Species on hyperplane arrangements

Marcelo Aguiar Swapneel Mahajan

International Category Theory Conference University of British Columbia July 17-23, 2011

1. Species and Hyperspecies

Hopf monoids in species

Sp := category of vector species (Joyal).

An object P is a functor

 $\mathsf{P}: \textbf{set}^{\times} \to \textbf{Vec}$

where $set^{\times} :=$ finite sets and bijections Vec := vector spaces.

Monoidal structure

$$(\mathsf{P} \cdot \mathsf{Q})[I] := \bigoplus_{I=S \sqcup T} \mathsf{P}[S] \otimes \mathsf{Q}[T].$$

(One summand for each ordered partition of *I*.)

Symmetry

$$x \otimes y \mapsto y \otimes x.$$

We may consider Hopf monoids in Sp.

Homogeneous components and ordered partitions

Species P: one vector space P[I] for each finite set I.

Let H be a Hopf monoid. The (co)product of H has components

$$\mathsf{H}[S] \otimes \mathsf{H}[T] \xrightarrow{\mu_{S,T}}_{\overleftarrow{\Delta}_{S,T}} \mathsf{H}[I]$$

where $I = S \sqcup T$.

Note: in general $\mu_{S,T} \neq \mu_{T,S}$ and $\Delta_{S,T} \neq \Delta_{T,S}$.

Associativity axiom for Hopf monoids

For each
$$I = R \sqcup S \sqcup T$$
,

$$\begin{array}{c|c} \mathsf{H}[R] \otimes \mathsf{H}[S] \otimes \mathsf{H}[T] \xrightarrow{\operatorname{id} \otimes \mu_{S,T}} \mathsf{H}[R] \otimes \mathsf{H}[S \sqcup T] \\ & & & \downarrow^{\mu_{R,S} \otimes \operatorname{id}} \\ & & & \downarrow^{\mu_{R,S} \sqcup T} \\ \mathsf{H}[R \sqcup S] \otimes \mathsf{H}[T] \xrightarrow{\mu_{R \sqcup S,T}} \mathsf{H}[I] \end{array}$$
 (and dual for Δ)

Consequence:

 $H[R] \otimes H[S] \otimes H[T] \xrightarrow{\mu_{R,S,T}} H[I] \text{ and } H[I] \xrightarrow{\Delta_{R,S,T}} H[R] \otimes H[S] \otimes H[T]$ are well-defined.

Compatibility axiom for Hopf monoids

Fix ordered partitions $S \sqcup T = I = S' \sqcup T'$, and let A, B, C, D be:

Then:

$$\begin{array}{c} \mathsf{H}[S] \otimes \mathsf{H}[T] \xrightarrow{\mu_{S,T}} \mathsf{H}[I] \xrightarrow{\Delta_{S',T'}} \mathsf{H}[S'] \otimes \mathsf{H}[T'] \\ \downarrow & \uparrow \\ \downarrow \\ \mathsf{A}_{A,B} \otimes \Delta_{C,D} \\ \downarrow & \uparrow \\ \mathsf{H}[A] \otimes \mathsf{H}[B] \otimes \mathsf{H}[C] \otimes \mathsf{H}[D] \xrightarrow{\mathrm{id} \otimes \mathsf{switch} \otimes \mathrm{id}} \mathsf{H}[A] \otimes \mathsf{H}[C] \otimes \mathsf{H}[B] \otimes \mathsf{H}[D] \end{array}$$

Reference

Monoidal functors, species, and Hopf algebras. (With Swapneel Mahajan.) CRM Monograph Series 29, AMS, 2010.

Hyperplane arrangements and hyperspecies

Let V be a real finite dimensional vector space. A hyperplane arrangement in V is a finite set of hyperplanes in V.

HSp := category of hyperspecies.

An object P is a functor

 $\mathsf{P}: \textit{arr}^{\times} \to \textit{Vec}$

where arr^{\times} := hyperplane arrangements and isomorphisms.

- No monoidal structure on HSp! (Extending that of Sp.)
- ► However, we will define a notion of Hopf hypermonoid.

Distributive laws

There is a monad T on **HSp**, a comonad T^{\vee} on **HSp**, and a mixed distributive law

$$\lambda: T \circ T^{\vee} \to T^{\vee} \circ T,$$

such that

Hopf hypermonoids = (T, T^{\vee}, λ) -bialgebras.

Mixed distributive laws: Beck (1969). Also Burroni, Van Osdol, Wolff....

Different from the bimonads of Moerdijk and Bruguières-Virelizier.

Faces

Let \mathbb{A} be a hyperplane arrangement in V.

Fact. The hyperplanes in \mathbb{A} split *V* into a collection $\Sigma(\mathbb{A})$ of convex sets called faces.

Example.

 $\mathbb{A}=\{H_1,H_2,H_3\}\Rightarrow \Sigma(\mathbb{A})=\{O,R_1,\ldots,R_6,C_1,\ldots,C_6\}.$

Tits projections

Let \mathbb{A} be a hyperplane arrangement. Fact. The set $\Sigma(\mathbb{A})$ is a monoid. Example. $R_4R_6 = C_4$.

Note. $FG \supseteq F$ for any faces $F, G \in \Sigma(\mathbb{A})$.

- Bland (1974), Tits (1974), Bidigare (1997).
- Brown-Diaconis (1998), Billera-Brown-Diaconis (1999).

Subarrangements

Let \mathbb{A} be a hyperplane arrangement and $F \in \Sigma(\mathbb{A})$ a face. The subarrangement determined by F is

$$\mathbb{A}_F := \{ H \in \mathbb{A} \mid H \supseteq F \}.$$

Fact. There is a canonical bijection

 $\Sigma(\mathbb{A}_F) \cong \{G \in \Sigma(\mathbb{A}) \mid G \supseteq F\}.$

Let $G_F \in \Sigma(\mathbb{A}_F)$ denote the face of \mathbb{A}_F corresponding to $G \supseteq F$.

Fact. For any faces $G \supseteq F$ of \mathbb{A} , $(\mathbb{A}_F)_{G_F} = \mathbb{A}_G$.

Subarrangements and the product of faces

The product of faces is not commutative.

However,

$$\mathbb{A}_{FG} = \mathbb{A}_{GF}$$

for any faces $F, G \in \Sigma(\mathbb{A})$.

Hopf hypermonoids

A Hopf hypermonoid (H, μ , Δ) consists of:

- A functor $H : arr^{\times} \rightarrow Vec$ (a hyperspecies).
- ► For each arrangement $\mathbb A$ and each face $F \in \Sigma(\mathbb A)$, maps

$$\mathsf{H}[\mathbb{A}_F] \xrightarrow[]{\mu_F}{\swarrow} \mathsf{H}[\mathbb{A}]$$

subject to the following axioms.

Associativity. For each \mathbb{A} and $F \subseteq G$ in $\Sigma(\mathbb{A})$,

$$\begin{array}{c} \mathsf{H}[\mathbb{A}_{F}] \xrightarrow{\mu_{F}} \mathsf{H}[\mathbb{A}] \\ \mu_{G_{F}} & & & & \\ \mathsf{H}[(\mathbb{A}_{F})_{G_{F}}] \xrightarrow{\mu_{F}} \mathsf{H}[\mathbb{A}_{G}] \end{array}$$
 (and dual for Δ)

Compatibility. For each \mathbb{A} and any faces F and G in $\Sigma(\mathbb{A})$,

$$\begin{array}{c} \mathsf{H}[\mathbb{A}_{F}] \xrightarrow{\mu_{F}} \mathsf{H}[\mathbb{A}] \xrightarrow{\Delta_{G}} \mathsf{H}[\mathbb{A}_{G}] \\ \xrightarrow{\Delta_{(FG)_{F}}} & & \uparrow^{\mu_{(GF)_{F}}} \\ \mathsf{H}[(\mathbb{A}_{F})_{(FG)_{F}}] \longrightarrow \mathsf{H}[\mathbb{A}_{FG}] \xrightarrow{} \mathsf{H}[\mathbb{A}_{FG}] \longrightarrow \mathsf{H}[\mathbb{A}_{GF}] \longrightarrow \mathsf{H}[(\mathbb{A}_{G})_{(GF)_{F}}] \end{array}$$

Perspective

finite set *I* ordered partition of *I* Joyal species Hopf monoid finite hyperplane arrangement \mathbb{A} face of \mathbb{A} hyperspecies Hopf hypermonoid

Connection through the braid arrangement.

Examples: L and E

For each arrangement $\mathbb{A},$ let

$$L[\mathbb{A}] = \Bbbk \{ C \mid C \text{ is a chamber of } \mathbb{A} \}.$$

For each face F of \mathbb{A} , define

$$\begin{aligned} u_F : \mathsf{L}[\mathbb{A}_F] \to \mathsf{L}[\mathbb{A}] & \Delta_F : \mathsf{L}[\mathbb{A}] \to \mathsf{L}[\mathbb{A}_F] \\ C_F \mapsto C & C \mapsto (FC)_F. \end{aligned}$$

Then L is a Hopf hypermonoid.

For each arrangement $\mathbb{A},$ let

$$\mathsf{E}[\mathbb{A}] = \Bbbk\{*_{\mathbb{A}}\}.$$

For each face F of \mathbb{A} , define

$$\mu_{F} : \mathsf{E}[\mathbb{A}_{F}] \to \mathsf{E}[\mathbb{A}] \qquad \qquad \Delta_{F} : \mathsf{E}[\mathbb{A}] \to \mathsf{E}[\mathbb{A}_{F}]$$
$$*_{\mathbb{A}_{F}} \mapsto *_{\mathbb{A}} \qquad \qquad *_{\mathbb{A}} \mapsto *_{\mathbb{A}_{F}}.$$

Then E is a Hopf hypermonoid.

The braid arrangement

Let I be a finite set.

$$\mathbb{R}^{I} := \{ \text{ functions } x : I \to \mathbb{R} \}; \quad \mathbb{R}_{0}^{I} := \{ x \in \mathbb{R}^{I} \mid \sum_{i \in I} x_{i} = 0 \}; \\ H_{ij} := \{ x \in \mathbb{R}_{0}^{I} \mid x_{i} = x_{j} \}; \quad \mathbb{B}^{I} := \{ H_{ij} \mid i, j \in I, i \neq j \}.$$

Example. $I = \{a, b, c\}.$

Faces of the braid arrangement

Fact. Faces are in bijection with ordered partitions of *I*.

Fact. If the face *F* corresponds to the partition (S_1, \ldots, S_k) , then

$$(\mathbb{B}^{I})_{F} \cong \mathbb{B}^{S_{1}} \times \cdots \times \mathbb{B}^{S_{k}}$$

Tits projections for the braid arrangement

If
$$F = (S_1, \ldots, S_h)$$
 and $G = (T_1, \ldots, T_k)$, then
 $FG = (S_1 \cap T_1, \ldots, S_1 \cap T_k, \ldots, S_h \cap T_1, \ldots, S_h \cap T_k)^{\widehat{}}.$

Example. Let F = (S, T) and G = (S', T'). Then

FG = (A, B, C, D) and GF = (A, C, B, D),

where

From Hopf hypermonoids to Hopf monoids

There is a functor

$$\mathsf{set}^{\times} \to \mathsf{arr}^{\times}, \quad I \mapsto \mathbb{B}^{I}$$

and hence a functor

 $HSp \rightarrow Sp$.

Proposition. Let $P : arr^{\times} \rightarrow Vec$ be a hyperspecies. Suppose that

$$\mathsf{P}[\mathbb{A}_1\times\mathbb{A}_2]\cong\mathsf{P}[\mathbb{A}_1]\otimes\mathsf{P}[\mathbb{A}_2]$$

for any arrangements \mathbb{A}_1 and \mathbb{A}_2 . If P is a Hopf hypermonoid, then $P : set^{\times} \rightarrow Vec$ is a Hopf monoid in species.

The theory of Hopf hypermonoids

- Antipode and basic properties.
- Commutative monoids.
- Lie monoids.
- Primitive elements and coradical filtration.
- Poincaré-Birkhoff-Witt theorem.
- Cartier-Milnor-Moore theorem.

1. Species and Hyperspecies

2. Operads and Hyperoperads

Operads

Let $\Pi(I)$ denote the set of (unordered) partitions of a finite set I.

Given species P and Q, define a new species $\mathsf{P} \circ \mathsf{Q}$ by

$$(\mathsf{P} \circ \mathsf{Q})[I] := \bigoplus_{X \in \Pi(I)} \mathsf{P}[X] \otimes \bigotimes_{S \in X} \mathsf{Q}[S].$$

Then (Day, Joyal):

- (\mathbf{Sp}, \circ) is a monoidal category.
- ► A monoid in (**Sp**, ∘) is a (symmetric) operad.

Flats

Let \mathbb{A} be a hyperplane arrangement.

A flat of \mathbb{A} is an intersection of any number of hyperplanes in \mathbb{A} .

Fact. The flats of \mathbb{B}^{I} are in bijection with partitions of *I*.

Hyperoperads

Let $\Pi(\mathbb{A})$ denote the set of flats of a hyperplane arrangement \mathbb{A} . Given $X \in \Pi(\mathbb{A})$, define

$$\mathbb{A}_X := \{H \mid H \supseteq X\} \quad \text{and} \quad \mathbb{A}^X := \{H \cap X \mid H \notin \mathbb{A}_X\}.$$

Given hyperspecies P and Q, define a new hyperspecies $P \circ Q$ by

$$(\mathsf{P} \circ \mathsf{Q})[\mathbb{A}] := \bigoplus_{X \in \mathsf{\Pi}(\mathbb{A})} \mathsf{P}[\mathbb{A}^X] \otimes \mathsf{Q}[\mathbb{A}_X].$$

Then (HSp, \circ) is a monoidal category.

Definition. A monoid in (HSp, \circ) is a hyperoperad.

The associative and commutative hyperoperads

The hyperspecies L is a hyperoperad:

$$\mathsf{L}[\mathbb{A}^X] \otimes \mathsf{L}[\mathbb{A}_X] \to \mathsf{L}[\mathbb{A}], \quad F \otimes C \mapsto FC.$$

Proposition. An L-module in (HSp, \circ) is the same as a hypermonoid.

The hyperspecies E is a hyperoperad:

$$\mathsf{E}[\mathbb{A}^X] \otimes \mathsf{E}[\mathbb{A}_X] \to \mathsf{E}[\mathbb{A}], \quad \ast_{\mathbb{A}^X} \otimes \ast_{\mathbb{A}_X} \mapsto \ast_{\mathbb{A}}.$$

Proposition. An E-module in (HSp, \circ) is the same as a commutative hypermonoid.

Lunes

Let *F* be a face and *C* be a chamber of \mathbb{A} with $F \subseteq C$. The corresponding lune is

 $\Psi(F,C) := \{D \mid D \text{ is a chamber and } FD = C\}.$

The Lie hyperoperad

Let Lie be the subhyperspecies of L defined by

$$\mathsf{Lie}[\mathbb{A}] := \Big\{ \sum_{D} \mathsf{a}_{D} D \in \mathsf{L}[\mathbb{A}] \mid \sum_{D \in \Psi(F,C)} \mathsf{a}_{D} = \mathsf{0} \text{ for all } F \subseteq C, \ F \neq O \Big\}.$$

Proposition. Lie is a subhyperoperad of L.

Definition. A Lie hypermonoid is a Lie-module in (HSp, \circ) .

Thank you.