
Neighborhoods with respect to a closure operator

E. Giuli and J. Šlapal

1 Preliminaries

Let X be a finitely complete category a with a proper (E ,M)-

factorization structure for morphisms. For simplicity, we as-

sume that E is stable under pullbacks alongM-morphisms and

that multiple pullbacks of arbitrary large families of M mor-

phisms with a common codomain exist. Given an X -object

X , we denote by subX the (complete) subobject lattice of

X and by oX the least element of subX . We assume that

f−1(oY ) = oX whenever f : X → Y is an X -morphism. For

any m ∈ subX , m denotes the pseudocomplement of m -

provided it exists.

We suppose there is given a concrete categoryK over X with

the corresponding underlying functor | | : K → X . We write

f instead of |f | whenever f is a K-morphism and we also write

briefly subK and oK instead of sub|K| and o|K|, respectively,

whenever K is a K-object. The category K is assumed to

have finite concrete products and by a (not necessarily finite)

product in K we always mean a concrete one.

We assume there is given a closure operator c on K (with

respect to (E ,M)), i.e., a family of maps c = (cK : subK →
subK)K∈K with the following properties that hold for each

K-object K and each m, p ∈ subK:

(1) m ≤ cK(m),

(2) m ≤ p ⇒ cK(m) ≤ cK(p),
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(3) f (cK(m)) ≤ cL(f (m)) for each K-morphism f : K → L.

The closure operator c is called

(a) grounded if cK(oK) = oK for each K ∈ K,

(b) idempotent if cK(cK(m)) = cK(m) for each K ∈ K and

each m ∈ subK,

(c) additive if cK(m ∨ p) = cK(m) ∨ cK(p) for each K ∈ K
and each m, p ∈ subK,

(d) hereditary if, whenever m : M → K is an embedding in

K, cM(p) = m−1(cK(m ◦ p)) for each p ∈ subM .

Given a K-object K, a subobject m ∈ subK is said to be c-

closed (respectively, c-dense) provided that cK(m) = m (re-

spectively, cK(m) = idK). AK-morphism f : K → L is called

c-preserving if f (cK(m)) = cL(f (m)) whenever m ∈ subK.

Thus, if f is c-preserving, then it maps c-closed subobjects to

c-closed subobjects, and vice versa provided that c is idempo-

tent.

2 Neighborhoods

Definition 2.1 Let K be an K-object. A subobject n ∈
subK is called a c-neighborhood of a given subobject m ∈
subK if n is pseudocomplementable (in subK) and m∧cK(n) =

oK . We denote by N (m) the class of all c-neighborhoods of

m. A subclass B ⊆ N (m) is called a base of c-neighborhoods

of m if, for every n ∈ N (m), there exists p ∈ B such that

p ≤ n.

Proposition 2.2 Let K be a K-object and m, p ∈ subK.

Then

(1) idK ∈ N (m) if c is grounded,

(2) N (oK) = {n ∈ subK; n is pseudocomplementable},
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(3) if m > oK, then n > oK for each n ∈ N (m),

(4) n ∈ N (m) implies m ≤ n provided that (a) m is an

atom or (b) n is pseudocomplementable with n = n and

either (i) cK(n) is pseudocomplementable or (ii) both

m and m are pseudocomplementable,

(5) if n ∈ N (m) and p ∈ subK is pseudocomplementable

with p ≥ n, then p ∈ N (m),

(6) p ≤ m ⇒ N (m) ⊆ N (p),

(7) if m > oK and n1, n2, ..., nk ∈ N (m) (k ∈ N), then

m ∧ n1 ∧ n2 ∧ ... ∧ nk > oK,

(8) if m > oK and n1, n2, ..., nk ∈ N (m) (k ∈ N), then

n1 ∧ n2 ∧ ... ∧ nk > oK,

(9) if n1, n2 ∈ N (m), then n1 ∧ n2 ∈ N (m) provided that c

is additive and subK is a Boolean algebra.

Proposition 2.3 Let f : K → L be a K-morphism, m ∈
subK and n ∈ N (f (m)). Then f−1(n) ∈ N (m).

Proposition 2.4 Let K be a K-object and m, p ∈ subK,

m > oK, and let B ⊆ N (m) be a base of c-neighborhoods

of m. If m ≤ cK(p), then n ∧ p > oK for each n ∈ B, and

vice versa provided that m is an atom of subK and p, p,

cK(p) are pseudocomplementable with p = p.

Definition 2.5 Let K be a K-object and m ∈ subK. Then

m is said to be open (w.r.t. c) if m ∈ N (m).

If c is grounded, then the openness is weaker than the c-

openness (recall that a subobject m ∈ subK is said to be

c-open if m ∧ cK(p) ≤ cK(m ∧ p) for every p ∈ subK). If c

is grounded and additive and subK is a Boolean algebra, then

the openness and c-openness coincide.
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Proposition 2.6 Let K be a K-object and m ∈ subK. If

m is open, then m is c-closed, and vice versa provided that

m is pseudocomplementable.

Corollary 2.7 Let f : K → L be a K-morphism, n ∈
subL. If n is open, then f−1(n) is open too.

3 Separation and compactness

Definition 3.1 A K-object K is said to be

(a) separated (with respect to c) provided that, whenever m, p ∈
subK are different atoms, there are n ∈ N (m) and q ∈
N (p) with n ∧ q = oK ,

(b) compact (with respect to c) if
∧ T > oK for every centered

class T ⊆ subK of c-closed subobjects of K.

Theorem 3.2 Let K be a K-object such that, for each

atom r ∈ subK and each n ∈ N (r), n and cK(n) are pseu-

docomplementable with n = n. If r =
∧{cK(n); n ∈ N (r)}

for each atom r ∈ subK, then K is separated, and vice

versa provided that subK is atomistic.

Theorem 3.3 Let K be a K-object such that subK is a

complete Boolean algebra. Then K is compact if and only

if, for every subclass S ⊆ subX consisting of c-open subob-

jects, from
∨S = idK it follows that there is a finite subset

T ⊆ S with
∨ T = idK.

Theorem 3.4 Let c be hereditary and let m : M → K be

a c-closed embedding in K. If K is compact, then M is

compact too.

Theorem 3.5 Let f : K → L be a K-morphism. If K is

compact and f ∈ E , then L is compact too.
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Theorem 3.6 (Absolute closedness) Let c be grounded, ad-

ditive, idempotent and hereditary. Let m : M → K be an

embedding in K where M is compact, K is separated and

subK is an atomistic Boolean algebra. Then m is c-closed.

Corollary 3.7 Let K have embeddings and (E ,EmbM)-

factorization structure and let c be grounded, additive,

idempotent and hereditary. Let f : K → L be a K-

morphism where K is compact and L is separated with the

property that subL is an atomistic Boolean algebra. Then

f is c-preserving.

Remark 3.8 (Maximality) Let the assumptions of Corollary

3.7 be satisfied and let K have the property that each K-

morphism which is a c-preserving X -isomorphism is a K-

isomorphism. Then f is a K-isomorphism whenever it is an

X -isomorphism. Moreover, let |K| = |L| and suppose that

cK ≤ cL implies that id|K| is a K-morphism id|K| : K → L.

Then cK ≤ cL (i.e., cK(m) ≤ cL(m) for each m ∈ subK =

subL) implies cK = cL by Corollary 3.7 (putting f = id|K|).
Thus, given an X -object X , in the class of all cK with K a

separated K-object such that |K| = X , cK with K compact

are maximal (provided that the class is nonempty).

Corollary 3.9 Let E be stable under pullbacks and c be

idempotent. Let K =
∏

i∈I Ki be a product in K such that

all projections pri : K → Ki, i ∈ I, belong to E. If K is

compact, then Ki is compact for each i ∈ I.

Theorem 3.10 (Tychonoff’s Theorem) Let c be idempotent

and let K =
∏

i∈I Ki be a product in K such that subKi

is atomic for each i ∈ I and all atoms of subKi, i ∈ I,

have the same domain (up to isomorphisms). Let every

centered class T ⊆ subK have the property that t, t and

cK(t) are pseudocomplementable with t = t for each t ∈ T .
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Finally, whenever xi ∈ subKi is an atom for each i ∈ I,

let the atom x = 〈xi; i ∈ I〉 fulfill the following condition:

There exists a neighborhood base B ⊆ N (x) such that,

for each p ∈ B, there is a finite subset I ′ ⊆ I with

p =
⋂

i∈I ′ pr−1
i ni where ni ∈ N (xi) for each i ∈ I ′.

If Ki is compact for each i ∈ I, then K is compact too.

Recall that a K-object K is called

(a) c-separated if the diagonal morphism δK : |K| → |K| ×
|K| is c-closed,

(b) c-compact if the projection prL : K × L → L is c-

preserving for every K-object L.

Theorem 3.11 Let K be a K-object such that sub(K×K)

is atomistic and both δK and cK(δK) are pseudocomple-

mentable. Let, for every atom m ∈ sub(K × K), both

the projections pri : |K| × |K| → |K|, i = 1, 2, fulfill

pri◦m ∈M and let from p ∈ N (pr1◦m) and q ∈ N (pr2◦m)

it follows that p× q ∈ N (m). If K is separated, then it is

c-separated.

Theorem 3.12 Let K be a K-object such that all atoms of

subK have the same domain (up to isomorphisms) and δK,

δK, cK×K(δK) are pseudocomplementable with δK = δK.

Let, for any pair of atoms p, q ∈ subK, from n ∈ N (〈p, q〉)
it follows that pr1 ◦ n ∈ N (p) and pr2 ◦ n ∈ N (q). If K is

c-separated, then it is separated.

Theorem 3.13 Let c be additive and subL be an atomic

Boolean algebra for each K-object L. Let K be a K-object

satisfying the following condition:

Given a K object L, an atom y ∈ subL and a subobject

m ∈ sub(K × L) with prL(cK×L(m)) ∧ y = oL, for each
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atom x ∈ subK there are subobjects ux ∈ subK and

vx ∈ subL, ux c-closed, such that ux ∧ x = oK, cL(vx) ∧
y = oL, and cK×L(m) ≤ pr−1

K (ux) ∨ pr−1
L (vx).

If K is compact, then it is c-compact.

Theorem 3.14 Let c be idempotent and K be a K-object

with the properties that subK is a Boolean algebra and for

any centered subclass F ⊆ subK of c-closed subobjects of K

there exist a K-object L and a c-dense subobject m : |K| →
|L| of L such that the following conditions are satisfied:

(1) sub(K × L) is atomic.

(2) For any atom z ∈ sub(K×L), from p ∈ N (prK(z)) and

q ∈ N (prL(z)) it follows that p× q ∈ N (z).

(3) There exists a subobject y ∈ subL with y > oL, y∧m =

oL, and y ∨m(s) ∈ N (y) for each s ∈ F .

If K is c-compact, then it is compact.

4 Convergence

For each X -object X we denote by RX the conglomerate of all

centered subclasses of subX . Given a K-object K, we write

briefly RK instead of R|K|.

Definition 4.1 Let K be a K-object, m ∈ subK and R ∈
RK .

(a) We say that R converges to m, in symbols R → m, if,

for each p ∈ subK with oK < p ≤ m and each n ∈ N (p)

there exists r ∈ R such that r ≤ n.

(b) m is called a clustering of R provided that m ≤ cK(r) for

each r ∈ R (i.e., provided that m ≤ ∧
r∈R cK(r)).

Proposition 4.2 Let K be a K-object. Then
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(1) R→ oK for each R ∈ RK.

(2) N (m) → m whenever m is an atom of subK.

(3) For any R ∈ RK and any m ∈ subK, from R → m it

follows that R→ p for each p ∈ subK, p ≤ m.

(4) Let the lattice subK be atomic, let R ∈ RK and let

m ∈ subK. If R → a for each atom a ∈ subK with

a ≤ m, then R→ m.

(5) For any R ∈ RK and any m ∈ subK, from R → m it

follows that S → m whenever S ∈ RK is finer than R.

(6) If R ∈ RK is a stack on subK and m ∈ subK, then

R → m if and only if N (p) ⊆ R for each p ∈ subK

with oK < p ≤ m.

(7) oK is a clustering of every R ∈ RK.

(8) Let R ∈ RK and m,n ∈ subK. If m is a clustering of

R and n ≤ m, then n is a clustering of R too.

Proposition 4.3 Let K be a K-object, m, p ∈ subK, and

let m be an atom of subK. If m ≤ cK(p), then there exists

R ∈ RK such that R→ m and n∧p > oK for each n ∈ R,

and vice versa provided that subK is a Boolean algebra.

Proposition 4.4 Let K be a K-object such that subK is

a Boolean algebra, let R ∈ RK be a stack on subK and let

m ∈ subK be a join of atoms. If there exists S ∈ RK with

R ⊆ S and S → m, then m is a clustering of R, and vice

versa provided that subK is atomic, c is additive and R is

a filter.

Corollary 4.5 Let K ∈ K be an object such that subK is a

Boolean algebra, let R ∈ RK be a stack and let m ∈ subK

be a join of atoms. If R → m, then m is a clustering of

R.
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Corollary 4.6 Let c be additive, K be a K-object such that

subK is an atomic Boolean algebra, and let R ∈ RK be an

ultrafilter. Then R → m if and only if m is a clustering

of R.

Theorem 4.7 Let f : K → L be a K-morphism, m ∈
subK and R ∈ RK. If R→ m, then f (R) → f (m).

Let K =
∏

i∈I Ki be a product in K and let R ∈ RK . By

Theorem 4.7, given m ∈ subK, R → m implies pri(R) →
pri(m) for each i ∈ I . If the converse implication is also valid,

we say that the centered class R is convergence-compatible

with the product K.

Proposition 4.8 Let in X the non-trivial objects be stable

under products and let all projections in K belong to E. Let

K =
∏

i∈I Ki be a product in K and, for each i ∈ I, let

Ri ∈ RKi
, mi ∈ subKi and Ri → mi. If

∏
i∈I Ri ∈ RK is

convergence-compatible with K, then
∏

i∈I Ri →
∏

i∈I mi.

Theorem 4.9 Let K be a K-object. If K is separated,

then from R → m and R → p it follows that m = p

whenever m, p ∈ subK are atoms and R ∈ RK, and vice

versa provided that c is additive and subK is a Boolean

algebra.

Theorem 4.10 Let K be a K-object. If every R ∈ RK

has a clustering different from oK, then K is compact, and

vice versa provided that c is idempotent.

Remark 4.11 The introduced concept of convergence may

be strengthened by saying that R ∈ RK converges to m ∈
subK if N (p) ⊆ R for each p ∈ subK with oK < p ≤ m.

Then all statements concerning convergence remain valid (and

this is true even if the assumption that R is a stack is omitted

wherever it occurs).
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