Neighborhoods with respect to a closure operator

E. Giuli and J. Slapal

1 Preliminaries

Let X be a finitely complete category a with a proper (€, M)-
factorization structure for morphisms. For simplicity, we as-
sume that & is stable under pullbacks along M-morphisms and
that multiple pullbacks of arbitrary large families of M mor-
phisms with a common codomain exist. Given an X-object
X, we denote by subX the (complete) subobject lattice of
X and by ox the least element of subX. We assume that
f~Yoy) = ox whenever f : X — Y is an X-morphism. For
any m € subX, m denotes the pseudocomplement of m -
provided it exists.

We suppose there is given a concrete category IC over X with
the corresponding underlying functor | | : I — X. We write
f instead of | f| whenever f is a K-morphism and we also write
briefly subK and oy instead of sub| K| and o)), respectively,
whenever K is a K-object. The category K is assumed to
have finite concrete products and by a (not necessarily finite)
product in K we always mean a concrete one.

We assume there is given a closure operator ¢ on K (with
respect to (€, M)), i.e., a family of maps ¢ = (cx : subK —
subK ) gexc with the following properties that hold for each
IC-object K and each m,p € subK:

(1) m < cg(m),
(2) m <p=cx(m) < cr(p),
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(3) flex(m)) < cp(f(m)) for each K-morphism f: K — L.
The closure operator ¢ is called
(a) grounded if ck(ox) = of for each K € K,

(b) idempotent if cx(cx(m)) = cx(m) for each K € K and
each m € subK,

(¢) additive if cx(m V p) = cxg(m) V ck(p) for each K € K
and each m,p € subK,

(d) hereditary if, whenever m : M — K is an embedding in
K, car(p) = m™(cx(m o p)) for each p € subM.

Given a K-object K, a subobject m € subK is said to be c-
closed (respectively, c-dense) provided that cx(m) = m (re-
spectively, cx(m) = idg). A JC-morphism f : K — L is called
c-preserving if f(cx(m)) = cp(f(m)) whenever m € subK.
Thus, if f is c-preserving, then it maps c-closed subobjects to
c-closed subobjects, and vice versa provided that c is idempo-
tent.

2 Neighborhoods

Definition 2.1 Let K be an C-object. A subobject n €
subK is called a c-neighborhood of a given subobject m €
subK if n is pseudocomplementable (in subK') and mAcg () =
ox. We denote by M(m) the class of all ¢-neighborhoods of
m. A subclass B C N (m) is called a base of c-neighborhoods
of m if, for every n € N(m), there exists p € B such that
p<n.

Proposition 2.2 Let K be a K-object and m,p € subK.
Then

(1) idx € N(m) if ¢ is grounded,
(2) N(og) = {n € subK; n is pseudocomplementable},

2



(3) if m > ok, then n > o for each n € N(m),

(4)n € N(m) implies m < n provided that (a) m is an
atom or (b) T is pseudocomplementable with T = n and
either (i) cx(m) is pseudocomplementable or (ii) both
m and m are pseudocomplementable,

(5)if n € N(m) and p € subK is pseudocomplementable
with p > n, then p € N'(m),

(6)p <m = N(m)C N(p),

(7)if m > ox and ni,ng,...ny € N(m) (k € N), then
mAn Ang A\ ... A\np > og,

(8)if m > ox and ni,ng,...ny € N(m) (k € N), then
ny Ang N\ ... Nnp > og,

(9) if n1,ny € N(m), then ny Any € N(m) provided that c
1 additive and subK is a Boolean algebra.

Proposition 2.3 Let f : K — L be a K-morphism, m €
subK and n € N(f(m)). Then f~1(n) € N(m).

Proposition 2.4 Let K be a K-object and m,p € subk,
m > og, and let B C N(m) be a base of c-neighborhoods
of m. If m < ck(p), then n A p > ox for each n € B, and
vice versa provided that m 1s an atom of subK and p, P,
ci(p) are pseudocomplementable with p = p.

Definition 2.5 Let K be a K-object and m € subK. Then
m is said to be open (w.r.t. ¢) if m € N(m).

If ¢ is grounded, then the openness is weaker than the c-
openness (recall that a subobject m € subK is said to be
c-open if m A cx(p) < cx(m A p) for every p € subK). If ¢
is grounded and additive and sub/K is a Boolean algebra, then
the openness and c-openness coincide.



Proposition 2.6 Let K be a K-object and m € subK. If
m 1s open, then m is c-closed, and vice versa provided that
m 1S pseudocomplementable.

Corollary 2.7 Let f : K — L be a K-morphism, n €
subL. If n is open, then f~1(n) is open too.

3 Separation and compactness

Definition 3.1 A [C-object K is said to be

(a) separated (with respect to ¢) provided that, whenever m, p €
subK are different atoms, there are n € N (m) and ¢ €
N(p) with n A q = o,

(b) compact (with respect to ¢) if \ T > oy for every centered
class 7 C subK of c-closed subobjects of K.

Theorem 3.2 Let K be a K-object such that, for each
atom r € subK and eachn € N(r), m and cx(n) are pseu-
docomplementable withm = n. Ifr = N{cx(n); n € N(r)}
for each atom r € subK, then K is separated, and vice
versa provided that subK s atomuistic.

Theorem 3.3 Let K be a K-object such that subK is a
complete Boolean algebra. Then K is compact if and only
iof, for every subclass S C subX consisting of c-open subob-
jects, from \/ S = idg it follows that there is a finite subset
T Q S with \/T = idK.

Theorem 3.4 Let ¢ be hereditary and let m : M — K be
a c-closed embedding i IC. If K is compact, then M s
compact too.

Theorem 3.5 Let f: K — L be a K-morphism. If K 1is
compact and f € £, then L is compact too.



Theorem 3.6 (Absolute closedness) Let ¢ be grounded, ad-
ditive, 1dempotent and hereditary. Let m : M — K be an
embedding in K where M 1is compact, K is separated and
subK is an atomistic Boolean algebra. Then m 1s c-closed.

Corollary 3.7 Let K have embeddings and (£, Embp)-
factorization structure and let ¢ be grounded, additive,
idempotent and hereditary. Let f : K — L be a K-
morphism where K is compact and L 1is separated with the
property that subL is an atomistic Boolean algebra. Then
f 1is c-preserving.

Remark 3.8 (Maximality) Let the assumptions of Corollary
3.7 be satisfied and let K have the property that each IC-
morphism which is a c-preserving AX-isomorphism is a K-
isomorphism. Then f is a K-isomorphism whenever it is an
X-isomorphism. Moreover, let |K| = |L| and suppose that
ci < cf implies that id|g) is a K-morphism idg) : K — L.
Then cx < ¢p (ie., cx(m) < cg(m) for each m € subK =
subL) implies ¢ = ¢y, by Corollary 3.7 (putting f = idx)).
Thus, given an X-object X, in the class of all cx with K a
separated [C-object such that |K| = X, c¢x with K compact
are maximal (provided that the class is nonempty).

Corollary 3.9 Let £ be stable under pullbacks and c be
idempotent. Let K = ][, ; K; be a product in K such that
all projections pr; : K — K;, © € I, belong to €. If K 1s
compact, then K; 1s compact for each 1 € 1.

Theorem 3.10 (Tychonoft’s Theorem) Let ¢ be idempotent
and let K = |[..; K; be a product in K such that subK;
1s atomic for each © € I and all atoms of subK;, 1 € I,
have the same domain (up to isomorphisms). Let every
centered class T C subK have the property that t, t and
ci(t) are pseudocomplementable with t =t for eacht € T .
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Finally, whenever x; € subK; is an atom for each i € I,
let the atom x = (x;; i € I) fulfill the following condition:

There exists a neighborhood base B C N (x) such that,
for each p € B, there is a finite subset I' C I with
p=\iep Pr; 'n; where n; € N(x;) for each i € I'.

If K; is compact for each v € I, then K 1s compact too.

Recall that a IC-object K is called

(a) c-separated if the diagonal morphism 05 : |K| — |K| X
| K| is c-closed,

(b) c-compact if the projection prp : K x L — L is ¢
preserving for every K-object L.

Theorem 3.11 Let K be a K-object such that sub(K x K)
is atomistic and both i and cx (k) are pseudocomple-
mentable. Let, for every atom m € sub(K x K), both
the projections pr; @ |K| x |K| — |K|, i = 1,2, fulfill
pr;om € M and let fromp € N(priom) and q € N (proom)
it follows that p x ¢ € N(m). If K is separated, then it is
c-separated.

Theorem 3.12 Let K be a K-object such that all atoms of
subK have the same domain (up to isomorphismiand Or,

Or, cxxx(0k) are pseudocomplementable with 6 = O
Let, for any pair of atoms p,q € subK, fromn € N ({p,q))
it follows that prion € N(p) and proon € N(q). If K is
c-separated, then it is separated.

Theorem 3.13 Let ¢ be additive and subL be an atomic
Boolean algebra for each KC-object L. Let K be a K-object
satisfying the following condition:

Given a IC object L, an atom y € subL and a subobject
m € sub(K x L) with pry(cxxr(m)) ANy = or, for each
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atom x € subK there are subobjects u, € subK and
vy € subL, u, c-closed, such that u, N x = og, cp(vy) A
y =or, and cxxp(m) < prit(ug) V prit(v,).
If K 1s compact, then it is c-compact.
Theorem 3.14 Let ¢ be idempotent and K be a K-object
with the properties that subK is a Boolean algebra and for
any centered subclass F C subK of c-closed subobjects of K

there exist a KC-object L and a c-dense subobject m : | K| —
|L| of L such that the following conditions are satisfied:

(1) sub(K x L) is atomic.

(2) For any atom z € sub(K x L), from p € N (pryi(z)) and
q € N(pr;(2)) it follows that p x q € N(z).

(3) There exists a subobject y € subL with y > o, y Am =
or, and y VvV m(s) € N(y) for each s € F.

If K is c-compact, then it is compact.

4 Convergence

For each X-object X we denote by R x the conglomerate of all
centered subclasses of subX. Given a K-object K, we write
briefly Rx instead of Rygy.

Definition 4.1 Let K be a K-object, m € subK and R €
Ry.

(a) We say that R converges to m, in symbols R — m, if,
for each p € subK with og < p < m and each n € N (p)
there exists r € R such that r < n.

(b) m is called a clustering of R provided that m < cg(r) for
each r € R (i.e., provided that m < A, _p cx(r)).

Proposition 4.2 Let K be a K-object. Then
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(1) R — og for each R € Ry.

(2) N(m) — m whenever m is an atom of subk .

(3) For any R € Rg and any m € subK, from R — m it
follows that R — p for each p € subK, p < m.

(4) Let the lattice subK be atomic, let R € Ry and let
m € subK. If'R — a for each atom a € subK with
a <m, then R — m.

(5) For any R € Rg and any m € subK, from R — m it
follows that S — m whenever S € R s finer than R.

(6) If R € Rg is a stack on subK and m € subK, then
R — m if and only if N(p) € R for each p € subK
with og < p < m.

(7) ok is a clustering of every R € Ry.

(8) Let R € Rk and m,n € subK. If m is a clustering of
R and n < m, then n is a clustering of R too.

Proposition 4.3 Let K be a K-object, m,p € subK, and
let m be an atom of subK. If m < ci(p), then there exists
R € Rk such that R — m and n/A\p > og for eachn € R,
and vice versa provided that subK s a Boolean algebra.

Proposition 4.4 Let K be a K-object such that subK is
a Boolean algebra, let R € Ry be a stack on subK and let
m € subK be a join of atoms. If there exists S € R with
RCS and S — m, then m is a clustering of R, and vice

versa provided that subK 1s atomic, ¢ 1s additive and R 1s
a filter.

Corollary 4.5 Let K € K be an object such that subK is a
Boolean algebra, let R € Rg be a stack and let m € subK
be a join of atoms. If R — m, then m s a clustering of

R.



Corollary 4.6 Let ¢ be additive, K be a KC-object such that
subK 1s an atomic Boolean algebra, and let R € Ry be an
ultrafilter. Then R — m if and only if m 1s a clustering

of R.

Theorem 4.7 Let f : K — L be a IKC-morphism, m €&
subK and R € Rg. If R — m, then f(R) — f(m).

Let K = [],.; K be a product in K and let R € Rg. By
Theorem 4.7, given m € subK, R — m implies pr;(R) —
pr;(m) for each ¢ € I. If the converse implication is also valid,
we say that the centered class R is convergence-compatible
with the product K.

Proposition 4.8 Let in X the non-trivial objects be stable
under products and let all projections in KC belong to €. Let
K = [l,c; Ki be a product in K and, for each i € I, let
Ri € Rg,, m; € subK; and R; — m;. If [[,c;Ri € Ri is
convergence-compatible with K, then [[,.; Ri — [[;c; mu-

Theorem 4.9 Let K be a K-object. If K 1s separated,
then from R — m and R — p it follows that m = p
whenever m,p € subK are atoms and R € Ry, and vice
versa provided that c is additive and subK is a Boolean
algebra.

Theorem 4.10 Let K be a K-object. If every R € Ry
has a clustering different from og, then K is compact, and
vice versa provided that c 1s idempotent.

Remark 4.11 The introduced concept of convergence may
be strengthened by saying that R € R converges to m €
subK if M(p) C R for each p € subK with ox < p < m.
Then all statements concerning convergence remain valid (and
this is true even if the assumption that R is a stack is omitted
wherever it occurs).



