Generalising Connected Components

João J. Xarez

Abstract.

The present work is a generalisation of a previous one by the same author, allowing now to join geometrical examples to the known algebraic and topological examples, in a unified setting. Consider any full reflection $H \vdash I : \mathcal{C} \to \mathcal{M}$, with unit $\eta : 1_{\mathcal{C}} \to HI$, such that \mathcal{C} has pullbacks. Suppose there is a functor $U : \mathcal{C} \to \mathcal{S}$, and a prefactorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{S} , such that U preserves pullbacks, reflects isomorphisms, and $U(\eta_{\mathcal{C}})$ is in the largest subclass of \mathcal{E} which is closed under pullbacks in $\mathcal{S}, C \in \mathcal{C}$. If a certain lemma also holds for a set \mathcal{T} of objects in the full subcategory \mathcal{M} , then it is true that: the reflection $H \vdash I$ is semi-left-exact if and only if its connected components are "connected"; it has stable units if and only if certain pullbacks of connected components are "connected". The meaning of "connected" is the usual in Galois categorical theory.

References

- Carboni, A., Janelidze, G., Kelly, G. M., Paré, R., On localization and stabilization for factorization systems, App. Cat. Struct. 5 (1997) 1–58.
- Cassidy, C., Hébert, M., Kelly, G. M., Reflective subcategories, localizations and factorization systems, J. Austral. Math. Soc. 38A (1985) 287–329.
- Janelidze, G., Laan, V., Márki, L., Limit preservation properties of the greatest semilattice image functor, Internat. J. Algebra Comput. 5 (2008) 853–867.
- Tamura, T., Attainability of systems of identities on semigroups, J. Algebra 3 (1966) 261–276.