Neighborhoods with respect to a closure operator

E. Giuli and J. Šlapal

1 Preliminaries

Let \mathcal{X} be a finitely complete category a with a proper $(\mathcal{E}, \mathcal{M})$ factorization structure for morphisms. For simplicity, we assume that \mathcal{E} is stable under pullbacks along \mathcal{M} -morphisms and
that multiple pullbacks of arbitrary large families of \mathcal{M} morphisms with a common codomain exist. Given an \mathcal{X} -object X, we denote by subX the (complete) subobject lattice of X and by o_X the least element of subX. We assume that $f^{-1}(o_Y) = o_X$ whenever $f : X \to Y$ is an \mathcal{X} -morphism. For
any $m \in \text{sub}X$, \overline{m} denotes the pseudocomplement of mprovided it exists.

We suppose there is given a concrete category \mathcal{K} over \mathcal{X} with the corresponding underlying functor $| : \mathcal{K} \to \mathcal{X}$. We write f instead of |f| whenever f is a \mathcal{K} -morphism and we also write briefly subK and o_K instead of sub|K| and $o_{|K|}$, respectively, whenever K is a \mathcal{K} -object. The category \mathcal{K} is assumed to have finite concrete products and by a (not necessarily finite) product in \mathcal{K} we always mean a concrete one.

We assume there is given a closure operator c on \mathcal{K} (with respect to $(\mathcal{E}, \mathcal{M})$), i.e., a family of maps $c = (c_K : \operatorname{sub} K \to \operatorname{sub} K)_{K \in \mathcal{K}}$ with the following properties that hold for each \mathcal{K} -object K and each $m, p \in \operatorname{sub} K$:

(1) $m \leq c_K(m)$,

(2) $m \le p \Rightarrow c_K(m) \le c_K(p),$

- (3) $f(c_K(m)) \leq c_L(f(m))$ for each \mathcal{K} -morphism $f: K \to L$. The closure operator c is called
- (a) grounded if $c_K(o_K) = o_K$ for each $K \in \mathcal{K}$,
- (b) *idempotent* if $c_K(c_K(m)) = c_K(m)$ for each $K \in \mathcal{K}$ and each $m \in \mathrm{sub}K$,
- (c) additive if $c_K(m \lor p) = c_K(m) \lor c_K(p)$ for each $K \in \mathcal{K}$ and each $m, p \in \mathrm{sub}K$,
- (d) hereditary if, whenever $m : M \to K$ is an embedding in $\mathcal{K}, c_M(p) = m^{-1}(c_K(m \circ p))$ for each $p \in \mathrm{sub}M$.

Given a \mathcal{K} -object K, a subobject $m \in \operatorname{sub} K$ is said to be *c*closed (respectively, *c*-dense) provided that $c_K(m) = m$ (respectively, $c_K(m) = \operatorname{id}_K$). A \mathcal{K} -morphism $f: K \to L$ is called *c*-preserving if $f(c_K(m)) = c_L(f(m))$ whenever $m \in \operatorname{sub} K$. Thus, if f is *c*-preserving, then it maps *c*-closed subobjects to *c*-closed subobjects, and vice versa provided that c is idempotent.

2 Neighborhoods

Definition 2.1 Let K be an \mathcal{K} -object. A subobject $n \in$ subK is called a *c*-neighborhood of a given subobject $m \in$ subK if n is pseudocomplementable (in subK) and $m \wedge c_K(\overline{n}) =$ o_K . We denote by $\mathcal{N}(m)$ the class of all *c*-neighborhoods of m. A subclass $\mathcal{B} \subseteq \mathcal{N}(m)$ is called a *base* of *c*-neighborhoods of m if, for every $n \in \mathcal{N}(m)$, there exists $p \in \mathcal{B}$ such that $p \leq n$.

Proposition 2.2 Let K be a \mathcal{K} -object and $m, p \in \operatorname{sub} K$. Then

(1) $id_K \in \mathcal{N}(m)$ if c is grounded, (2) $\mathcal{N}(o_K) = \{n \in \mathrm{sub}K; n \text{ is pseudocomplementable}\},\$

- (3) if $m > o_K$, then $n > o_K$ for each $n \in \mathcal{N}(m)$,
- (4) $n \in \mathcal{N}(m)$ implies $m \leq n$ provided that (a) m is an atom or (b) \overline{n} is pseudocomplementable with $\overline{\overline{n}} = n$ and either (i) $c_K(\overline{n})$ is pseudocomplementable or (ii) both m and \overline{m} are pseudocomplementable,
- (5) if $n \in \mathcal{N}(m)$ and $p \in \mathrm{sub}K$ is pseudocomplementable with $p \ge n$, then $p \in \mathcal{N}(m)$,

(6)
$$p \le m \Rightarrow \mathcal{N}(m) \subseteq \mathcal{N}(p),$$

- (7) if $m > o_K$ and $n_1, n_2, ..., n_k \in \mathcal{N}(m)$ $(k \in \mathbb{N})$, then $m \wedge n_1 \wedge n_2 \wedge ... \wedge n_k > o_K$,
- (8) if $m > o_K$ and $n_1, n_2, ..., n_k \in \mathcal{N}(m)$ $(k \in \mathbb{N})$, then $n_1 \wedge n_2 \wedge ... \wedge n_k > o_K$,
- (9) if $n_1, n_2 \in \mathcal{N}(m)$, then $n_1 \wedge n_2 \in \mathcal{N}(m)$ provided that c is additive and subK is a Boolean algebra.

Proposition 2.3 Let $f : K \to L$ be a \mathcal{K} -morphism, $m \in$ subK and $n \in \mathcal{N}(f(m))$. Then $f^{-1}(n) \in \mathcal{N}(m)$.

Proposition 2.4 Let K be a \mathcal{K} -object and $m, p \in \operatorname{sub} K$, $m > o_K$, and let $\mathcal{B} \subseteq \mathcal{N}(m)$ be a base of c-neighborhoods of m. If $m \leq c_K(p)$, then $n \wedge p > o_K$ for each $n \in \mathcal{B}$, and vice versa provided that m is an atom of subK and p, \overline{p} , $c_K(p)$ are pseudocomplementable with $\overline{\overline{p}} = p$.

Definition 2.5 Let K be a \mathcal{K} -object and $m \in \operatorname{sub} K$. Then m is said to be *open* (w.r.t. c) if $m \in \mathcal{N}(m)$.

If c is grounded, then the openness is weaker than the copenness (recall that a subobject $m \in \operatorname{sub} K$ is said to be c-open if $m \wedge c_K(p) \leq c_K(m \wedge p)$ for every $p \in \operatorname{sub} K$). If c is grounded and additive and $\operatorname{sub} K$ is a Boolean algebra, then the openness and c-openness coincide. **Proposition 2.6** Let K be a \mathcal{K} -object and $m \in \operatorname{sub} K$. If m is open, then \overline{m} is c-closed, and vice versa provided that m is pseudocomplementable.

Corollary 2.7 Let $f : K \to L$ be a \mathcal{K} -morphism, $n \in$ subL. If n is open, then $f^{-1}(n)$ is open too.

3 Separation and compactness

Definition 3.1 A \mathcal{K} -object K is said to be

- (a) separated (with respect to c) provided that, whenever $m, p \in$ subK are different atoms, there are $n \in \mathcal{N}(m)$ and $q \in$ $\mathcal{N}(p)$ with $n \wedge q = o_K$,
- (b) compact (with respect to c) if $\bigwedge \mathcal{T} > o_K$ for every centered class $\mathcal{T} \subseteq \text{sub}K$ of c-closed subobjects of K.

Theorem 3.2 Let K be a K-object such that, for each atom $r \in \operatorname{sub} K$ and each $n \in \mathcal{N}(r)$, \overline{n} and $c_K(n)$ are pseudocomplementable with $\overline{\overline{n}} = n$. If $r = \bigwedge \{c_K(n); n \in \mathcal{N}(r)\}$ for each atom $r \in \operatorname{sub} K$, then K is separated, and vice versa provided that $\operatorname{sub} K$ is atomistic.

Theorem 3.3 Let K be a \mathcal{K} -object such that $\operatorname{sub} K$ is a complete Boolean algebra. Then K is compact if and only if, for every subclass $\mathcal{S} \subseteq \operatorname{sub} X$ consisting of c-open subobjects, from $\bigvee \mathcal{S} = \operatorname{id}_K$ it follows that there is a finite subset $\mathcal{T} \subseteq \mathcal{S}$ with $\bigvee \mathcal{T} = \operatorname{id}_K$.

Theorem 3.4 Let c be hereditary and let $m : M \to K$ be a c-closed embedding in \mathcal{K} . If K is compact, then M is compact too.

Theorem 3.5 Let $f : K \to L$ be a \mathcal{K} -morphism. If K is compact and $f \in \mathcal{E}$, then L is compact too.

Theorem 3.6 (Absolute closedness) Let c be grounded, additive, idempotent and hereditary. Let $m : M \to K$ be an embedding in \mathcal{K} where M is compact, K is separated and subK is an atomistic Boolean algebra. Then m is c-closed.

Corollary 3.7 Let \mathcal{K} have embeddings and $(\mathcal{E}, Emb_{\mathcal{M}})$ -factorization structure and let c be grounded, additive, idempotent and hereditary. Let $f : K \to L$ be a \mathcal{K} -morphism where K is compact and L is separated with the property that subL is an atomistic Boolean algebra. Then f is c-preserving.

Remark 3.8 (Maximality) Let the assumptions of Corollary 3.7 be satisfied and let \mathcal{K} have the property that each \mathcal{K} morphism which is a *c*-preserving \mathcal{X} -isomorphism is a \mathcal{K} isomorphism. Then *f* is a \mathcal{K} -isomorphism whenever it is an \mathcal{X} -isomorphism. Moreover, let |K| = |L| and suppose that $c_K \leq c_L$ implies that $\mathrm{id}_{|K|}$ is a \mathcal{K} -morphism $\mathrm{id}_{|K|} : K \to L$. Then $c_K \leq c_L$ (i.e., $c_K(m) \leq c_L(m)$ for each $m \in \mathrm{sub}K =$ $\mathrm{sub}L$) implies $c_K = c_L$ by Corollary 3.7 (putting $f = \mathrm{id}_{|K|}$). Thus, given an \mathcal{X} -object X, in the class of all c_K with K a separated \mathcal{K} -object such that |K| = X, c_K with K compact are maximal (provided that the class is nonempty).

Corollary 3.9 Let \mathcal{E} be stable under pullbacks and c be idempotent. Let $K = \prod_{i \in I} K_i$ be a product in K such that all projections $pr_i : K \to K_i$, $i \in I$, belong to \mathcal{E} . If K is compact, then K_i is compact for each $i \in I$.

Theorem 3.10 (Tychonoff's Theorem) Let c be idempotent and let $K = \prod_{i \in I} K_i$ be a product in \mathcal{K} such that $\operatorname{sub} K_i$ is atomic for each $i \in I$ and all atoms of $\operatorname{sub} K_i$, $i \in I$, have the same domain (up to isomorphisms). Let every centered class $\mathcal{T} \subseteq \operatorname{sub} K$ have the property that t, \bar{t} and $c_K(t)$ are pseudocomplementable with $\overline{t} = t$ for each $t \in \mathcal{T}$. Finally, whenever $x_i \in \text{sub}K_i$ is an atom for each $i \in I$, let the atom $x = \langle x_i; i \in I \rangle$ fulfill the following condition:

There exists a neighborhood base $\mathcal{B} \subseteq \mathcal{N}(x)$ such that, for each $p \in \mathcal{B}$, there is a finite subset $I' \subseteq I$ with $p = \bigcap_{i \in I'} \operatorname{pr}_i^{-1} n_i$ where $n_i \in \mathcal{N}(x_i)$ for each $i \in I'$.

If K_i is compact for each $i \in I$, then K is compact too.

Recall that a \mathcal{K} -object K is called

- (a) *c-separated* if the diagonal morphism $\delta_K : |K| \to |K| \times |K|$ is *c*-closed,
- (b) *c-compact* if the projection $pr_L : K \times L \to L$ is *c*-preserving for every \mathcal{K} -object L.

Theorem 3.11 Let K be a \mathcal{K} -object such that $\operatorname{sub}(K \times K)$ is atomistic and both δ_K and $c_K(\delta_K)$ are pseudocomplementable. Let, for every atom $m \in \operatorname{sub}(K \times K)$, both the projections $pr_i : |K| \times |K| \to |K|$, i = 1, 2, fulfill $pr_i \circ m \in \mathcal{M}$ and let from $p \in \mathcal{N}(pr_1 \circ m)$ and $q \in \mathcal{N}(pr_2 \circ m)$ it follows that $p \times q \in \mathcal{N}(m)$. If K is separated, then it is c-separated.

Theorem 3.12 Let K be a K-object such that all atoms of subK have the same domain (up to isomorphisms) and δ_K , $\overline{\delta_K}$, $c_{K \times K}(\delta_K)$ are pseudocomplementable with $\overline{\delta_K} = \delta_K$. Let, for any pair of atoms $p, q \in \text{sub}K$, from $n \in \mathcal{N}(\langle p, q \rangle)$ it follows that $pr_1 \circ n \in \mathcal{N}(p)$ and $pr_2 \circ n \in \mathcal{N}(q)$. If K is *c*-separated, then it is separated.

Theorem 3.13 Let c be additive and subL be an atomic Boolean algebra for each \mathcal{K} -object L. Let K be a \mathcal{K} -object satisfying the following condition:

Given a \mathcal{K} object L, an atom $y \in \operatorname{sub} L$ and a subobject $m \in \operatorname{sub}(K \times L)$ with $pr_L(c_{K \times L}(m)) \wedge y = o_L$, for each

atom $x \in \operatorname{sub}K$ there are subobjects $u_x \in \operatorname{sub}K$ and $v_x \in \operatorname{sub}L$, u_x c-closed, such that $u_x \wedge x = o_K$, $c_L(v_x) \wedge y = o_L$, and $c_{K \times L}(m) \leq pr_K^{-1}(u_x) \vee pr_L^{-1}(v_x)$.

If K is compact, then it is c-compact.

Theorem 3.14 Let c be idempotent and K be a \mathcal{K} -object with the properties that $\operatorname{sub} K$ is a Boolean algebra and for any centered subclass $\mathcal{F} \subseteq \operatorname{sub} K$ of c-closed subobjects of K there exist a \mathcal{K} -object L and a c-dense subobject $m : |K| \to$ |L| of L such that the following conditions are satisfied:

- (1) $\operatorname{sub}(K \times L)$ is atomic.
- (2) For any atom $z \in \text{sub}(K \times L)$, from $p \in \mathcal{N}(pr_K(z))$ and $q \in \mathcal{N}(pr_L(z))$ it follows that $p \times q \in \mathcal{N}(z)$.
- (3) There exists a subobject $y \in \text{subL}$ with $y > o_L$, $y \land m = o_L$, and $y \lor m(s) \in \mathcal{N}(y)$ for each $s \in \mathcal{F}$.
- If K is c-compact, then it is compact.

4 Convergence

For each \mathcal{X} -object X we denote by \mathbf{R}_X the conglomerate of all centered subclasses of subX. Given a \mathcal{K} -object K, we write briefly \mathbf{R}_K instead of $\mathbf{R}_{|K|}$.

Definition 4.1 Let K be a \mathcal{K} -object, $m \in \operatorname{sub} K$ and $\mathcal{R} \in \mathbf{R}_{K}$.

- (a) We say that \mathcal{R} converges to m, in symbols $\mathcal{R} \to m$, if, for each $p \in \operatorname{sub} K$ with $o_K and each <math>n \in \mathcal{N}(p)$ there exists $r \in \mathcal{R}$ such that $r \le n$.
- (b) m is called a *clustering* of \mathcal{R} provided that $m \leq c_K(r)$ for each $r \in \mathcal{R}$ (i.e., provided that $m \leq \bigwedge_{r \in \mathcal{R}} c_K(r)$).

Proposition 4.2 Let K be a \mathcal{K} -object. Then

- (1) $\mathcal{R} \to o_K$ for each $\mathcal{R} \in \mathbf{R}_K$.
- (2) $\mathcal{N}(m) \to m$ whenever m is an atom of subK.
- (3) For any $\mathcal{R} \in \mathbf{R}_K$ and any $m \in \mathrm{sub}K$, from $\mathcal{R} \to m$ it follows that $\mathcal{R} \to p$ for each $p \in \mathrm{sub}K$, $p \leq m$.
- (4) Let the lattice subK be atomic, let $\mathcal{R} \in \mathbf{R}_K$ and let $m \in \text{subK}$. If $\mathcal{R} \to a$ for each atom $a \in \text{subK}$ with $a \leq m$, then $\mathcal{R} \to m$.
- (5) For any $\mathcal{R} \in \mathbf{R}_K$ and any $m \in \mathrm{sub}K$, from $\mathcal{R} \to m$ it follows that $\mathcal{S} \to m$ whenever $\mathcal{S} \in \mathbf{R}_K$ is finer than \mathcal{R} .
- (6) If $\mathcal{R} \in \mathbf{R}_K$ is a stack on subK and $m \in \text{sub}K$, then $\mathcal{R} \to m$ if and only if $\mathcal{N}(p) \subseteq \mathcal{R}$ for each $p \in \text{sub}K$ with $o_K .$
- (7) o_K is a clustering of every $\mathcal{R} \in \mathbf{R}_K$.
- (8) Let $\mathcal{R} \in \mathbf{R}_K$ and $m, n \in \mathrm{sub}K$. If m is a clustering of \mathcal{R} and $n \leq m$, then n is a clustering of \mathcal{R} too.

Proposition 4.3 Let K be a \mathcal{K} -object, $m, p \in \operatorname{sub} K$, and let m be an atom of $\operatorname{sub} K$. If $m \leq c_K(p)$, then there exists $\mathcal{R} \in \mathbf{R}_K$ such that $\mathcal{R} \to m$ and $n \wedge p > o_K$ for each $n \in \mathcal{R}$, and vice versa provided that $\operatorname{sub} K$ is a Boolean algebra.

Proposition 4.4 Let K be a \mathcal{K} -object such that subK is a Boolean algebra, let $\mathcal{R} \in \mathbf{R}_K$ be a stack on subK and let $m \in \text{sub}K$ be a join of atoms. If there exists $S \in \mathbf{R}_K$ with $\mathcal{R} \subseteq S$ and $S \to m$, then m is a clustering of \mathcal{R} , and vice versa provided that subK is atomic, c is additive and \mathcal{R} is a filter.

Corollary 4.5 Let $K \in \mathcal{K}$ be an object such that $\operatorname{sub} K$ is a Boolean algebra, let $\mathcal{R} \in \mathbf{R}_K$ be a stack and let $m \in \operatorname{sub} K$ be a join of atoms. If $\mathcal{R} \to m$, then m is a clustering of \mathcal{R} .

Corollary 4.6 Let c be additive, K be a \mathcal{K} -object such that subK is an atomic Boolean algebra, and let $\mathcal{R} \in \mathbf{R}_K$ be an ultrafilter. Then $\mathcal{R} \to m$ if and only if m is a clustering of \mathcal{R} .

Theorem 4.7 Let $f : K \to L$ be a \mathcal{K} -morphism, $m \in$ subK and $\mathcal{R} \in \mathbf{R}_K$. If $\mathcal{R} \to m$, then $f(\mathcal{R}) \to f(m)$.

Let $K = \prod_{i \in I} K_i$ be a product in \mathcal{K} and let $\mathcal{R} \in \mathbf{R}_K$. By Theorem 4.7, given $m \in \operatorname{sub} K$, $\mathcal{R} \to m$ implies $\operatorname{pr}_i(\mathcal{R}) \to \operatorname{pr}_i(m)$ for each $i \in I$. If the converse implication is also valid, we say that the centered class \mathcal{R} is *convergence-compatible* with the product K.

Proposition 4.8 Let in \mathcal{X} the non-trivial objects be stable under products and let all projections in \mathcal{K} belong to \mathcal{E} . Let $K = \prod_{i \in I} K_i$ be a product in \mathcal{K} and, for each $i \in I$, let $\mathcal{R}_i \in \mathbf{R}_{K_i}, m_i \in \mathrm{sub}K_i$ and $\mathcal{R}_i \to m_i$. If $\prod_{i \in I} \mathcal{R}_i \in \mathbf{R}_K$ is convergence-compatible with K, then $\prod_{i \in I} \mathcal{R}_i \to \prod_{i \in I} m_i$.

Theorem 4.9 Let K be a \mathcal{K} -object. If K is separated, then from $\mathcal{R} \to m$ and $\mathcal{R} \to p$ it follows that m = pwhenever $m, p \in \operatorname{sub} K$ are atoms and $\mathcal{R} \in \mathbf{R}_K$, and vice versa provided that c is additive and $\operatorname{sub} K$ is a Boolean algebra.

Theorem 4.10 Let K be a \mathcal{K} -object. If every $\mathcal{R} \in \mathbf{R}_K$ has a clustering different from o_K , then K is compact, and vice versa provided that c is idempotent.

Remark 4.11 The introduced concept of convergence may be strengthened by saying that $\mathcal{R} \in \mathbf{R}_K$ converges to $m \in$ subK if $\mathcal{N}(p) \subseteq \mathcal{R}$ for each $p \in$ subK with $o_K .$ Then all statements concerning convergence remain valid (and $this is true even if the assumption that <math>\mathcal{R}$ is a stack is omitted wherever it occurs).