Representability Limits Relative to a Doctrine Other Applications

Representability Relative to a Doctrine

Panagis Karazeris University of Patras, Greece

Jiří Velebil Technical University, Prague Czech Republic

1/27

Many classical notions in CT are representability notions

- Limits = representability of cone functors.
- **2** Adjunctions = representability of $\mathscr{A}(L-, A)$.
- Monoidal structures = representability of promonoidal structures.
- **4** . . .

Weakened representability \Rightarrow weakened notions.

*) Q (²

Example: Weak Limits

 $F : \mathscr{A}^{op} \to \text{Set}$ is weakly representable if there is an epimorphism $\mathscr{A}(-, A) \to F$ for some A. For a weak limit of $D : \mathscr{D} \to \mathscr{A}$, choose F to be the cone functor

 $Cone(D) : X \mapsto the set of D-cones with vertex X$

Hence an epimorphism

$$\mathscr{A}(-,A) \to \operatorname{Cone}(D)$$

meaning: there is a distinguished cone for D with vertex A through which any other factors (not necessarily uniquely).

Example: A Finite Plurilimit of a Finite Diagram *D* (P.Karazeris, J.Rosický, JV, JPAA, 2005)

There exists a finite set of distinguished cones

for D through which any other factors uniquely up to a zig-zag:

 $\operatorname{Cone}(D) \cong \operatorname{colim}_i \mathscr{A}(-, K_i)$

Plurirepresentability

 $F: \mathscr{A}^{op} \to Set$ is plurirepresentable if there is a natural isomorphism

 $F \cong \operatorname{colim}_i \mathscr{A}(-, K_i)$

for some finite diagram $K : \mathscr{K} \to \mathscr{A}$.

Many Other Such Notions

Multirepresentability:

$$F \cong \prod_i \mathscr{A}(-, K_i)$$

for some finite discrete diagram $K : \mathscr{K} \to \mathscr{A}$.

Plurirepresentability

 $F: \mathscr{A}^{op} \to Set$ is plurirepresentable if there is a natural isomorphism

 $F \cong \operatorname{colim}_i \mathscr{A}(-, K_i)$

for some finite diagram $K : \mathscr{K} \to \mathscr{A}$.

Many Other Such Notions

Multirepresentability:

$$F \cong \prod_{i} \mathscr{A}(-, K_i)$$

for some finite discrete diagram $K : \mathscr{K} \to \mathscr{A}$.

2 . . .

Common Important Features Given \mathscr{A} , form a category $\mathbb{C}(\mathscr{A})$ that • contains \mathscr{A} • is contained in $[\mathscr{A}^{op}, \operatorname{Set}]$ $\mathscr{A}^{op}, \operatorname{Set}]$ to measure the "degree of representability" of (say) cone functors for $D: \mathscr{D} \to \mathscr{A}$.

The Goals of the Talk

- To give a uniform environment where weak notions can be studied.
- To show that weak notions abound: in domain theory, in general algebra, ...
- Weak limits have connections to honest limits in free cocompletions.

For this, it is convenient to work in enriched categories. In fact, it does not make the reasoning any harder.

7/27

Motivation: Representability as a Factorization Let \mathscr{I} be the one-morphism category. For $F : \mathscr{A}^{op} \to \text{Set}$, denote by $\lceil F \rceil : \mathscr{I} \to [\mathscr{A}^{op}, \text{Set}]$ the name of F, i.e., $\lceil F \rceil(*) = F$. F is representable if there is a factorization

to within an isomorphism.

The Weakening Strategy

In the diagram

replace

- • Y_𝔅 : 𝔅 → [𝔅^{op}, Set] by a fully faithful
 $\widetilde{\gamma_𝔅}$: ℂ(𝔅) → [𝔅^{op}, Set], X ↦ ℂ(𝔅)(γ_𝔅−, X).
- $\ \, \textcircled{\ } \ \, \emph{I} \ \, by \ \, a \ \, general \ \, indexing \ \, category \ \, \mathscr{M} \, . }$
- **●** $\ulcorner F \urcorner$ by a general functor $G : \mathcal{M} \to [\mathcal{A}^{op}, Set]$.
- **(**) Set by a well-behaved base monoidal category \mathscr{V} .

・ロト ・同ト ・ヨト ・ヨト

Definition

A doctrine on \mathscr{V} -CAT is a pair (\mathbb{C}, γ) consisting of a pseudofunctor $\mathbb{C} : \mathscr{V}$ -CAT $\to \mathscr{V}$ -CAT and a pseudonatural $\gamma : \mathrm{Id} \to \mathbb{C}$ such that for each \mathscr{A} :

9
$$\gamma_{\mathscr{A}}:\mathscr{A}
ightarrow\mathbb{C}(\mathscr{A})$$
 is fully faithful.

②
$$\widetilde{\gamma_{\mathscr{A}}}$$
 : $\mathbb{C}(\mathscr{A}) \to [\mathscr{A}^{op}, \mathscr{V}], X \mapsto \mathbb{C}(\mathscr{A})(\gamma_{\mathscr{A}}, X),$ is fully faithful (i.e., $\gamma_{\mathscr{A}}$ is dense).

Examples of Doctrines

- (Id, id).
- 3 $\mathscr{V} =$ Set, $\mathbb{Q}(\mathscr{A}) =$ quotients of representables.

- 4 同 2 4 日 2 4 日 2

Definition

A doctrine on \mathscr{V} -CAT is a pair (\mathbb{C}, γ) consisting of a pseudofunctor $\mathbb{C} : \mathscr{V}$ -CAT $\to \mathscr{V}$ -CAT and a pseudonatural $\gamma : \mathrm{Id} \to \mathbb{C}$ such that for each \mathscr{A} :

9
$$\gamma_{\mathscr{A}}:\mathscr{A}
ightarrow\mathbb{C}(\mathscr{A})$$
 is fully faithful.

②
$$\widetilde{\gamma_{\mathscr{A}}}$$
 : $\mathbb{C}(\mathscr{A}) \to [\mathscr{A}^{op}, \mathscr{V}], X \mapsto \mathbb{C}(\mathscr{A})(\gamma_{\mathscr{A}}, X),$ is fully faithful (i.e., $\gamma_{\mathscr{A}}$ is dense).

Examples of Doctrines

- **1** (Id, id).
- ② Any free cocompletion $\gamma_{\mathscr{A}} : \mathscr{A} \to \mathbb{C}(\mathscr{A})$ under a class \mathbb{C} of colimits.
- $\mathscr{V} = \text{Set}, \mathbb{Q}(\mathscr{A}) = \text{quotients of representables}.$

Definition

A functor $G : \mathscr{M} \to [\mathscr{A}^{op}, \mathscr{V}]$ is representable relative to (\mathbb{C}, γ) , if there exists a factorization

to within an isomorphism. The isomorphism $\alpha : G \to \widetilde{\gamma_{\mathscr{A}}} \cdot \operatorname{rep}(G)$ is called the representation.

This means:

$$\alpha_{M,A}: (GM)(A) \cong \mathbb{C}(\mathscr{A})(\gamma_{\mathscr{A}}A, \operatorname{rep}(G)M)$$

holds naturally in M and A.

Examples of Representability Relative to (\mathbb{C}, γ)

 $\mathscr{V} = \mathsf{Set}, \ \mathscr{M} = \mathscr{I}, \ \mathsf{G} = \ulcorner \mathsf{F} \urcorner \text{ for } \mathsf{F} : \mathscr{A}^{op} \to \mathscr{V}.$

- Representability relative to (Id, id) is the usual representability.
- Representability relative to (Q, γ) the doctrine of quotients of representables is the weak representability.
- Representability relative to the doctrine of cocompletions under finite colimits is the plurirepresentability.
- 4 Etc. . .

The case $G = \widetilde{F} : \mathscr{M} \to [\mathscr{A}^{op}, \mathscr{V}]$ for $F : \mathscr{A} \to \mathscr{M}$

Representability of \widetilde{F} relative to (\mathbb{C}, γ) is an isomorphism

$$\alpha_{M,A}: \mathbb{C}(\mathscr{A})(\gamma_{\mathscr{A}}A, \operatorname{rep}(\widetilde{F})M) \cong (\widetilde{F}M)(A) = \mathscr{M}(FA, M)$$

natural in M and A. This means: F is a left adjoint along $\gamma_{\mathscr{A}}$, $F \dashv_{\gamma_{\mathscr{A}}} \operatorname{rep}(\widetilde{F})$, studied by Max Kelly, Walter Tholen, ...

Representability Relative to (\mathbb{C},γ) of \widetilde{F} , for $F: \mathscr{A} \to \mathscr{M}$

Any 𝒱, (ℂ, γ)=identity doctrine. Then F ⊣_{id} rep(F̃) is an honest adjuction:

$$\alpha_{M,A}:\mathscr{A}(\mathrm{id}_{\mathscr{A}}A,\mathrm{rep}(\widetilde{F})M)\cong(\widetilde{F}M)(A)=\mathscr{M}(F\!A,M)$$

natural in M and A.

Example: The "Most General" Gabriel-Ulmer Duality Suppose (\mathbb{C}, γ) is a fixed free-cocompletion doctrine. The obvious correspondence

$$\begin{array}{rcl} G & : & \mathscr{A} \to [\mathscr{B}^{op}, \mathscr{V}] \\ \operatorname{rep}(\mathcal{G}) & : & \mathscr{A} \to \mathbb{C}(\mathscr{B}) \\ \operatorname{Lan}_{\gamma_{\mathscr{A}}}(\operatorname{rep}(\mathcal{G})) & : & \mathbb{C}(\mathscr{A}) \to \mathbb{C}(\mathscr{B}) \end{array}$$

for \mathscr{A} , \mathscr{B} small and G representable relative to \mathbb{C} is a part of a biequivalence between certain profunctors and " \mathbb{C} -accessible functors".

This biequivalence restricts to duality of "theory morphisms" and " \mathbb{C} -accessible right adjoints".

Recollection of (Weighted) Limits

For a diagram $D: \mathcal{D} \to \mathscr{A}$ together with a weight $W: \mathscr{M} \to [\mathscr{D}, \mathscr{V}]^{op}$ form a cylinder functor

$$\mathsf{Cyl}(W,D):\mathscr{M}\to [\mathscr{A}^{op},\mathscr{V}], M\mapsto [\mathscr{D},\mathscr{V}]^{op}(\widehat{D}-,WM)$$

where $\widehat{D} : A \mapsto \mathscr{A}(A, D-)$. A limit of D weighted by W is a representation $\{W, D\} : \mathscr{M} \to \mathscr{A}$ of Cyl(W, D), i.e., we have a diagram

commutative to within an isomorphism.

■ ▶ 16/27

(Weighted) Limits Relative to a Doctrine

A limit relative to (\mathbb{C}, γ) of $D : \mathscr{D} \to \mathscr{A}$ weighted by $W : \mathscr{M} \to [\mathscr{D}, \mathscr{V}]^{op}$ is a representation $\{W, D\}_{(\mathbb{C}, \gamma)} : \mathscr{M} \to \mathbb{C}(\mathscr{A})$ of Cyl(W, D) relative to (\mathbb{C}, γ) , i.e., we have a diagram

commutative to within an isomorphism.

Or, in elementary terms:

$$\mathbb{C}(\mathscr{A})(\gamma_{\mathscr{A}}A, \{W, D\}_{(\mathbb{C},\gamma)}M) \cong \operatorname{Cyl}(W, D)(M)(A)$$
$$= [\mathscr{D}, \mathscr{V}](WM, \widehat{D}A)$$

naturally in M and A.

(Weighted) Limits of Some Class Relative to a Doctrine

Fix a limit doctrine (\mathbb{L}, λ) .

That is: for each \mathscr{A} , $\lambda_{\mathscr{A}} : \mathscr{A} \to \mathbb{L}(\mathscr{A})$ is a free completion under a class of limits.^{*a*}

- A weight $W : \mathscr{M} \to [\mathscr{D}, \mathscr{V}]^{op}$, \mathscr{M}, \mathscr{D} small, is an L-weight, if it factors through $\widehat{\lambda_{\mathscr{D}}} : \mathbb{L}(\mathscr{D}) \to [\mathscr{D}, \mathscr{V}]^{op}$.
- A category *A* has L-limits relative to (C, γ), if {W, D}_(C,γ) exists for every L-weight W and every diagram D.

^{*a*}(\mathbb{L}, λ) and (\mathbb{C}, γ) are independent of each other.

Main Theorem

For any \mathscr{A} , the following are equivalent:

holds.

The Meaning of $U: \mathbb{L}(\mathscr{A}) \to \mathbb{C}(\mathscr{A})$

 $U:\operatorname{Ran}_D W\mapsto \{W,\gamma_{\mathscr{A}}D\}$

for every diagram $D: \mathscr{D} \to \mathscr{A}$ and every \mathbb{L} -weight $W: \mathscr{D} \to \mathscr{V}$.

Image: 1 million of the second sec

Main Theorem

For any \mathscr{A} , the following are equivalent:

$$\lambda_{\mathscr{A}} \dashv_{\gamma_{\mathscr{A}}} U : \mathbb{L}(\mathscr{A}) \to \mathbb{C}(\mathscr{A})$$

holds.

The Meaning of $U : \mathbb{L}(\mathscr{A}) \to \mathbb{C}(\mathscr{A})$

 $U:\operatorname{Ran}_DW\mapsto\{W,\gamma_{\mathcal{A}}D\}$

for every diagram $D: \mathscr{D} \to \mathscr{A}$ and every \mathbb{L} -weight $W: \mathscr{D} \to \mathscr{V}$.

 (\mathbb{C},γ) ,

Main Theorem when (\mathbb{C}, γ) is a Colimit Doctrine

For any \mathscr{A} , the following are equivalent:

- \mathscr{A} has \mathbb{L} -limits relative to (\mathbb{C}, γ) .
- Sor every X in L(𝔄) there exists a pair W_X : 𝒢^{op} → 𝒱, J_X : 𝒢_X → 𝔄, with W_X a C-weight such that there is an isomorphism

$$\mathbb{L}(\mathscr{A})(\lambda_{\mathscr{A}}A,X)\cong\int^{K\in\mathscr{K}_{X}^{op}}W_{X}K\otimes\mathscr{A}(A,J_{X}K)$$

natural in A.

● $\mathbb{C}(\lambda_{\mathscr{A}}) : \mathbb{C}(\mathscr{A}) \to \mathbb{CL}(\mathscr{A})$ has a right adjoint that preserves C-colimits.

20/27

Examples

 𝒴=Set, L=finite limits, C=finite colimits. 𝔄 has L-limits relative to C iff it has finite plurilimits of finite diagrams (P.Karazeris, J.Rosický,J.V., JPAA, 2005). Exploit the coend formula

$$\mathbb{L}(\mathscr{A})(\lambda_{\mathscr{A}}A,X)\cong\int^{K\in\mathscr{K}_{X}^{op}}W_{X}K\times\mathscr{A}(A,J_{X}K)$$

- $\mathscr{K}_X =$ finite category
- L(𝒜)(λ𝒜 A, X)=set of cones for a finite diagram X with vertex A
- $W_X K$ =set of distinguished cones for a finite diagram X with vertex K
- the coend provides the factorizations up to a zig-zag

Examples, cont.

② The same L and C as above (i.e., finite) but with 𝒴=Abelian groups. One-object 𝒴 has L-limits relative to C iff it is a left coherent ring.

A ring A is left coherent iff the dualization functor

 $\operatorname{Hom}(-, A) : \operatorname{Mod} - A \to A \operatorname{-Mod}$

restricts to categories of f.p. *A*-modules (R.R.Colby, J.Algebra, 1975).

Any 𝒱, L=small limits, C=small colimits. 𝔄 has L-limits relative to C iff C(𝔄) (the category of small presheaves) has small limits of representables (B.Day, S.Lack, JPAA, 2007).

4 . . .

Corollary of the Main Theorem

The following are equivalent:

- Every $\mathbb{C}(\mathscr{A})$ has \mathbb{L} -limits whenever \mathscr{A} has \mathbb{L} -limits.
- Every C(𝒜) has L-limits whenever 𝒜 has L-limits relative to C.

③ Every
$$\mathbb{C}(\mathbb{L}(\mathscr{A}))$$
 has \mathbb{L} -limits.

These equivalent conditions are satisfied in the presence of a distributive law $\delta : \mathbb{LC} \to \mathbb{CL}$.

Promonoidal Structures

A promonoidal structure on \mathscr{A} is given by

$$J: \mathscr{I} \to [\mathscr{A}^{op}, \mathscr{V}] \qquad P: \mathscr{A} \otimes \mathscr{A} \to [\mathscr{A}^{op}, \mathscr{V}]$$

such that P is "associative" and J is a "unit" (to within isomorphisms) — see B.Day, 1974.

Example

A promonoidal structure (\mathscr{A}, J, P) with J, P representable is precisely a monoidal structure on \mathscr{A} :

Promonoidal Structures

A promonoidal structure on \mathscr{A} is given by

$$J:\mathscr{I}\to [\mathscr{A}^{op},\mathscr{V}] \qquad P:\mathscr{A}\otimes\mathscr{A}\to [\mathscr{A}^{op},\mathscr{V}]$$

such that P is "associative" and J is a "unit" (to within isomorphisms) — see B.Day, 1974.

Example

A promonoidal structure (\mathcal{A}, J, P) with J, P representable is precisely a monoidal structure on \mathcal{A} :

are precisely monoidal structures on $\mathbb{C}(\mathscr{A})$, if \mathbb{C} is a doctrine of free cocompletions.

(B.Day, S.Lack, JPAA, 2007 for \mathbb{C} =small colimits).

Example: Flatness and Merging

Suppose \mathscr{A} has \mathbb{L} -limits relative to (\mathbb{C}, γ) and let \mathscr{B} have \mathbb{L} -limits and $\widetilde{\gamma_{\mathscr{A}}}$ -colimits. A functor $H : \mathscr{A} \to \mathscr{B}$ is called

- L-flat relative to (C, γ) if Lan_{γ,d} H : C(d) → B preserves
 L-limits of representables.
- **2** merging L-limits relative to (\mathbb{C}, γ) if the canonical comparison

$$\widetilde{\gamma_{\mathscr{A}}}(\{W,\gamma_{\mathscr{A}}D\}) * H \to \{W,HD\}$$

is an isomorphism for every $D : \mathscr{D} \to \mathscr{A}$ and every \mathbb{L} -weight $W : \mathscr{M} \to [\mathscr{D}, \mathscr{V}]^{op}$ (introduced by H.Hu, W.Tholen). Result: these concepts are equivalent.

イロト イポト イヨト イヨト

Representability Limits Relative to a Doctrine Other Applications

Promonoidal Structures Flatness and Merging

Hear Panagis' talk for further applications.

≥ ≥ 27/27

・ 同・ ・ ヨ・