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Objects with closed diagonals

The story begins from the well known characterization of Hausdorff
(or separated) topological spaces via the closure of the diagonal:

X is Hausdorff if and only if the diagonal

∆X : X → X × X is a closed subspace of the product

In turn, closed suspaces are completely determined by the class of
Hausdorff spaces, since, given M ⊂ X ,

M is closed if and only if M is the equalizer of two maps

f , g : X → A, with A Hausdorff

The Hausdorff case is just the paradigma of the more general notion
of A-closure, introduced by Salbany in 1976, where A is any class of
topological spaces, and the definition of A-closed is given by the
above with A instead of Hausdorff spaces.



Using A-closure for A an epireflective subcategory of topological
spaces, Giuli and Hušek in 1986 characterized the objects of the
quotient-reflective hull of A as those with an A-closed diagonal.

In 1988 Giuli, M., Tholen proved that this diagonal theorem holds
even in an arbitrary category C with finite limits, provided A reflective
with a certain weak exactness property. The strongly epireflective hull
of A is given by

S(A) = {X ∈ C | ∃m : X → A, A ∈ A, m monomorphism}

and

X ∈ S(A) if and only ∆X : X → X × X is A-regular
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Closure operators

In 1995, Clementino-Tholen proved a diagonal theorem in a much
more general case, using the notion of categorical closure operator, in
the contest of a category C finitely complete which comes equipped
with a proper (E , M)-factorization system for morphisms. It is then
possible to speak of (E-) images and (M-) subobjects, respectively:

A
f

//

e !!B
BB

BB
BB X

f (A)

m

=={{{{{{{

This factorization systems has to be thought as a common frame for
the two opposite cases given by the factorization (Epimorphisms,
strong monomorphisms) used in the topological case and the (Strong
epimorphisms, monomorphisms) used in the algebraic case (axiom
of regularity).



Definition (Dikranjan-Giuli (1987), Dikranjan-Tholen (1995))
A closure operator ( ) in C associates, with any subobject

M
m // X , another subobject M

m // X , the closure of M in X .

This correspondence ( ) : Sub(X ) → Sub(X ) satisfies:

1. M ⊆ M
2. M ⊆ N implies M ⊆ N
3. f−1(M) ⊆ f−1(M), for all f : Y → X in C.

m : M → X is closed in X if m = m, and it is dense if m = idX .
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The closure operator decomposes every m : M → X in M as:

M
m/m // M

m // X

The closure operator ( ) is
I idempotent if m is closed
I weakly hereditary if m/m is dense

for every m ∈M.
Only under these two conditions the decomposition as above gives
raise to a factorization system for morphisms as:

A
f

//

(m/m)·e   B
BB

BB
BB X

f (A)

m

>>|||||||



Theorem (Clementino-Tholen 1995)
Let C be M-complete. Given a full subcategory A of C,

A = {X |∆X = ∆X} for some closure operator ( ) in C if and only if A
is closed under monosources in X.

In particular, if A is reflective,

A = {X |∆X = ∆X} for some closure operator ( ) in C if and only if A
strong epireflective.
( ) can be chosen as the Salbany regular closure operator associated
with A, (opportunely defined in this more general context), but for any
closure operator the corresponding subcategory of separated objects
for a closure is strong epireflective, if C is complete and
E-cowellpowered.

In the same paper, they used again closure operators to characterize
via another diagonal theorem, the so called right-constant
subcategories (or disconnectedness), the non-pointed analog of the
torsion free part of a torsion theory of abelian categories.
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Torsion theories

Let C be a category with a chosen notion of constant morphism
(obvious in the pointed case, much less obvious, otherwise). Given A
and B subcategories of C, let us define

T (B) = {A |∀B ∈ B, any f : A → B is constant}

F(A) = {B |∀A ∈ A, any f : A → B is constant}

This defines a Galois correspondence for full subcategories of C ,
with the fixed elements being called torsion (left constant) and
torsion free (right constant) subcategories.

Most of cases, torsion free subcategories are strongly epireflective
and Clementino-Tholen characterized them among all the others, as
the categories of separated objects for a particular closure operator.



Theorem (Clementino-Tholen 1995)

Let C be a (E , M)-category complete and E-cowellpowered, and let C
have enough quasipoints. Then

I F is a torsion free subcategory if and only if F = {X |∆X = ∆X}
for some coregular closure operator ( ).

(and dually

I T is a torsion subcategory if and only if T = {X |∆X = X × X} for
some regular closure operator ( ).)

They did not described characterizing properties of coregular closure
operators, but they observed that any coregular is weakly hereditary.
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The abelian case

Also in the abelian case, there is a classical result relating closure
operators to hereditary torsion free subcategories, where the torsion
part is closed under monomorphisms.

Theorem
If C be an abelian category, there is a bijection between the
hereditary torsion free subcategories of C and the universal closure
operators for monomorphisms in C, where a closure operator ( ) is
universal if it is idempotent and

f−1(N) = f−1(N),

for any N � Y and any f : X → Y .

Note that universal closure operator are weakly hereditary.

This bijection can be realized as follow:
I Given in C an universal closure operator ( ), F = {X |0X = 0X} is

an hereditary torsion free subcategory



The abelian case

Also in the abelian case, there is a classical result relating closure
operators to hereditary torsion free subcategories, where the torsion
part is closed under monomorphisms.

Theorem
If C be an abelian category, there is a bijection between the
hereditary torsion free subcategories of C and the universal closure
operators for monomorphisms in C, where a closure operator ( ) is
universal if it is idempotent and

f−1(N) = f−1(N),

for any N � Y and any f : X → Y .

Note that universal closure operator are weakly hereditary.

This bijection can be realized as follow:
I Given in C an universal closure operator ( ), F = {X |0X = 0X} is

an hereditary torsion free subcategory



I Given an hereditary torsion free subcategory F and any
monomorphism m : M → X , on can define m : M → X as the
inverse image of the kernel K [ηX/M ] along the quotient q of X by
M, i.e. M = q−1(K [ηX/M ]):

M

��

// K [ηX/S]

i

��
M //

iM

@@

X q
// X/M

ηX/M

��
F (X/M)

where ηZ : Z → F (Z ) is the unit of the epireflection of C in F.



Torsion theory in Homological categories

In 2006 Bourn-Gran revisited these topics in the non-additive context
of homological categories, where

Definition (Borceux-Bourn, 2004)
A finitely complete category C is homological if

I C is regular
I C is pointed
I C is protomodular, i.e. any change-of-base functor

f ∗ : PtY (C) → PtX (C) reflects isomorphisms.

They showed that, also in the homological context, the same
construction gives a bijection between hereditary torsion free
subcategories and universal closure operators, but just for normal
monomorphisms, i.e. kernels.
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They were able also to show what happens for ordinary torsion free
subcategories, namely:

Theorem
Let C be a homological category. There is a bijection between the
torsion free subcategories of C and the idempotent closure operators
for kernels in C such that

1. they are weakly hereditary
2.

f−1(N) = f−1(N),

for any n : N → Y and any regular epimorphism f : X → Y .

Splitting universality in three less restrictive conditions, allows us to
understand also what happens just for regular epireflective
subcategories.
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Theorem (Bourn-Gran 2006)
If C be a homological category, there is a bijection between the
regular epireflective subcategories of C and the idempotent closure
operators for kernels in C such that

f−1(N) = f−1(N),

for any n : N → Y and any regular epimorphism f : X → Y .



A regular epireflective B subcategory of C is closed under subobjects
and products and when it is closed also under quotiens, it is called
Birkhoff subcategory.

Theorem (Bourn-Gran 2006)
If C is a semi-abelian category, i.e. an exact homological category
with binary coproducts, there is a bijection between the Birkhoff
subcategories of C and the idempotent closure operators for kernels
in C such that

1. f−1(N) = f−1(N),

2. f (M) = f (M)

for any n : N → Y, any m : M → X and any regular epimorphism
f : X → Y .
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In trying to face the same problem in the non-pointed case, we
realized that protomodularity is needed only to represent quotients by
kernels and that all the procedure works perfectly well in the regular
context, just by using the natural substitutes of kernels, i.e. kernel
pairs (= effective equivalence relations).

Definition (Bourceux-Gran-M. 2007)
Let C be a finitely complete category. An effective closure operator ( )
on effective equivalence relations consists in giving for every effective
equivalence relation s : S � X × X another effective equivalence
relation s : S � X × X such that

1. S ⊆ S
2. S ⊆ T implies S ⊆ T

3. S = S
4. f−1(S) ⊆ f−1(S) , if f is any map

5. f−1(S) = f−1(S), if f is a regular epimorphism.



Theorem (Bourceux-Gran-M. 2007)
Let C be a regular category. There is a bijection between the regular
epireflective subcategories of C and the effective closure operators on
effective equivalence relation.

This bijection is realized by defining, given an effective closure
operator ( )

A = {X |∆X = ∆X},

and, given a regular epireflective subcategory A, S = q−1(R[ηX/S]):

S

����

// R[ηX/S]

p2

��
p1

��
S

//
//

iS

@@

X q
// X/S

ηX/S

��
F (X/S)



Theorem (Bourceux-Gran-M. 2007)
Let C be a regular category. There is a bijection between the regular
epireflective subcategories of C and the effective closure operators on
effective equivalence relation.

This bijection is realized by defining, given an effective closure
operator ( )

A = {X |∆X = ∆X},

and, given a regular epireflective subcategory A, S = q−1(R[ηX/S]):

S

����

// R[ηX/S]

p2

��
p1

��
S

//
//

iS

@@

X q
// X/S

ηX/S

��
F (X/S)



As a corollary, we then obtain

Theorem
Let C be a regular category.
A is a regular epireflective subcategory of C if and only if A is the
subcategory of separated objects for an effective closure operator.

Example
As expected, the effective closure arising from the reflection of the
regular category T(Top) of Mal’tsev topological algebras into its
subcategory T(Haus) of Hausdoff topological algebras coincides with
the usual topological closure.
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If we want to extend to the non-pointed context also the axiom on the
closure operators characterizing Birkhoff case, we have to face the
fact that in a regular category the regular image f (S) of an effective
equivalence relation S is not in general an effective equivalence
relation. But this condition on equivalence relation is exactly what
characterizes Goursat regular categories:

Definition (Carboni-Kelly-Pedicchio 1993)
An exact category C is a Goursat category when one of the two
following equivalent condition holds:

1. the regular image f (S) of an equivalence relation S is an
equivalence relation.

2. any pair of equivalence relations R, S on the same object X in C
satisfies the condition

R ◦ S ◦ R = S ◦ R ◦ S,



Then in an exact Goursat category makes sense the following:

Definition
A Birkhoff closure operator on equivalence relations ( ) is an effective
closure operator satisfying the following additional property: for any
regular epi f : X → Y

f (S) = f (S).

Theorem
Let C be an exact Goursat category. There is a bijection between the
Birkhoff subcategories of C and the Birkhoff closure operators.
In this case, we can also describe how to obtain the closure of an
equivalence relation, namely

S = ∆X ◦ S ◦∆X = S ◦∆X ◦ S



Example
If T is a Mal’tsev theory, T(Profin) is a Birkhoff subcategory of
T(HComp) and the corresponding closure of an equivalence relation
S on X is given by

S = S ◦ RX ,

where RX is the congruence on X that identifies two points when they
are in the same connected component.
If C is an exact Goursat category and ( ) a Birkhoff closure operator,
we have also that

1. given a regular epimorphism f : X → Y and two equivalence
relations R and S on X , one has that

f (R ∨ S) = f (R) ∨ f (S);

2. for any equivalence relations R and S on X , one has

R ∨ S = R ∨ S.



Thanks to these properties, we characterized the exact Goursat
categories having the property that the lattice of equivalence relations
is distributive:

Theorem
For an exact Goursat category C the following conditions are
equivalent:

1. the lattice of equivalence relations on any object X in C is
distributive;

2. any Birkhoff closure operator satisfies the axiom

f (R ∧ S) = f (R) ∧ f (S)

for any regular epimorphism f : X → Y.
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Back to the future!

Now we are studying closure operator properties of torsion free
subcategories in the non-pointed regular case, where the problem of
defining constant morphisms is determinant to develop the theory.
But in this (and not only in this!), I had a good teacher: this was one
of the topics of my (old!) Ph.D. thesis, so

THANKS WALTER, THANKS AGAIN!
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