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If (X, 7) is a functionally Hausdorff space the Weierstrass-Stone
approximation theorem holds for (X, 1) iff (X, Ty) is compact.

Call (X, 7) a WS-space, if (X, 7y) is compact.

Example (Stephenson 1973)
There exists a WS-space X such that X? is not a WS-space.

For topological spaces (X, 7) and (Y, o), denote by 7 ® o the
product topology on X x Y (resp., @, 7 for {(X;, ) : i € I})

T. Ishii [On the Tychonoff functor and w-compactness, Topology
Appl. 11 (1980), 173-187] characterized those spaces (X, 7) such
that (1 ® o)y = 7w ® oy, for any space (Y,0).
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compact = CLP-compact <= connected

A. Sondore, A. Sostak, On clp-compact and countably clp-compact
spaces, Mathematics, 123-142, Latv. Univ. Zinat. Raksti, 595,
Latv. Univ., Riga, 1994.

J. Steprans, A. Sostak, Restricted compactness properties and
their preservation under products, Topology Appl. 101 (2000), no.
3, 213-229.

This is a weak compactness property: for a space (X, 7) let TCLP
be the topology on X having as a base the 7-clopen sets of X.
Then (X, 7) is CLP-compact iff (X, 7¢F) is compact.
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In other words, (X, 7) — (X,7P) is the bireflection to the
subcategory of zero-dimensional spaces (i.e., 7 =7
when (X, 7) is zero-dimensional.).

CLP precisely

The following are equivalent for (X, 1):
(a) (X, 7CP) is Hausdorff:

(b) (X, 7CPY is T,

(c) (X,7) is totally disconnected .

For a space X and x € X, let Q«(X) and Ci(X) be the
quasi-component of the point x (i.e., the intersection of all clopen
sets containing x) and the connected component of x, respectively.
Obviously, C, C Qx.

X is totally (hereditarily) disconnected if Qy(X) = {x} (resp.
C(X) = {x}) for all x € X.
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Definition

A subspace X of a topological space Y is c-dense, if every
connected component of Y meets X.

An embedding f : (X,7) — (Y, 0) is CLP-preserving if

f (X, 7P) — (Y, 0¢P) is an embedding.

X — (X is CLP-preserving whenever X is Tychonoff.

Theorem (DD, 2007)

Let K be a compact space and let f : X — K be a continuous map
with dense image.

(a) If X is CLP-compact then f(X) is c-dense in K;

(b) Iff is a c-dense CLP-preserving embedding, then X is
CLP-compact.

In particular, a Tychonoff space X is CLP-compact iff X is c-dense
in BX.
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Follows from the fact that X hits every non-empty Gs-set of 3X
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(c) px : X x Y is clopen.

J. Steprans, Products of sequential CLP-compact spaces,
CMS/CSHPM Summer 2005 Meeting, Waterloo (Abstracts), and

Preprint.
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J. Steprans, A regular CLP-compact space of countable tightness
whose square is not CLP-compact, Set Theory Seminar of Univ.
Torotno (June 2005), Fields Institute, Toronto.
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Let {Gj}ic1 be a family of topological groups and G = []; G;.

(a) G is strongly CLP-compact iff each G; is strongly
CLP-compact.

(b) if each G; is pseudocompact, then G is CLP-compact iff each
G; is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis' theorem (since the topology 7¢F of a

topological group G need not be a group topology [M.
Megrelishvili]).
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