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Many classical notions in CT are representability notions

1 Limits = representability of cone functors.

2 Adjunctions = representability of A (L−,A).

3 Monoidal structures = representability of promonoidal
structures.

4 . . .

Weakened representability ⇒ weakened notions.
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Example: Weak Limits

F : A op → Set is weakly representable if there is an epimorphism
A (−,A) → F for some A.
For a weak limit of D : D → A , choose F to be the cone functor

Cone(D) : X 7→ the set of D-cones with vertex X

Hence an epimorphism

A (−,A) → Cone(D)

meaning: there is a distinguished cone for D with vertex A through
which any other factors (not necessarily uniquely).
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Example: A Finite Plurilimit of a Finite Diagram D (P.Karazeris,
J.Rosický,JV, JPAA, 2005)

There exists a finite set of distinguished cones
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for D through which any other factors uniquely up to a zig-zag:

Cone(D) ∼= colimiA (−,Ki )
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Plurirepresentability

F : A op → Set is plurirepresentable if there is a natural
isomorphism

F ∼= colimiA (−,Ki )

for some finite diagram K : K → A .

Many Other Such Notions

1 Multirepresentability:

F ∼=
∐
i

A (−,Ki )

for some finite discrete diagram K : K → A .

2 . . .
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Common Important Features

Given A , form a category C(A ) that

1 contains A

2 is contained in [A op,Set]

A // C(A ) // [A op,Set]

to measure the “degree of representability” of (say) cone functors
for D : D → A .
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The Goals of the Talk

1 To give a uniform environment where weak notions can be
studied.

2 To show that weak notions abound: in domain theory, in
general algebra, . . .

3 Weak limits have connections to honest limits in free
cocompletions.

For this, it is convenient to work in enriched categories.
In fact, it does not make the reasoning any harder.
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Motivation: Representability as a Factorization

Let I be the one-morphism category.
For F : A op → Set, denote by pFq : I → [A op,Set] the name
of F , i.e., pFq(∗) = F .
F is representable if there is a factorization

I
pFq

$$JJJ
JJJ

JJJ
J

��
A

YA

// [A op,Set]

to within an isomorphism.
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The Weakening Strategy

In the diagram

I
pFq

$$JJJ
JJJ

JJJ
J

��
A

YA

// [A op,Set]

replace

1 A by C(A ) (with a fully faithful γA : A → C(A )).

2 YA : A → [A op,Set] by a fully faithful
γ̃A : C(A ) → [A op,Set], X 7→ C(A )(γA−,X ).

3 I by a general indexing category M .

4 pFq by a general functor G : M → [A op,Set].

5 Set by a well-behaved base monoidal category V .
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Definition

A doctrine on V -CAT is a pair (C, γ) consisting of a
pseudofunctor C : V -CAT → V -CAT and a pseudonatural
γ : Id → C such that for each A :

1 γA : A → C(A ) is fully faithful.

2 γ̃A : C(A ) → [A op,V ], X 7→ C(A )(γA−,X ), is fully
faithful (i.e., γA is dense).

Examples of Doctrines

1 (Id, id).

2 Any free cocompletion γA : A → C(A ) under a class C of
colimits.

3 V = Set, Q(A ) = quotients of representables.
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Definition

A functor G : M → [A op,V ] is representable relative to (C, γ), if
there exists a factorization

M
G

%%LLLLLLLLLL

rep(G)
��

C(A ) gγA

// [A op,V ]

to within an isomorphism. The isomorphism α : G → γ̃A · rep(G )
is called the representation.
This means:

αM,A : (GM)(A) ∼= C(A )(γA A, rep(G )M)

holds naturally in M and A.
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Examples of Representability Relative to (C, γ)

V = Set, M = I , G = pFq for F : A op → V .

1 Representability relative to (Id, id) is the usual
representability.

2 Representability relative to (Q, γ) — the doctrine of quotients
of representables — is the weak representability.

3 Representability relative to the doctrine of cocompletions
under finite colimits is the plurirepresentability.

4 Etc. . .
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The case G = F̃ : M → [A op,V ] for F : A → M

Representability of F̃ relative to (C, γ) is an isomorphism

αM,A : C(A )(γA A, rep(F̃ )M) ∼= (F̃M)(A) = M (FA,M)

natural in M and A.
This means: F is a left adjoint along γA , F aγA rep(F̃ ), studied
by Max Kelly, Walter Tholen, . . .

M eF
%%LLLLLLLLLL

rep(eF )
��

M
rep(eF )

##FFFFFFFF

C(A ) gγA

// [A op,V ] A γA

//

F
>>}}}}}}}}
⇑

C(A )
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Representability Relative to (C, γ) of F̃ , for F : A → M

1 Any V , (C, γ)=identity doctrine. Then F aid rep(F̃ ) is an
honest adjuction:

αM,A : A (idA A, rep(F̃ )M) ∼= (F̃M)(A) = M (FA,M)

natural in M and A.

2 V =Set, (C, γ)=free cocompletion under small colimits. Then
F aγA rep(F̃ ) asserts a solution set condition.
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Example: The “Most General” Gabriel-Ulmer Duality

Suppose (C, γ) is a fixed free-cocompletion doctrine.
The obvious correspondence

G : A → [Bop,V ]
rep(G ) : A → C(B)

LanγA (rep(G )) : C(A ) → C(B)

for A , B small and G representable relative to C is a part of a
biequivalence between certain profunctors and “C-accessible
functors”.
This biequivalence restricts to duality of “theory morphisms” and
“C-accessible right adjoints”.

PK & JV Coimbra, 26 October 2007 15/27



Representability
Limits Relative to a Doctrine

Other Applications

Recollection of (Weighted) Limits

For a diagram D : D → A together with a weight
W : M → [D ,V ]op form a cylinder functor

Cyl(W ,D) : M → [A op,V ],M 7→ [D ,V ]op(D̂−,WM)

where D̂ : A 7→ A (A,D−).
A limit of D weighted by W is a representation {W ,D} : M → A
of Cyl(W ,D), i.e., we have a diagram

M
Cyl(W ,D)

$$IIIIIIIII

{W ,D}
��

A
YA

// [A op,V ]

commutative to within an isomorphism.
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(Weighted) Limits Relative to a Doctrine

A limit relative to (C, γ) of D : D → A weighted by
W : M → [D ,V ]op is a representation {W ,D}(C,γ) : M → C(A )
of Cyl(W ,D) relative to (C, γ), i.e., we have a diagram

M
Cyl(W ,D)

%%LLLLLLLLLL

{W ,D}(C,γ)

��
C(A ) gγA

// [A op,V ]

commutative to within an isomorphism.
Or, in elementary terms:

C(A )(γA A, {W ,D}(C,γ)M) ∼= Cyl(W ,D)(M)(A)

= [D ,V ](WM, D̂A)

naturally in M and A.
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(Weighted) Limits of Some Class Relative to a Doctrine

Fix a limit doctrine (L, λ).
That is: for each A , λA : A → L(A ) is a free completion under
a class of limits.a

1 A weight W : M → [D ,V ]op, M , D small, is an L-weight, if

it factors through λ̂D : L(D) → [D ,V ]op.

2 A category A has L-limits relative to (C, γ), if {W ,D}(C,γ)

exists for every L-weight W and every diagram D.

a(L, λ) and (C, γ) are independent of each other.
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Main Theorem

For any A , the following are equivalent:

1 A has L-limits relative to (C, γ).

2 C(A ) has L-limits of representables.

3 λ̃A : L(A ) → [A op,V ] is representable relative to (C, γ),
i.e.,

λA aγA U : L(A ) → C(A )

holds.

The Meaning of U : L(A ) → C(A )

U : RanDW 7→ {W , γA D}

for every diagram D : D → A and every L-weight W : D → V .
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Main Theorem when (C, γ) is a Colimit Doctrine

For any A , the following are equivalent:

1 A has L-limits relative to (C, γ).

2 For every X in L(A ) there exists a pair WX : K op
X → V ,

JX : KX → A , with WX a C-weight such that there is an
isomorphism

L(A )(λA A,X ) ∼=
∫ K∈K op

X

WXK ⊗A (A, JXK )

natural in A.

3 C(λA ) : C(A ) → CL(A ) has a right adjoint that preserves
C-colimits.
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Examples

1 V =Set, L=finite limits, C=finite colimits. A has L-limits
relative to C iff it has finite plurilimits of finite diagrams
(P.Karazeris, J.Rosický,J.V., JPAA, 2005). Exploit the coend
formula

L(A )(λA A,X ) ∼=
∫ K∈K op

X

WXK ×A (A, JXK )

KX=finite category
L(A )(λA A,X )=set of cones for a finite diagram X with
vertex A
WXK=set of distinguished cones for a finite diagram X with
vertex K
the coend provides the factorizations up to a zig-zag
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Examples, cont.

2 The same L and C as above (i.e., finite) but with V =Abelian
groups. One-object A has L-limits relative to C iff it is a left
coherent ring.
A ring A is left coherent iff the dualization functor

Hom(−,A) : Mod-A → A-Mod

restricts to categories of f.p. A-modules (R.R.Colby,
J.Algebra, 1975).

3 Any V , L=small limits, C=small colimits. A has L-limits
relative to C iff C(A ) (the category of small presheaves) has
small limits of representables (B.Day, S.Lack, JPAA, 2007).

4 . . .
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Corollary of the Main Theorem

The following are equivalent:

1 Every C(A ) has L-limits whenever A has L-limits.

2 Every C(A ) has L-limits whenever A has L-limits relative to
C.

3 Every C(L(A )) has L-limits.

These equivalent conditions are satisfied in the presence of a
distributive law δ : LC → CL.
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Promonoidal Structures
Flatness and Merging

Promonoidal Structures

A promonoidal structure on A is given by

J : I → [A op,V ] P : A ⊗A → [A op,V ]

such that P is “associative” and J is a “unit” (to within
isomorphisms) — see B.Day, 1974.

Example

A promonoidal structure (A , J,P) with J, P representable is
precisely a monoidal structure on A :

I
J

$$IIIIIIIII

��

A ⊗A
P

&&MMMMMMMMMM

��
A

YA

// [A op,V ] A
YA

// [A op,V ]
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Promonoidal Structures
Flatness and Merging

Promonoidal Structures Representable Relative to (C, γ)

I
J

%%KKKKKKKKKKK

��

A ⊗A
P

&&MMMMMMMMMM

��
C(A ) gγA

// [A op,V ] C(A ) gγA

// [A op,V ]

are precisely monoidal structures on C(A ), if C is a doctrine of
free cocompletions.
(B.Day, S.Lack, JPAA, 2007 for C=small colimits).
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Promonoidal Structures
Flatness and Merging

Example: Flatness and Merging

Suppose A has L-limits relative to (C, γ) and let B have L-limits
and γ̃A -colimits. A functor H : A → B is called

1 L-flat relative to (C, γ) if LanγA H : C(A ) → B preserves
L-limits of representables.

2 merging L-limits relative to (C, γ) if the canonical comparison

γ̃A ({W , γA D}) ∗ H → {W ,HD}

is an isomorphism for every D : D → A and every L-weight
W : M → [D ,V ]op (introduced by H.Hu, W.Tholen).

Result: these concepts are equivalent.
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Promonoidal Structures
Flatness and Merging

Hear Panagis’ talk for further
applications.
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