lax extension $\tilde{\mathcal{T}}$ and $\alpha : \mathbb{S} \longrightarrow \mathbb{T}$ be a monad morphism. We obtain a lax extension $\alpha^* \tilde{\mathcal{T}}$ of \mathbb{S} via

$$\alpha^* \tilde{T}(r) = \alpha_Y^\circ \cdot \tilde{T}(r) \cdot \alpha_X.$$

University of Dortmund

We call $\alpha^* \tilde{T}$ the *initial lift* of *S*.

Comparing lax algebras and Kleisli algebras

Fix a coherently sup-enriched monad (\mathbb{T}, τ) and a monad morphism $\mathbb{S} \xrightarrow{\alpha} \mathbb{T}$. We define an adjunction

$$\operatorname{\mathsf{Rel}}(SX,Y) \xrightarrow[\psi]{\phi}{\swarrow} \operatorname{\mathsf{Set}}(Y,TX) ,$$

for sets X, Y via:

 $\phi(r)(y) = \bigvee \alpha_X[r^{\flat}(y)] \quad \text{and} \quad (\mathfrak{x}, y) \in \psi(c) \iff \alpha_X(\mathfrak{x}) \leq c(y).$

Image: A math a math

University of Dortmund

Christoph Schubert

 ϕ induces a functor $\mathsf{KleiAlg}(\mathbb{T}) \longrightarrow \mathsf{Alg}(\mathbb{S})$.

 ψ induces a functor $\operatorname{Alg}(\mathbb{S}) \longrightarrow \operatorname{KleiAlg}(\mathbb{T})$ provided α is *interpolating*, that is:

$$\mathfrak{x} \leq \bigvee lpha_X[r^{\flat}(y)] \implies \exists \mathfrak{X} \in SSX : \mathfrak{x} \leq m_X(\mathfrak{X}) \text{ and } lpha_{SX}(\mathfrak{X}) \leq r^{ au} \cdot e_Y(y)$$

University of Dortmund

. . .

and

holds for all relations $SX \xrightarrow{r} Y$, $y \in Y$.

Clearly, we have $\Phi \dashv \Psi$.

Christoph Schubert

Φ, Ψ induce an isomorphism $\mathsf{KleiAlg}(\mathbb{T}) \cong \mathsf{Alg}(\mathbb{S})$ provided α is sup-generating, that is:

$$\forall \mathfrak{f} \in TX \exists \mathcal{A} \subset SX : \mathfrak{f} = \bigvee \alpha_X[\mathcal{A}].$$

Note: If α is sup-generating, then it satisfies the second part of the interpolation condition (...).

Image: A math a math

Theorem

Let (\mathbb{T}, τ) be a coherently sup-enriched monad. If $\alpha : \mathbb{S} \longrightarrow \mathbb{T}$ is an interpolating and sup-generating monad morphism, then we have an isomorphism

$\mathsf{KleiAlg}(\mathbb{T}) \cong \mathsf{Alg}(\mathbb{S}).$

Corollary

For any coherently sup-enriched monad (\mathbb{T}, τ) , the categories **KleiAlg** (\mathbb{T}) and **Alg** (\mathbb{T}) are isomorphic.

Proof.

 $1_{\mathbb{T}}$ is interpolating and sup-generating.

Image: A math a math

Theorem

Let (\mathbb{T}, τ) be a coherently sup-enriched monad. If $\alpha : \mathbb{S} \longrightarrow \mathbb{T}$ is an interpolating and sup-generating monad morphism, then we have an isomorphism

 $\mathsf{KleiAlg}(\mathbb{T}) \cong \mathsf{Alg}(\mathbb{S}).$

Image: A math a math

University of Dortmund

Corollary

For any coherently sup-enriched monad (\mathbb{T}, τ) , the categories $\text{KleiAlg}(\mathbb{T})$ and $\text{Alg}(\mathbb{T})$ are isomorphic.

Proof.

 $\mathbf{1}_{\mathbb{T}}$ is interpolating and sup-generating.

Christoph Schubert

Examples

- β → F is sup-generating and interpolating.
 Hence, we can obtain topological spaces via neighborhoods, filter or ultrafilter convergence.
- ▶ P → S ("stacks") by A → { B ⊂ X | A ⊂ B } is interpolating and sup-generating: leads to interior spaces.
- P → S by A → { B ⊂ X | ∃x ∈ A ∩ B } is interpolating,
 but not sup-generating.
- (prime functional ideals) → (functional ideals) interpolating and sup-generating.

University of Dortmund

"fuzzy stuff".