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Barr’s Theorem

Barr’s Theorem (1970)

A relation r ⊂ βX × X is the convergence relation of some
topology on X if and only if 1X ⊂ r · eX and r · βr ⊂ r ·mX . In
diagrams
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Equivalently, e◦X ⊂ r and r · βr ·m◦
X ⊂ r .

Here s · r = { (x , z) | ∃y : (x , y) ∈ r , (y , z) ∈ s } and β is some
extension of β to relations.
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Barr-extension
Fact: Every relation r : X −→X Y factors as r = r1 · r◦0 with
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Given a functor T : Set −→ Set, we define T : Rel −→ Rel via

T (r) = Tr1 · (Tr0)
◦.

T preserves identities and commutes with −◦. Moreover:

T is lax ⇐⇒ T nearly preserves pullbacks,

T is oplax ⇐⇒ T preserves regular epimorphisms.
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“Lax algebras” for other monads (using Barr extension)

I identity monad  ordered sets;

I powerset monad  “closure spaces” without monotonicity;

I filter monad  “topological closure spaces” without
monotonicity.

Other extension needed?

Christoph Schubert University of Dortmund

Extensions in the theory of lax algebras



“Lax algebras” for other monads (using Barr extension)

I identity monad  ordered sets;

I powerset monad  “closure spaces” without monotonicity;

I filter monad  “topological closure spaces” without
monotonicity.

Other extension needed?

Christoph Schubert University of Dortmund

Extensions in the theory of lax algebras



“Lax algebras” for other monads (using Barr extension)

I identity monad  ordered sets;

I powerset monad  “closure spaces” without monotonicity;

I filter monad  “topological closure spaces” without
monotonicity.

Other extension needed?

Christoph Schubert University of Dortmund

Extensions in the theory of lax algebras



“Lax algebras” for other monads (using Barr extension)

I identity monad  ordered sets;

I powerset monad  “closure spaces” without monotonicity;

I filter monad  “topological closure spaces” without
monotonicity.

Other extension needed?

Christoph Schubert University of Dortmund

Extensions in the theory of lax algebras



Life w/o extensions: Kleisli algebras (t.a.f.k.a. monadic topologies)

Let F = (F , e,m) denote the filter monad.

Proposition

a : X −→ FX arises as the “neighborhood function” of a topology
on X if and only if

eX ≤ a a ∗ a ≤ a

with a ∗ a = mX · Fa · a the Kleisli-composition.

Replacing F with an arbitrary (ordered) monad T yields
Kleisli-algebras.
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Proof:

X −→ FX −→ 22X

2X × X −→ 2

2X −→ 2X

and X
a−→ 22X

factors through FX if and only if the corresponding

function 2X â−→ 2X preserves finite intersections.
Moreover,

eX ≤ a ⇐⇒ â ⊂ 12X ,

a ∗ a ≤ a ⇐⇒ â ⊆ â · â.

Christoph Schubert University of Dortmund

Extensions in the theory of lax algebras



Sup-enriched monads

A sup-enriched monad is a monad T with a monad morphism
P τ−→ T; P the powerset monad.

Thus, every TX is a complete lattice, each mX and each Tf
preserve suprema.

A sup-enriched monad is called coherently sup-enriched if the
associated extension operations −T, given by

(X
a−→ TY ) 7−→ mY · Ta,

is monotone.
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Kleisli-extensions

For a coherently sup-enriched monad (T, τ), we define the
Kleisli-extension T τ : Rel −→ Rel via

(x, y) ∈ T τ r ⇐⇒ x ≤ r τ (y)

with r τ = (τX · r [)T = mX · T (τX · r [) and r [ : Y −→ PX given by
pre-image under r .

TY
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Tr[
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TτX

// TTX

mX

OO
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Properties of the Kleisli-extension

Let (T, τ) be a coherently sup-enriched monad. Then:

I e : 1 −→ T τ and m : T τT τ −→ T τ are oplax
transformations.

I T τ1X is the order-relation on TX induced by τ .

I T τ preserves compositions.

I The categories of Kleisli-algebras for (T, τ) and of lax algebras
with respect to T τ are isomorphic.

 topological spaces via filter-convergence.

What about ultrafilter convergence?
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Back to ultrafilters: initial extensions

Let T be a monad with lax extension T̃ and α : S −→ T be a
monad morphism. We obtain a lax extension α∗T̃ of S via

α∗T̃ (r) = α◦Y · T̃ (r) · αX .

We call α∗T̃ the initial lift of S .
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Comparing lax algebras and Kleisli algebras

Fix a coherently sup-enriched monad (T, τ) and a monad
morphism S α−→ T. We define an adjunction

Rel(SX ,Y )
φ //
⊥ Set(Y ,TX )
ψ

oo ,

for sets X , Y via:

φ(r)(y) =
∨
αX [r [(y)] and (x, y) ∈ ψ(c) ⇐⇒ αX (x) ≤ c(y).
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φ induces a functor KleiAlg(T) −→ Alg(S).

ψ induces a functor Alg(S) −→ KleiAlg(T) provided α is
interpolating, that is:

x ≤
∨
αX [r [(y)] =⇒ ∃X ∈ SSX : x ≤ mX (X) and αSX (X) ≤ r τ ·eY (y)

and
. . .

holds for all relations SX
r−→X Y , y ∈ Y .

Clearly, we have Φ a Ψ.
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Φ, Ψ induce an isomorphism KleiAlg(T) ∼= Alg(S) provided α is
sup-generating, that is:

∀f ∈ TX ∃A ⊂ SX : f =
∨
αX [A].

Note: If α is sup-generating, then it satisfies the second part of the
interpolation condition (. . . ).
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Theorem
Let (T, τ) be a coherently sup-enriched monad. If α : S −→ T is
an interpolating and sup-generating monad morphism, then we
have an isomorphism

KleiAlg(T) ∼= Alg(S).

Corollary

For any coherently sup-enriched monad (T, τ), the categories
KleiAlg(T) and Alg(T) are isomorphic.

Proof.
1T is interpolating and sup-generating.
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Examples

I β ↪→ F is sup-generating and interpolating.
Hence, we can obtain topological spaces via neighborhoods,
filter or ultrafilter convergence.

I P −→ S (“stacks”) by A 7−→ {B ⊂ X | A ⊂ B } is
interpolating and sup-generating: leads to interior spaces.

I P −→ S by A 7−→ {B ⊂ X | ∃x ∈ A ∩ B } is interpolating,
but not sup-generating.

I (prime functional ideals) ↪→ (functional ideals) interpolating
and sup-generating.

I “fuzzy stuff”.
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