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1. Species and Hyperspecies



Hopf monoids in species

Sp := category of vector species (Joyal).

» An object P is a functor
P :set” — Vec

where set™:= finite sets and bijections
Vec := vector spaces.

» Monoidal structure
(P-QI = €P PISI®Q[T].
I=SuT

(One summand for each ordered partition of /.)

» Symmetry
XQyr—yQX.

We may consider Hopf monoids in Sp.



Homogeneous components and ordered partitions

Species P: one vector space P[/] for each finite set /.

Let H be a Hopf monoid. The (co)product of H has components
Hs, T
H[S] @ H[T] ——= H[/]
As T

where | =S U T.

Note: in general ps 7 # s and As 7 # At s.



Associativity axiom for Hopf monoids

Foreach I = RUSUT,

id®ps, T

H[R] @ H[S] @ H[T] ——=H[R] @ H[S U T]
me,:;@idl lHR,SuT (and dual for A)
HIRU S]® H[T] et H[/]

Consequence:
HIRIH[S]OH[T] “227 H1] and  H[/] 2257 HIR|@H[S]@H[T]

are well-defined.



Compatibility axiom for Hopf monoids
Fix ordered partitions SLIT =/ =S T’ and let A, B, C, D be:

Then:

ASIJ—/

HUs, T

H[S] ® H[T]

H[/]

H[S'] ® H[T']

ApB®Ac D HA cOUB,D

H[A] ® H[B] ® H[C] ® H[D] H[A] ® H[C] ® H[B] @ H[D]

_—
id®switch®id



Reference

Monoidal functors, species, and Hopf algebras.
(With Swapneel Mahajan.)
CRM Monograph Series 29, AMS, 2010.



Hyperplane arrangements and hyperspecies

Let V be a real finite dimensional vector space.
A hyperplane arrangement in V is a finite set of hyperplanes in V.

HSp := category of hyperspecies.

» An object P is a functor
P:arr* — Vec

where arr*:= hyperplane arrangements
and isomorphisms.

» No monoidal structure on HSp! (Extending that of Sp.)

» However, we will define a notion of Hopf hypermonoid.



Distributive laws

There is a monad T on HSp, a comonad T on HSp,
and a mixed distributive law

ANiToTV - TVoT,
such that

Hopf hypermonoids = (T, TV, \)-bialgebras.

Mixed distributive laws: Beck (1969).
Also Burroni, Van Osdol, Wolff,. . ..

Different from the bimonads of Moerdijk and Bruguiéres-Virelizier.



Faces

Let A be a hyperplane arrangement in V.
Fact. The hyperplanes in A split V into a collection £(A) of
convex sets called faces.

Example.
A= {Hl, Hz7 H3} = Z(A) = {O, Rl, ey R6, Cl, ey C@}

N\ & /

R> Rs3
Cl C3
Ry Ry
Gs Cy
Re Rs



Tits projections
Let A be a hyperplane arrangement.

Fact. The set £(A) is a monoid.
Example. RyRs = C4.

Note. FG D F for any faces F, G € £(A).

e Bland (1974), Tits (1974), Bidigare (1997).
e Brown-Diaconis (1998), Billera-Brown-Diaconis (1999).



Subarrangements

Let A be a hyperplane arrangement and F € ¥(A) a face.
The subarrangement determined by F is
Ap:={HeA|HDF}
Fact. There is a canonical bijection
Y(Ap)={G e X(A)| GDF}.
Let Gr € L(AF) denote the face of Ag corresponding to G D F.

c / CF/

r F
D F DF

Fact. For any faces G O F of A, (Ar)g, = Ag.



Subarrangements and the product of faces

The product of faces is not commutative.

However,
Arc = Agr

for any faces F, G € £(A).



Hopf hypermonoids
A Hopf hypermonoid (H, i, A) consists of:

» A functor H : arr™ — Vec (a hyperspecies).

» For each arrangement A and each face F € ¥(A), maps
1F

H[AF] —— H[A]
Af
subject to the following axioms.

Associativity. For each A and F C G in X(A),
H[AF] —— H[A]

HGFT Tuc (and dual for A)
HI(AF) 6] H[A¢]
Compatibility. For each A and any faces F and G in (A),
HIAF] = HIA] ———=——— HlAq]
A(FG),_—\L TH(GF)F

HI(AF)(Fe)r] = H[AF¢] === H[Agr] = H[(Ac)(6F)]



Perspective

finite set / finite hyperplane arrangement A
ordered partition of / face of A
Joyal species hyperspecies
Hopf monoid Hopf hypermonoid

Connection through the braid arrangement.



Examples: L and E

For each arrangement A, let
L[A] =k{C | C is a chamber of A}.
For each face F of A, define
wr : L[AF] — L[A] Afr : L[A] — L[AF]
Cr— C C+— (FO)E.
Then L is a Hopf hypermonoid.

For each arrangement A, let

E[A] = k{*x}.
For each face F of A, define
MF - E[AF] — E[A] AF . E[A] — E[AF]
*Ap P kA L Nl

Then E is a Hopf hypermonoid.



The braid arrangement

Let / be a finite set.

R’ := { functions x : | — R}; RJ):={xeR| ZX; =0},
iel
Hi={xeRy|xi=x}; B :={H;lijel, i#j}.
Example. | = {a, b, c}.
Hac HbC




Faces of the braid arrangement

Fact. Faces are in bijection with ordered partitions of /.

\ blcla /

b|ca bcla
bla|c c|bla
ba|c c|ba
alb|c clalb
a|bc calb

/b \

Fact. If the face F corresponds to the partition (51, ..., Sk), then

(B')r 2 B> x - x B>*.



Tits projections for the braid arrangement
If F= (51,...,5;,) and G = (Tl,...,Tk), then

FG:(SlﬂTl,...,slﬁTk,...,Shﬂ T1,...,5,N Tk)A.

Example. Let F = (S5, T) and G = (5, T'). Then

FG = (A,B,C,D) and GF =(A,C,B,D),

where




From Hopf hypermonoids to Hopf monoids

There is a functor
set* — arr, [ — B

and hence a functor
HSp — Sp.

Proposition. Let P : arr* — Vec be a hyperspecies. Suppose that
P[Al X Az] = P[Al] & P[Az]

for any arrangements A; and A,. If P is a Hopf hypermonoid, then
P : set* — Vec is a Hopf monoid in species.



The theory of Hopf hypermonoids

Antipode and basic properties.
Commutative monoids.

Lie monoids.

Primitive elements and coradical filtration.
Poincaré-Birkhoff-Witt theorem.

vV v v v Vv Y

Cartier-Milnor-Moore theorem.



1. Species and Hyperspecies
2. Operads and Hyperoperads



Operads

Let IM(/) denote the set of (unordered) partitions of a finite set /.

Given species P and Q, define a new species P o Q by

PoQI:= P PIXI@ X QIS].
Xen(1) Sex
Then (Day, Joyal):
» (Sp, o) is a monoidal category.

» A monoid in (Sp, o) is a (symmetric) operad.



Flats

Let A be a hyperplane arrangement.
A flat of A is an intersection of any number of hyperplanes in A.

Fact. The flats of B/ are in bijection with partitions of /.

\ b|c|a /

b|ca bcla
bla|c c|bla
ba|c c|ba
alb|c clalb
a|bc calb

/b \



Hyperoperads

Let M(A) denote the set of flats of a hyperplane arrangement A.
Given X € I(A), define

Ax ={H|HDX} and AX:={HNX|H¢Ax}.
Given hyperspecies P and Q, define a new hyperspecies PoQ by

(PoQ)[A] := EB P[AX] ® Q[Ax].

Xen(A)

Then (HSp, o) is a monoidal category.

Definition. A monoid in (HSp, o) is a hyperoperad.



The associative and commutative hyperoperads

The hyperspecies L is a hyperoperad:
LAY @ L[Ax] — LIAl, F®C — FC.

Proposition. An L-module in (HSp, o) is the same as a
hypermonoid.

The hyperspecies E is a hyperoperad:
E[AX] Q@ E[Ax] — E[A],  #ux ® %4, > *4.

Proposition. An E-module in (HSp, o) is the same as a
commutative hypermonoid.



Lunes

Let F be a face and C be a chamber of A with F C C.
The corresponding lune is

V(F,C):={D | D is a chamber and FD = C}.

adcl




The Lie hyperoperad

Let Lie be the subhyperspecies of L defined by

Lie[A] := {ZaDD €LA] | ) ap=0forall FCC, F# o},
D DeV(F,C)

Proposition. Lie is a subhyperoperad of L.

Definition. A Lie hypermonoid is a Lie-module in (HSp, o).



Thank you.



