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Abstract.
Exponentiable objects in the category Top of topological spaces are known to be

topological spaces whose set of continuous maps into the Sierpinski space 2 forms a
continuous lattice, that is, those spaces X for which Top(X, 2) is an algebra relatively
to the filter monad F on Set (see [Isb] for more details).

Since topological spaces are precisely monoids in the Kleisli category SetF (see
[Gäh]), that is, Top ∼= Mon(SetF), the mentioned exponentiability result leads to
a characterization of exponentiable objects in categories Mon(SetT) of monoids for
suitable “powerset-enriched” monads T. The cartesian structure of Top gets replaced
by a monoidal structure induced by the monad (following [Koc]), and exponentiable
“Kleisli monoids” can be identified as those monoids X for which certain hom-sets
Mon(SetT)(X, V ) are T-algebras.
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