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For a topological space (X , τ), let τw be the initial topology of all
continuous functions f : (X , τ) → R.
(X , τ) is functionally Hausdorff when (X , τw ) is Hausdorff.

Theorem (Banaschewski, On the Weierstrass-Stone approximation
theorem, Fund. Math. 44 (1957), 249–252)

If (X , τ) is a functionally Hausdorff space the Weierstrass-Stone
approximation theorem holds for (X , τ) iff (X , τw ) is compact.

Call (X , τ) a WS-space, if (X , τw ) is compact.

Example (Stephenson 1973)

There exists a WS-space X such that X 2 is not a WS-space.

For topological spaces (X , τ) and (Y , σ), denote by τ ⊗ σ the
product topology on X × Y (resp.,

⊗
i τi for {(Xi , τi ) : i ∈ I})

T. Ishii [On the Tychonoff functor and w-compactness, Topology
Appl. 11 (1980), 173–187] characterized those spaces (X , τ) such
that (τ ⊗ σ)w = τw ⊗ σw for any space (Y , σ).
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CLP-compactness

Definition ( A. Šostak, IV Prague TopoSym 1976)

A topological space X is CLP-compact if every cover of clopen sets
of X has a finite subcover.

compact =⇒ CLP-compact ⇐= connected

A. Sondore, A. Šostak, On clp-compact and countably clp-compact
spaces, Mathematics, 123–142, Latv. Univ. Zināt. Raksti, 595,
Latv. Univ., Riga, 1994.
J. Steprāns, A. Šostak, Restricted compactness properties and
their preservation under products, Topology Appl. 101 (2000), no.
3, 213–229.
This is a weak compactness property: for a space (X , τ) let τCLP

be the topology on X having as a base the τ -clopen sets of X .
Then (X , τ) is CLP-compact iff (X , τCLP) is compact.
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J. Steprāns, A. Šostak, Restricted compactness properties and
their preservation under products, Topology Appl. 101 (2000), no.
3, 213–229.
This is a weak compactness property: for a space (X , τ) let τCLP

be the topology on X having as a base the τ -clopen sets of X .
Then (X , τ) is CLP-compact iff (X , τCLP) is compact.

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



For a space (X , τ), τCLP is the initial topology of all continuous
functions f : (X , τ) → D = {0, 1} ⊆ R.
In other words, (X , τ) 7→ (X , τCLP) is the bireflection to the
subcategory of zero-dimensional spaces (i.e., τ = τCLP precisely
when (X , τ) is zero-dimensional.).

Lemma

The following are equivalent for (X , τ):

(a) (X , τCLP) is Hausdorff;

(b) (X , τCLP) is T0;

(c) (X , τ) is totally disconnected .

For a space X and x ∈ X , let Qx(X ) and Cx(X ) be the
quasi-component of the point x (i.e., the intersection of all clopen
sets containing x) and the connected component of x , respectively.
Obviously, Cx ⊆ Qx .
X is totally (hereditarily) disconnected if Qx(X ) = {x} (resp.
Cx(X ) = {x}) for all x ∈ X .
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The space of quasi-components and CLP-compactness
For a space (X , τ) let rX be the quotient space of all
quasi-components of X . Then the quotient map qX : X → rX
defines a strong epireflection r : Top → TD, the subcategory of
totally disconnected spaces.

Fact: r : Top → TD preserves and reflects CLP-compactness

This is due to the fact that qX sends clopen sets to clopen sets.

Definition

Call X strongly CLP-compact, if rX is compact.

compact −→ strongly CLP-compact −→ CLP-compact
↑

connected
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Definition

A subspace X of a topological space Y is c-dense, if every
connected component of Y meets X .
An embedding f : (X , τ) → (Y , σ) is CLP-preserving if
f : (X , τCLP) → (Y , σCLP) is an embedding.

Example

X ↪→ βX is CLP-preserving whenever X is Tychonoff.

Theorem (DD, 2007)

Let K be a compact space and let f : X → K be a continuous map
with dense image.

(a) If X is CLP-compact then f (X ) is c-dense in K;

(b) If f is a c-dense CLP-preserving embedding, then X is
CLP-compact.

In particular, a Tychonoff space X is CLP-compact iff X is c-dense
in βX.
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Corollary

If X is a pseudocompact space such that r(βX ) is first countable,
then X is CLP-compact.

Follows from the fact that X hits every non-empty Gδ-set of βX
(as r(βX ) is first countable every connected component of βX is a
Gδ-set of βX ).

Corollary

If X =
∏

i Xi is a Tychonoff pseudocompact space, then X is
CLP-compact iff each Xi is CLP-compact.

Lemma (Reduction to Tychonoff spaces)

A totally disconnected space (X , τ) is CLP-compact iff (X , τw ) is
CLP-compact.

Note that τ ≥ τw ≥ τCLP , so
(X , τw ) CLP-compact ⇒ (X , τ) CLP-compact.
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i Xi is a Tychonoff pseudocompact space, then X is
CLP-compact iff each Xi is CLP-compact.

Lemma (Reduction to Tychonoff spaces)

A totally disconnected space (X , τ) is CLP-compact iff (X , τw ) is
CLP-compact.

Note that τ ≥ τw ≥ τCLP , so
(X , τw ) CLP-compact ⇒ (X , τ) CLP-compact.
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CLP-compactness and products

Example (A. Šostak, J. Steprāns 1991)

There exist strongly CLP-compact spaces X ,Y such that X × Y is
not CLP-compact.

Definition (A. Šostak, J. Steprāns 1991)

The product
∏

i Xi of a family {(Xi , τi ) : i ∈ I} of topological

spaces is CLP-rectangular, if (
⊗

i τi )
CLP =

⊗
i τi

CLP .

Theorem (A. Šostak, J. Steprāns 1991)

Let X ,Y be CLP-compact spaces. Then TFAE:
s (a) X × Y is CLP-compact;
(b) X × Y is CLP-rectangular;
(c) pX : X × Y is clopen.

J. Steprāns, Products of sequential CLP-compact spaces,
CMS/CSHPM Summer 2005 Meeting, Waterloo (Abstracts), and
Preprint.
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There exist strongly CLP-compact spaces X ,Y such that X × Y is
not CLP-compact.

Definition (A. Šostak, J. Steprāns 1991)

The product
∏

i Xi of a family {(Xi , τi ) : i ∈ I} of topological

spaces is CLP-rectangular, if (
⊗

i τi )
CLP =

⊗
i τi

CLP .
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J. Steprāns, Products of sequential CLP-compact spaces,
CMS/CSHPM Summer 2005 Meeting, Waterloo (Abstracts), and
Preprint.

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



CLP-compactness and products
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There exist strongly CLP-compact spaces X ,Y such that X × Y is
not CLP-compact.
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There exist strongly CLP-compact spaces X ,Y such that X × Y is
not CLP-compact.
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Problem

[A. Šostak, J. Steprāns 1991] If {(Xi , τi ) : i ∈ I} are topological
spaces such that

∏
i∈J(Xi , τi ) is CLP-compact for every finite

subset of I , does it follow that
∏

i (Xi , τi ) is CLP-compact?
Does it depend of the size of I?

Some positive results, when
(a) [A. Šostak, J. Steprāns 1991] |I | < ∞ and Xi are second
countable, or more generally, have w((Xi , τi ) < p and
w(Xi , τi

CLP) ≤ ω).
(b) [J. Steprāns 2005] |I | < ∞ and Xi are sequential.
(c) [DD 2005] Šostak–Steprāns’s theorem holds true for arbitrary I .

J. Steprāns, A regular CLP-compact space of countable tightness
whose square is not CLP-compact, Set Theory Seminar of Univ.
Torotno (June 2005), Fields Institute, Toronto.
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[A. Šostak, J. Steprāns 1991] If {(Xi , τi ) : i ∈ I} are topological
spaces such that

∏
i∈J(Xi , τi ) is CLP-compact for every finite

subset of I , does it follow that
∏

i (Xi , τi ) is CLP-compact?
Does it depend of the size of I?

Some positive results, when
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(b) [J. Steprāns 2005] |I | < ∞ and Xi are sequential.
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[A. Šostak, J. Steprāns 1991] If {(Xi , τi ) : i ∈ I} are topological
spaces such that

∏
i∈J(Xi , τi ) is CLP-compact for every finite

subset of I , does it follow that
∏

i (Xi , τi ) is CLP-compact?
Does it depend of the size of I?

Some positive results, when
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(c) [DD 2005] Šostak–Steprāns’s theorem holds true for arbitrary I .

J. Steprāns, A regular CLP-compact space of countable tightness
whose square is not CLP-compact, Set Theory Seminar of Univ.
Torotno (June 2005), Fields Institute, Toronto.

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Problem
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(c) [DD 2005] Šostak–Steprāns’s theorem holds true for arbitrary I .
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[A. Šostak, J. Steprāns 1991] If {(Xi , τi ) : i ∈ I} are topological
spaces such that

∏
i∈J(Xi , τi ) is CLP-compact for every finite

subset of I , does it follow that
∏

i (Xi , τi ) is CLP-compact?
Does it depend of the size of I?

Some positive results, when
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Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness



Theorem

Let {Gi}i∈I be a family of topological groups and G =
∏

i Gi .
(a) G is strongly CLP-compact iff each Gi is strongly
CLP-compact.
(b) if each Gi is pseudocompact, then G is CLP-compact iff each
Gi is CLP-compact.

The proof of (b) uses a theorem of Comfort and Ross about the
pseudocompact of products of topological groups.

Theorem

A totally disconnected CLP-compact groups is maximally almost
periodic in the sense of J. von Neumann.

The proof uses Ellis’ theorem (since the topology τCLP of a
topological group G need not be a group topology [M.
Megrelishvili]).

Dikran Dikranjan CLP-compactness or When “compactness” includes connectedness


