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C strict monoidal category with split idempotents.

For every morphism Vy : Y — Y, suchthat Vy = Vy o Vy,

Y Yy vy

Py vy
YA
Vy =iy opy, py oty =1idg.

We assume that algebras are associative with unity and the coalgebras coassociative with
counity. Given an algebra A and a coalgebra C:

na:K— A, pp: AQA— A, ec:C—-K, 6c:C—-CRC
denote the unity, the product, the counity, and the coproduct respectively.
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C strict monoidal category with split idempotents.

For every morphism Vy : Y — Y, suchthat Vy = Vy o Vy,

Y Vy Ly

Py (A%
A

Vy =iy opy, pyoiy =idy.
We assume that algebras are associative with unity and the coalgebras coassociative with
counity. Given an algebra A and a coalgebra C:
na:K— A, pp: AQA— A, ec:C—-K, 6c:C—-CRC
denote the unity, the product, the counity, and the coproduct respectively.

If Ais an algebra, Bisacoalgebraanda: B — A, 3: B — A are morphisms, we denote
the convolution product by

aNB=pso(a®pB)odp.
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Weak Yang- Baxter operators

-

Definition. (Joyal and Street , Adv. in Math., 1993 )

Let D € Obj(C). A Yang-Baxter operator is an isomorphismitp p : D® D — D® D inC

satisfying the Yang-Baxter equation

(tpp®D)o(D®tp p)o(tpp®D)=(D®tp p)o(tp.p ®D)o(D®tp.p)
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Definition. Let D € Obj(C). A weak Yang-Baxter operator is a morphismtp p : D® D —
D ® D in C satisfying the following conditions:

(1) tp p satisfies the Yang-Baxter equation.

(2) There exists an idempotent morphism Vpgp : D ® D — D ® D such that:
(2-1) (Vpep ® D)o (D®Vpgp) =(D&®Vpgp)°o (Vpgp ® D),
(2-2) (Vpep ®D)o(D®tp,p)=(D®tp,p)o(Vpgp ®D),
(2-3) (tp,p ® D)o (D®Vpgp) =(D®Vpgp)o (tp,p ® D),
(2-4) tp.poVpep =Vbpegpotp,p =tp,D.
(3) There exists a morphism t’D,D :D® D — D ® D such that:

(3-1) t’5 , satisfies the Yang-Baxter equation.

(3-2) The morphismppgp otp,p oipgp : D X D — D x D is an isomorphism with
inverse ppgp oty p oipgp : D x D — D x D,where ppgp and ipgp are
the morphisms such that ipgp o Ppep = Vbgp and ppgp ©tpgp = tdpxD
being D x D the image of Vpgp.
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Definition. (Bshm, Nill and Szlach anyi, J. of Algebra, 1999)
A weak Hopf algebra (or quantum groupoid) in a strict symmetric monoidal category C is by
definition an algebra (H, ng, pg) and coalgebra (H, g, d ) such that the following axioms

hold:
(1) dgopg=@par@pr)o(HQ®cy,g @H)o (g ®dn).
(2) egopgo(pr @®H) =(cg Qeg)o(pr @ pg)o(H®dIyg ® H)
= (g Qen)o(ppg Qpuu)o(H® (cppody)® H).
B) p®H)odgong=(HQug@H)o (g ®dg)o (ng @nm)
= (H®(pgocua)®H)o(bg ®dy)o(nu @nH)-
(4) There exists a morphism Ay : H — H in C (called antipode of H) satisfying:
(4-1) idg ANAg = ((egopg) ®H)o(H®ca,m)o ((dgonmg) ® H).
(4-2) AgNidg =(H® (egopm))o(caug®H)o(H® (g onm)).
(4-3) Mg Adidpg Adg = A
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Definition. (Bshm, Nill and Szlach anyi, J. of Algebra, 1999)
A weak Hopf algebra (or quantum groupoid) in a strict symmetric monoidal category C is by
definition an algebra (H, ng, pg) and coalgebra (H, g, d ) such that the following axioms

hold:
(1) dgopg=@par@pr)o(HQ®cy,g @H)o (g ®dn).
(2) egopgo(pr @®H) =(cg Qeg)o(pr @ pg)o(H®dIyg ® H)
= (g Qen)o(ppg Qpuu)o(H® (cppody)® H).
B) p®H)odgong=(HQug@H)o (g ®dg)o (ng @nm)
= (H®(pgocua)®H)o(bg ®dy)o(nu @nH)-
(4) There exists a morphism Ay : H — H in C (called antipode of H) satisfying:
(4-1) idg ANAg = ((egopg) ®H)o(H®ca,m)o ((dgonmg) ® H).
(4-2) AgNidg =(H® (egopm))o(caug®H)o(H® (g onm)).
(4-3) Mg Adidpg Adg = A

A weak Hopf algebra is a Hopf algebra if an only if the morphism é 5 (comultiplication) is
unit-preserving (if and only if the counit is a homomorphism of algebras).
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If H is a weak Hopf algebra, the antipode Az is unique, antimultiplicative, anticomultiplicative
and leaves the unit nz and the counit €z invariant:

MAHO MU =pH O (Mg @Ag)ocu,H, dHOoAH =cH H O (AH ®Ag)odH,

AHONH =MNH, EHOANH =€H.
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If H is a weak Hopf algebra, the antipode Az is unique, antimultiplicative, anticomultiplicative
and leaves the unit nz and the counit €z invariant:

MAHO MU =pH O (Mg @Ag)ocu,H, dHOoAH =cH H O (AH ®Ag)odH,

AHONH =MNH, EHOANH =€H.

The morphisms I1%, (target), II% (source), T}, and ﬁﬁ defined by
L =((egopn)®H)o(HRcu p)o (bgong) ®H): H— H,
N =(H®(egopn))o(cuug®@H)o(H® (dgony)): H— H,
My = (H® (eq 0 par)) o (5 o mpr) © H) : H — H,
Ty = ((erz o par) ® H) o (H ® (8g o)) : H — H.

are idempotent.

o |

Weak Yang-Baxter operators and weak braided Hopf algebras —p. 7



Weak Yang- Baxter Qperators

- |

If H is a weak Hopf algebra, the antipode Az is unique, antimultiplicative, anticomultiplicative
and leaves the unit nz and the counit €z invariant:

MAHO MU =pH O (Mg @Ag)ocu,H, dHOoAH =cH H O (AH ®Ag)odH,

AHONH =MNH, EHOANH =€H.

The morphisms I1%, (target), II% (source), T}, and ﬁﬁ defined by
L =((egopn)®H)o(HRcu p)o (bgong) ®H): H— H,
N =(H®(egopn))o(cuug®@H)o(H® (dgony)): H— H,
My = (H® (eq 0 par)) o (5 o mpr) © H) : H — H,
Ty = ((erz o par) ® H) o (H ® (8g o)) : H — H.

are idempotent.
In this talk we denote by H;, the image of H% and by pr, : H — Hy,ip, : H, — H the
morphisms such that iz, o pr, = I and if, o pr, = idp, .
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Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:
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Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:

ov o (Mg @ M) =idyr,  emo(H®wa)=en o (pg @ M).
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Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:

v o(np @ M) =1idy, emo(H®@epm)=vnmo (pg @ M).
Given two left H-modules (M, ¢pr) and (N, N ), f: M — N is a morphism of left
H-modules if oy o (H® f) = fopnm.
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Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:

prv o (ne @ M) =idy,  @mo(H®enm) =m0 (by @ M).
Given two left H-modules (M, ¢pr) and (N, N ), f: M — N is a morphism of left
H-modules if oy o (H® f) = fopnm.

We say that (M, o) is a left H-comodule if M is an objectinC and oy : M — H® M is a
morphism in C satisfying:

o |

Weak Yang-Baxter operators and weak braided Hopf algebras —p. 8



Weak Yang- Baxter Operators

- N

Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:

prv o (ne @ M) =idy,  @mo(H®enm) =m0 (by @ M).
Given two left H-modules (M, ¢pr) and (N, N ), f: M — N is a morphism of left
H-modules if oy o (H® f) = fopnm.

We say that (M, o) is a left H-comodule if M is an objectinC and oy : M — H® M is a
morphism in C satisfying:

(eg @ M)oon =idpy, (H®onm)oom =0 M)oon.

o |

Weak Yang-Baxter operators and weak braided Hopf algebras —p. 8



Weak Yang- Baxter Operators

- N

Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:

v o(np @ M) =1idy, emo(H®@epm)=vnmo (pg @ M).
Given two left H-modules (M, ¢pr) and (N, N ), f: M — N is a morphism of left
H-modules if oy o (H® f) = fopnm.

We say that (M, o) is a left H-comodule if M is an objectinC and oy : M — H® M is a
morphism in C satisfying:
(g @ M)oopy =idpy, (H®om)oom = (65 @ M)oon.

Given two left H-comodules (M, o) and (N, on), f : M — N is a morphism of left
H-comodulesif oy o f = (H® f) o o
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Let H be a weak Hopf algebra. We say that (M, p,r) is a left H-module if M is an object in
Cand oy : H® M — M is a morphism in C satisfying:

v o(np @ M) =1idy, emo(H®@epm)=vnmo (pg @ M).
Given two left H-modules (M, ¢as) and (N, pn), f: M — N is a morphism of left
H-modules if oy o (H® f) = fopnm.

We say that (M, o) is a left H-comodule if M is an objectinC and oy : M — H® M is a
morphism in C satisfying:

(eg @ M)oon =idpy, (H®on)oom = 0g®M)oon.
Given two left H-comodules (M, o) and (N, on), f : M — N is a morphism of left
H-comodulesif oy o f = (H® f) o o
Let (M, par,0n), (N, on, on) be left H-modules-comodules.

preN = (e ©on)o(HOen y@N)o((g@MON): HOM@N — M®N

oMeN = (LHEOMQN)o(HR®cp,g @N)o(om ®on) : MON — HRIM @ N.
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The morphisms

VyvogN =eMmoNoMEOMON): MQN — M QN

/M®N:(€H®M®N)OQM®N3M®N—>M®N

are idempotent.
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The morphisms

VyvogN =eMmoNoMEOMON): MQN — M QN

/M®N:(€H®M®N)OQM®N3M®N—>M®N

are idempotent.
VMeN Vien

M ® N M ® N M ® N

M&® N

Y
Y
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VyvogN =eMmoNoMEOMON): MQN — M QN
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Y
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. ./
PM®N 'tMQN Prvren "MeN

M X N M @ N
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VyvogN =eMmoNoMEOMON): MQN — M QN

/M®N:(€H®M®N)OQM®N3M®N—>M®N

are idempotent.
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/ ] / . - / </
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are idempotent.
VMeN Vien
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. ./
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M X N M @ N

VMN =1MQN ©OPMN, WMxN =DPM®N CIMQN -
/ ] / . - / </
vM@N = voN °ProN WdpMeN = PriogN CtveN-

If H is a Hopf algebrathen Vyyon = idpygn = VM@)N and M x N=MQ®N =MG®oN.
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Definition. (Bshm, Comm. in Algebra, 2000)

Let H be a weak Hopf algebra. We shall denote by gyD the category of left-left Yetter-
Drinfeld modules over H. Thatis, M = (M, ¢, 0pr) 1S @n object in gyp if (M, ppr)isa
left H-module, (M, ops) is a left H-comodule and

(1) (g @ M)o(H@cm,r)o ((emrownm) H)o(HQcp,m)o (6 @M)
= (ug @ prp) o (HRcyg.ug ® M) o (g ® o),
(2) (e @epm)o(HQcr g @M)o ((dgonmg) @ om) = oum-
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Let M, N in gyp. The morphism f : M — N is a morphism of left-left-Yetter-Drinfeld
modules if

foom=pno(HXf), (H®f)oom =onof.
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= (ug @ prp) o (HRcyg.ug ® M) o (g ® o),
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Let M, N in gyp. The morphism f : M — N is a morphism of left-left-Yetter-Drinfeld
modules if

foom=pno(HXf), (H®f)oom =onof.

If the antipode of H is an isomorphism
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Definition. (Bshm, Comm. in Algebra, 2000)

Let H be a weak Hopf algebra. We shall denote by gyD the category of left-left Yetter-
Drinfeld modules over H. Thatis, M = (M, par, onr) is an object in YD if (M, o) is a
left H-module, (M, ops) is a left H-comodule and

(1) (rH®M)o(H®cy,m)o((emopm)®H)o(HQch m)o (g @ M)
= (ug @ prp) o (HRcyg.ug ® M) o (g ® o),
(2) (e @epm)o(HQcr g @M)o ((dgonmg) @ om) = oum-

Let M, N in gyp. The morphism f : M — N is a morphism of left-left-Yetter-Drinfeld
modules if

foom=pno(HXf), (H®f)oom =onof.

If the antipode of H is an isomorphism

gyD IS a non-strict braided monoidal category
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For two left-left Yetter-Drinfeld modules M = (M, s, 001), N = (N, N, on) We have
VyMeoN = VM@N and then the tensor product is defined as object by

Im(Vyegn) =M x N=M®®N =Im(Viyen)
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For two left-left Yetter-Drinfeld modules M = (M, s, 001), N = (N, N, on) We have
VyMeoN = VM@N and then the tensor product is defined as object by
Im(Vyegn) =M x N=M®®N =Im(Viyen)

M x N is a left-left Yetter-Drinfeld module with the following action and coaction:

CMxN =PMaN o PMaN ° (H®iygN),
oMxN = (H @PMaN) © OMeQN © IMxN-

o |

Weak Yang-Baxter operators and weak braided Hopf algebras —p. 11



Weak Yang- Baxter Operators

- N

For two left-left Yetter-Drinfeld modules M = (M, s, 001), N = (N, N, on) We have
VyMeoN = VM@N and then the tensor product is defined as object by

Im(Vygn) =M xN=M®oe®N =In(Viygn)-

M x N is a left-left Yetter-Drinfeld module with the following action and coaction:

CMxN =PMaN o PMaN ° (H®iygN),
oMxN = (H @PMaN) © OMeQN © IMxN-

The unit object is
Hp = Im(I1%).
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For two left-left Yetter-Drinfeld modules M = (M, s, 001), N = (N, N, on) We have
VyMeoN = VM@N and then the tensor product is defined as object by

Im(Vygn) =M xN=M®oe®N =In(Viygn)-

M x N is a left-left Yetter-Drinfeld module with the following action and coaction:

CMxN =PMaN o PMaN ° (H®iygN),
oMxN = (H @PMaN) © OMeQN © IMxN-

The unit object is
Hp = Im(I1%).
The structure of left-left Yetter-Drinfeld module for Hy, is

o, =propgo(H®ir), om, =(H®pr)odgoir.
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For two left-left Yetter-Drinfeld modules M = (M, s, 001), N = (N, N, on) We have
VyMeoN = VM@N and then the tensor product is defined as object by

Im(Vygn) =M xN=M®oe®N =In(Viygn)-

M x N is a left-left Yetter-Drinfeld module with the following action and coaction:

CMxN =PMaN o PMaN ° (H®iygN),
oMxN = (H @PMaN) © OMeQN © IMxN-

The unit object is
Hp = Im(I1%).
The structure of left-left Yetter-Drinfeld module for Hy, is

o, =propgo(H®ir), om, =(H®pr)odgoir.

The unit constrains are:
Iar :goMo(iL®M)OiHL®M cHy, x M — M,

=L . .
rm =¢moc,HO(M®(lgoir))oimer, : M X Hr, — M.
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These morphisms are isomorphisms with inverses:

v =P oMo (ML ®¢em)o (g ony)®@M): M — Hp, x M,
r&l = PM®H] O(QOM (X)pL)O(H@CH,M)O(((SHO77H)®M) M — M x Hy,.
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These morphisms are isomorphisms with inverses:

I =pa om0 (PL®en)o ((6gong)®M): M — Hp, x M,
74‘;41 = PM®H] O(QOM (X)pL)O(H@CH,M)O(((SHO77H)®M) M — M x Hy,.

If M, N, P are objects in the category gyD, the associativity constrains are defined by
ap Np:MxX(NxP)—(MxN)XxP,

aM,N,P =P(MxN)oP © (PMeN @ P)o (M ®iNgP) ©ine(NxP)
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These morphisms are isomorphisms with inverses:

I =pa om0 (PL®en)o ((6gong)®M): M — Hp, x M,
74‘;41 = PM®H] O(QOM (X)pL)O(H@CH,M)O(((SHO77H)®M) M — M x Hy,.

If M, N, P are objects in the category gyD, the associativity constrains are defined by

ap Np:MxX(NxP)—(MxN)XxP,

aM,N,P =P(MxN)oP © (PMeN @ P)o (M ®iNgP) ©ine(NxP)
where the inverse are the morphisms:
ayinp:(MxN)xP—Mx(NxP).

ayin.p =Pue(Nxp) © (M @pNep) o (inegN ® P)oinxNep
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Weak Yang- Baxter Qperators

. N

These morphisms are isomorphisms with inverses:

I =pa om0 (PL®en)o ((6gong)®M): M — Hp, x M,
74‘;41 = PM®H] O(QOM (X)pL)O(H@CH,M)O(((SHO?]H)(X)M) M — M x Hy,.

If M, N, P are objects in the category gyD, the associativity constrains are defined by
ap Np:MxX(NxP)—(MxN)XxP,
AM,N,P = P(MxN)QP © (PMeN ® P)o (M ®ingp) o IM®(N x P)
where the inverse are the morphisms:
ayiyp i (MXN)xP—Mx(NxP).

ayin.p =Pue(Nxp) © (M @pNep) o (inegN ® P)oinxNep

Ifv: M — M’ and ¢ : N — N’ are morphisms in the category, then
WXQb:pM/@N/O(’y@gb)OiM@N:MXN—>M’><N/
is @ morphism in £ YD and

(v x@')o(yXx )= (v 0o7) x (¢ o).
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Finally, the braiding is

TM,N :pN®MOtM,NO’L'M®N:M><N—>N><M,

where

tMuN=(pNOM)o(HQ®cpyn)o (o @N): M®N — N ® M.

o |
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Finally, the braiding is

TM,N :pN®MOtM’NO’iM®N:MXN—>NXM,

where

tM,N:(QON@)M)O(H@CM,N)O(QM@N):M@N—>N®M.
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Weak Yang- Baxter Operators
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Finally, the braiding is

TM,N :pN®MOtM,NO’L'M®N:MXN—>N><M,

where

tMuN=(pNOM)o(HQ®cpyn)o (o @N): M®N — N ® M.

The morphism 75, n is @ natural isomorphism with inverse:

—1 i
TM,N:pMQ@NOtM,NOZN@M:NXM—>M><N

where

thin =cn,m 0 (on ® M) o (en,g @ M) o (N® Mg ® M) o (N ® o).
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Proposition. Let H be a weak Hopf algebra with invertible antipode. If (M, s, oas) is a
left-left Yetter-Drinfeld module over H, the morphism ¢y; 2 : M ® M — M ® M defined by

tvv = (e @ M) o (H®cepnr ) o (o @ M)

Is a weak Yang-Baxter operator where
VyveMm = emeom o (Mg @ M @ M),

th =cam 0 (o @ M) o (e @ M)o (M @Ay @ M) o (M ® o).
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Definition. A weak braided Hopf algebra (wBHA) D is an object in C with an algebra
structure (D, np, up) and a coalgebra structure (D,ep,dp) such that there exists a weak
Yang-Baxter operatortp p : D ® D — D ® D with associated idempotent V pg p satisfying
the following conditions:

(1)
(1-1) upoVpgp = kD,
(1-2) Vpgp o (up ® D) = (pp ® D) o (D ® Vpgp),
(1-3) Vpgpo(D®up)=(D&®up)o(Vpgp @ D).
(2)
(2-1) Vpgp odp =dp,
(2-2) bp®D)oVpep =(D®Vpgp)o (dp ® D),
(2-3) (D®dp)oVpegp =(Vpbegp @ D)o (D®JIp).
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(3) The morphisms np, up, ep and ép commute withtp p, i.e.,

(3-1)
(3-2)
(3-3)
(3-4)
(3-5)
(3-6)
(3-7)
(3-8)

tp,po(Mp ® D) = Vpgp o (D ®np),
tp,po(D®np)=Vpgp o (nmp ®D),
tppo(up ®D)=(D®up)o(tpp®D)o(DRtp.p),
tppo(D®up)=(pp®D)o(D®tp p)o(tp,p ® D),
(ep®D)otpp=(D®ep)oVpgD,
(D®ep)otp.p =(€p®D)oVpgp,
(bp®D)otpp=(D&®tp p)o(tp,p ®D)o(D®p),
(D®dép)otpp=({pp®D)o(DRtp p)o (dp ® D).
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(4) dpoup =(up @up)o(DRtp p® D)o (dp ®Ip).
(5) epoppo(up ® D) =(ep®ep)o(pp @up)o (D®dép ® D)
= (ep ®ep)o(up @ up)o (DR (th podp) ® D).
(6) (6p®D)odponp =(D®up ®D)o(dp ®JIp)o (np @®np)
= (D& (upoth p)®D)o(6p ®dp)o (np ®np)-
(7) There exists a morphism A\p : D — D in C (called the antipode of D) satisfying:
(7-1) idp AAp = ((epoup)®@ D)o (D®tp p)o ((6p onp) ® D),
(7-2) Ap ANidp =(D® (epoup))o(tp,p ® D)o (D ® (6p onp)),
(7-3) Ap ANidp AN Ap = Ap.
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® |fCis symmetric, tb,p =c¢cp.p = t’D p 1.e. the weak Yang-Baxter operator is the twist
of the symmetric category C, then Vpgp = itdpgp and the last definition is the usual
definition of weak Hopf algebra (Bohm, Nill and Szlach anyi).

o |
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If C is symmetric, tp p = cp,p = t)5 p, i.€. the weak Yang-Baxter operator is the
twist of the symmetric category C, then Vpgp = tdpgp and the last definition is the
usual definition of weak Hopf algebra (Bshm, Nill and Szlach anyi).

If C is symmetric, tp,p =cp,p =t p, andnp ® np = ép onp, D is a Hopf algebra.
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® |f Cis symmetric, tp,p = cp,p =ty . i.e. the weak Yang-Baxter operator is the
twist of the symmetric category C, then Vpgp = tdpgp and the last definition is the
usual definition of weak Hopf algebra (Bshm, Nill and Szlach anyi).

® |fCissymmetric, tp p =cp,p =ty pandnp ®np = ép onp, D is a Hopf algebra.

® |fCis braided, tp,p =cp,. D, th p = cBlD, l.e. the weak Yang-Baxter operator is the
braiding of the braided category C, then Vpgp = i1dpgp and we introduce the
definition of weak Hopf algebra in a braided category.
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If C is symmetric, tp p = cp,p = t; p, i.e. the weak Yang-Baxter operator is the
twist of the symmetric category C, then Vpgp = tdpgp and the last definition is the
usual definition of weak Hopf algebra (Bshm, Nill and Szlach anyi).

If C is symmetric, tp,p =cp,p =t p, andnp ® np = ép onp, D is a Hopf algebra.

If Cis braided, tp p =cp.p, tH, p = cBlD, l.e. the weak Yang-Baxter operator is the
braiding of the braided category C, then Vpgp = i1dpgp and we introduce the
definition of weak Hopf algebra in a braided category.

If C is a category of vector spaces (symmetric), tp p is a Yang-Baxter operator,
th p =tp5.pandnp @ np = ép onp, D is a braided Hopf algebra (Takeuchi).
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If C is symmetric, tp p = cp,p = t; p, i.e. the weak Yang-Baxter operator is the
twist of the symmetric category C, then Vpgp = tdpgp and the last definition is the
usual definition of weak Hopf algebra (Bshm, Nill and Szlach anyi).

If C is symmetric, tp,p =cp,p =t p, andnp ® np = ép onp, D is a Hopf algebra.

If Cis braided, tp p =cp.p, tH, p = cBlD, l.e. the weak Yang-Baxter operator is the
braiding of the braided category C, then Vpgp = i1dpgp and we introduce the
definition of weak Hopf algebra in a braided category.

If C is a category of vector spaces (symmetric), tp p is a Yang-Baxter operator,
th p =tp5.pandnp @ np = ép onp, D is a braided Hopf algebra (Takeuchi).

If Cis braided, tp. p =cp.p, tp, p = c;)lD and np ® np = dp onp, D is a Hopf
algebra in a braided category (Majid).
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Definition. Let D, B be weak braided Hopf algebras. We will say that f : D — B
iIs a morphism of weak braided Hopf algebras if f is an algebra coalgebra morphism and

tppo(f@f)=(f®f)otppandty po(f®f)=(f®f)oth p
If f: D — B isamorphism of weak braided Hopf algebras, then f o AD = Agof.
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Definition. Let D, B be weak braided Hopf algebras. We will say that f : D — B
iIs a morphism of weak braided Hopf algebras if f is an algebra coalgebra morphism and

tppo(f@f)=(f®f)otppandty po(f®f)=(f®f)oth p
If f: D — B isamorphism of weak braided Hopf algebras, then f o AD = Agof.

Proposition. Let H be a weak Hopf algebra in C such that Az is an isomorphism. Let
(D,up,mp,ep,Ap,Ap) be a Hopf algebra in gyp with action ¢ p and coaction gp.
Lettp.p = (¢p ® D) o (H ® cp,p) o (op ® D) be the weak Yang-Baxter operator and
Vpeb = ibgb © Ppep the associated idempotent. Then

D= (D,np =upoprong,itp =MpOopPpxD,;ED =EHOiroep,dp =ipgp °Ap,AD)

isaWBHA InC.
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D is not a Hopf algebra neither a weak Hopf algebra.
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D is not a Hopf algebra neither a weak Hopf algebra.

® fepoup =ep Q@ep then Hg = ey ® ng, or equivalently, H is a Hopf algebrain C.
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D is not a Hopf algebra neither a weak Hopf algebra.

® fepoup =ep Q@ep then H% = ey ® ng, or equivalently, H is a Hopf algebrain C.

® By an analogous calculus, if np ® np = ép o np, we obtain that H is a Hopf algebra.
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Ifepoup =ep ®ep then Hg = ey ® ng, or equivalently, H is a Hopf algebrain C.

D is not a Hopf algebra neither a weak Hopf algebra.

By an analogous calculus, if np ® np = dp o np, we obtain that H is a Hopf algebra.

If A\p ANidp = ep ® np we have up ocep = np o ep and then
idH, =PLONHOEH O 1L,

Therefore, HII; = ey ® nyg and we obtain that H also is a Hopf algebra.
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Weak brai ded Hopf al gebras

D is not a Hopf algebra neither a weak Hopf algebra.

Ifepoup =ep ®ep then Hg = ey ® ng, or equivalently, H is a Hopf algebrain C.
By an analogous calculus, if np ® np = dp o np, we obtain that H is a Hopf algebra.

If A\p ANidp = ep ® np we have up ocep = np o ep and then
idH, =PLONHOEH O 1L,

Therefore, HII; = ey ® nyg and we obtain that H also is a Hopf algebra.

Finally, D is not a weak Hopf algebra since the condition
dpopup =(pp @up)o(D®tp. p ®D)o (dp ®Ip)

does notimply ép o up = (up @ up) o (D @ cp,p ® D) o (6p ® dp) where cp p is
the symmetric braiding of C.
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Proposition. Ina WBHA D the following assertions are equivalent.

(1) The equality
ep oup o (up ® D) = ((ep o up) ® (ep © up)) © (D & (¢ p ©8p) ® D)

holds.

(2) There exists a morphism Hg : D — D such that
upo(D®ME) = ((epoup)®D)o(D®tp p)o(6p ® D).
(3) There exists a morphism IT2 : D — D such that

pp o (IF ® D) = (D& (ep opup)) o (tp,p ® D) o (D ® bp).
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Proposition. Ina WBHA D the following assertions are equivalent.

(1) The equality

epoupo(up ® D)= ((epopup)®(epopp))o(DR®Jp ®D)

holds.

(2) There exists a morphism ﬁé : D — D such that
=L
ppo(D®Up)=(D® (epopp))o(dp ®D).
(3) There exists a morphism ﬁg : D — D such that

up o (IIp ® D) = ((ep o up) ® D) o (D ® 6p).
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Proposition. Ina WBHA D the following assertions are equivalent.

(1) The equality

(0p ® D)odponp = (D@ (upotp p)®D)o((6ponp)® (6p onp))

holds.

(2) There exists a morphism Hg : D — D such that
(D@Tp)oép = (up ® D)o (D®tp p)o((6ponp) @ D).
(3) There exists a morphism IT£ : D — D such that

(I ® D)odp = (D®up)o (tp,p ® D)o (D& (§p 01p)).
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Proposition. Ina WBHA D the following assertions are equivalent.

(1) The equality

(0p®D)odponp =(D®up ®D)o((6ponp)®(dp onp))

holds.

(2) There exists a morphism ﬁé : D — D such that

=L

(IIp; ®D)odp =(DR®up)o ((dp onp) ® D).
(3) There exists a morphism ﬁg : D — D such that

(D®Tpy)0dp = (up ® D)o (D& (5p onp)).
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Proposition. If D is a WBHA the morphisms IT% (target), ITE (source), ), and ﬁg
defined by

% = ((epoup)® D)o (D®tp,p)o((6ponp) ® D) : D — D,
I =(H®(epopp))o(tp,p ®D)o(D® (6ponp)): D — D,
T = (D® (ep o up)) o (6p 01p) ® D) : D — D,
I, = ((ep o up) ® D) o (D@ (6p 0 1p)) : D — D.

are idempotent and leave the unit and the counit invariant.
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Proposition. If D is a WBHA the morphisms IT% (target), ITE (source), Iy, and T

defined by
% = ((ep o up) ® D) o (D® tp,p) o (6p onp) ® D) : D — D,
I =(H®(epopp))o(tp,p ®D)o(D® (6ponp)): D — D,
T = (D® (ep o up)) o (6p 01p) ® D) : D — D,
I, = ((ep o up) ® D) o (D@ (6p 0 1p)) : D — D.

are idempotent and leave the unit and the counit invariant.

Proposition. InaWBHA D the following identities hold.

—L =R =R =L =L =R
(1) OE ol =115, MEolly =10, IHpolll =IIp, Hpollh =IIE.

(2) B oMy =Ty, NEoMp =08 Tpolk =1E, T}oNIE =T

(3) ML oxp =ML olIE =ApolIf, TR oAp =MIE o I1L = A\p o [1L.

(4) L =T o Ap = Apollp, HE =TI} 0Ap =Apollp.

~
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Proposition.

(1)
(2)
(3)
(4)
(5)

(6)
(7)

tp,p o (IIp ® D) =
tp,po (D®IE) =
tp,p o (IE ® D) =
tp,p o (D®IE) =
Vpepo(IlE®D) = (1L ® D)oV pgp,
Vpepo(D®IE) = (D®IL)oVpgp,

I
tp,po(D® HD) = (IIp, ®D)otp p,

(D®IIE)otp, p,
(1% ® D) otp,p,
(D®ME)otp,p,
(¥ ®@ D)otp p,

—R —R
tp,po(llp ® D)= (D®Ilp)otp p,

In a WBHA D the following identities hold.

o (Ilk ® D) =
o(D(X)HlL))

s p (D @Ik )oth p

th.p (I3 ® D) ot
th p o (Il ® D) =
t’DDo(D®H ) = (IR ® D)ot p
Vpepo[E®D) = (11
VD®Do(D®H ) =

(D @Ik )ot’

D®D)OVD®D7
(D®HR)OVD®D.
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Proposition. Let D be a WBHA. If the antipode of D is an isomorphism the following

identities hold.
—L —L
(1) tppo(Illp®D)=(D®Ilp)otp p,
—R —R
(2) tp,po(D®I1lp)=IIp ®D)otp p,

—L —L
B) Vpgpo(Ilp®D) = 1Ip®D)oVpgp,
VD@DO(D@)ﬁ%)) = (D®ﬁé)OVD®D,

t’DDo(ﬁé(X)D) (D®HD)ot’

VD@DO(HD ®D) = (T ®D)OVD®D7
—R —R
Vpepo(DRIlp) = (D®IIp)oVpgp.
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Proposition. Let D be a WBHA. If the antipode of D is an isomorphism the following
identities hold.
(1) tp,po () ®D)=(D@Ip)otpp, tppo(lp®D)=(DeIp)ot)
=R =R
(2) tp,po(D®Up)=IIp®D)otp.p, tph po(D © 1) = (I ® D) oth
—L —L
(B) Vpgpo(llp®D) = (IIp®D)oVpgp, VD@DO(HD ® D) = (HD ®D)OVD®D,
—L —L =R =R
Vpgpo(D®lp) = (D®Up)oVpegp, Vpepo(D®Ilp)=(D&Ilp)oVpgp.
Proposition. Let D be a WBHA. The following identities hold.
(1) tD,DO()\D@D):(D@)\D)OtD,D, t,D,DO(D(X))‘D) ()\D(X)D)Ot’
(2) tp,D © (D® )\D) = (>\D ®D) otp D, t,D,D o (>\D ®D) = (D®>\D) Ot’D D
(B) Vpepo(Ap®D)=(Ap®D)oVpgp, Vpgpo(D®Ap)=(D®Ap)oVpgp-

o

|
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Proposition. Let D be a WBHA. The antipode is unique, antimultiplicative, anticomulti-
plicative and leaves the unit and the counit invariant,i.e.:

Apoup =ppotp po(Ap ®Ap),

dpoAp =(Ap ®Ap)otp podp,

)\D SNMp = MNpD, E:DO)\D:E:D.
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Hopf nodul es for WBHA

Definition. (Caenepeel and De Groot , Cont. Math., 2000 )

A right-right weak entwining structure on C consists of a triple (A, C, ), where A is an alge-
bra, C' a coalgebra,and ¢ : C ® A — A ® C' a morphism satisfying the relations

(1) Yo (C®pua)=(pa®C)o(AQY)o (P ®A),
(€2) (A®dc)otp = ®@C)o(CRY)o (dc®A),
(€3) Yo (C®na)=(err®C)odc,
(e4) (AQ®ec)oyp =pao(err ® A),

where egr : C — A is the morphism defined by err = (A ® ec) o o (C ® n4). The
morphism v is known as entwining morphism.

|
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Hopf nodul es for WBHA

Definition. (Caenepeel and De Groot , Cont. Math., 2000 )
A right-right weak entwining structure on C consists of a triple (A, C, ), where A is an alge-
bra, C' a coalgebra,and ¢ : C ® A — A ® C' a morphism satisfying the relations

(1) Yo (C®pua)=(pa®C)o(AQY)o (P ®A),
(€2) (A®dc)otp = ®@C)o(CRY)o (dc®A),
(€3) Yo (C®na)=(err®C)odc,
(e4) (AQ®ec)oyp =pao(err ® A),

where egr : C — A is the morphism defined by err = (A ® ec) o o (C ® n4). The
morphism v is known as entwining morphism.

Proposition. Let D be a WBHA. If + is the morphism defined by

Yp=(DQpup)o(tp,p ® D)o (DRJp),

(D, D, ) is a right-right weak entwining structure.
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Definition. Let (A, C, ) be a right-right weak entwining structure in C. We denote by
/\/lfj;(w) the category whose objects are triples (M, ¢ar, par), Where (M, ¢pr) is a right A-
module , (M, pys) is a right C-comodule and

oM © P = (dnm ®C)o (M@)o (py ® A).

The morphisms in M9 () are morphisms of A-modules and C-comodules.

If D is a WBHA, a right D-Hopf module is an object in Mg(w) for the right-right weak en-
twining structure (D, D, 1)). The category of right D-Hopf modules is denoted by /\/lg.

For example, D itself is an right-right D-Hopf module via ¢p = up and pp = ép.
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Proposition. Let D be a weak braided Hopf algebra with target morphism II%. Put
Dy = Im(HIb) and let p;, : D — Dy, and i, : D, — D be the morphisms such that
14 =iy opr and pg, oir, = idp, . Then,

: 0D
(39 >
D; —— D . D®D
(D X HI[)) 0 5D
is an equalizer diagram and
“D
> pL
D ® D D » Dy,

Y

up o (D@ IIp)

is a coequalizer diagram. As a consequence, (Dr,,mp, = pronp,#p = propupo(ir ®ir))
is an algebrain C and (Dyr,,ep, =epoir,ép = (pr. ®pr)odp oir)is acoalgebrainC.
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(1) If (M, én,pm) € MB then ¢ = ¢ps 0o (M @ Ap) o par : M — M is an idempotent

morphism with factorization ¢/ = i o pM.

(2) If we denote by M p the image of q%, then

Proposition. Let D be a WBHA. We have the following:

M PM
'D
Mp ——>» M

MK D
Cv = (P ®D)o (M ® (dp onp))

YY

Is an equalizer diagram.

(38) The pair (Mp, ¢nrp, ) is aright Dr-module, where ¢pr,, : Mp ® Dr, — Mp is the
factorization of ¢ s o (i¥ ® i1,) through the equalizer i%.

|
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-

Theorem. Let D be a WBHA. Let M be a right D-Hopf module and Mp the right Dy, -
module defined previously. Let Qy;, : Mp ® D — Mp ® D be the morphism defined by
Qi = (P ® D) o pas o dar o (i @ D). We have the following assertions.

(1) The morphism €, is idempotent.

(2) If Mp x D isthe image of Q2y/, and pyr, @D, tv, @D are the morphisms such that

PMp®D OiMD(X)D — idMDxDa 75MD®D CPMp®D = QMD>

we obtain that Mp x D is a right D-Hopf module via
dMpxD =PMpoD © (Mp ® up) o (ivpep @ D),

pPMpxD = (PMpeD ® D)o (Mp ®4dp) oipmpeD,

and there exists an isomorphism a : M — Mp x D of right D-Hopf modules.

|
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