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1. Species and Hyperspecies



Hopf monoids in species

Sp := category of vector species (Joyal).

◮ An object P is a functor

P : set× → Vec

where set×:= finite sets and bijections
Vec := vector spaces.

◮ Monoidal structure

(P ·Q)[I ] :=
⊕

I=S⊔T

P[S ] ⊗ Q[T ].

(One summand for each ordered partition of I .)

◮ Symmetry
x ⊗ y 7→ y ⊗ x .

We may consider Hopf monoids in Sp.



Homogeneous components and ordered partitions

Species P: one vector space P[I ] for each finite set I .

Let H be a Hopf monoid. The (co)product of H has components

H[S ] ⊗ H[T ]
µS,T

H[I ]
∆S,T

where I = S ⊔ T .

Note: in general µS,T 6= µT ,S and ∆S,T 6= ∆T ,S .



Associativity axiom for Hopf monoids

For each I = R ⊔ S ⊔ T ,

H[R ] ⊗ H[S ] ⊗ H[T ]
id⊗µS,T

µR,S⊗id

H[R ] ⊗ H[S ⊔ T ]

µR,S⊔T

H[R ⊔ S ] ⊗ H[T ]
µR⊔S,T

H[I ]

(and dual for ∆)

Consequence:

H[R ]⊗H[S ]⊗H[T ]
µR,S,T
−−−−→ H[I ] and H[I ]

∆R,S,T
−−−−→ H[R ]⊗H[S ]⊗H[T ]

are well-defined.



Compatibility axiom for Hopf monoids

Fix ordered partitions S ⊔ T = I = S ′ ⊔ T ′, and let A,B ,C ,D be:
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Then:

H[S ] ⊗ H[T ]
µS,T

∆A,B⊗∆C ,D

H[I ]
∆S′,T ′

H[S ′] ⊗ H[T ′]

H[A] ⊗ H[B ] ⊗ H[C ] ⊗ H[D]
id⊗switch⊗id

H[A] ⊗ H[C ] ⊗ H[B ] ⊗ H[D]

µA,C⊗µB,D



Reference

Monoidal functors, species, and Hopf algebras.
(With Swapneel Mahajan.)

CRM Monograph Series 29, AMS, 2010.



Hyperplane arrangements and hyperspecies

Let V be a real finite dimensional vector space.
A hyperplane arrangement in V is a finite set of hyperplanes in V .

HSp := category of hyperspecies.

◮ An object P is a functor

P : arr× → Vec

where arr×:= hyperplane arrangements
and isomorphisms.

◮ No monoidal structure on HSp! (Extending that of Sp.)

◮ However, we will define a notion of Hopf hypermonoid.



Distributive laws

There is a monad T on HSp, a comonad T∨ on HSp,
and a mixed distributive law

λ : T ◦ T∨ → T∨ ◦ T ,

such that

Hopf hypermonoids = (T ,T∨, λ)-bialgebras.

Mixed distributive laws: Beck (1969).
Also Burroni, Van Osdol, Wolff,. . . .

Different from the bimonads of Moerdijk and Bruguières-Virelizier.



Faces

Let A be a hyperplane arrangement in V .
Fact. The hyperplanes in A split V into a collection Σ(A) of
convex sets called faces.
Example.

A = {H1,H2,H3} ⇒ Σ(A) = {O,R1, . . . ,R6,C1, . . . ,C6}.

R1 R4

R6

R3R2

R5

C3

C4

C2

C1

C5

C6

•



Tits projections
Let A be a hyperplane arrangement.
Fact. The set Σ(A) is a monoid.
Example. R4R6 = C4.

R4

R6

C4

•

•

•

Note. FG ⊇ F for any faces F ,G ∈ Σ(A).

• Bland (1974), Tits (1974), Bidigare (1997).
• Brown-Diaconis (1998), Billera-Brown-Diaconis (1999).



Subarrangements

Let A be a hyperplane arrangement and F ∈ Σ(A) a face.
The subarrangement determined by F is

AF := {H ∈ A | H ⊇ F}.

Fact. There is a canonical bijection

Σ(AF ) ∼= {G ∈ Σ(A) | G ⊇ F}.

Let GF ∈ Σ(AF ) denote the face of AF corresponding to G ⊇ F .

F
D

C

•

FF DF

CF

Fact. For any faces G ⊇ F of A, (AF )GF
= AG .



Subarrangements and the product of faces

The product of faces is not commutative.

F G•

However,
AFG = AGF

for any faces F ,G ∈ Σ(A).



Hopf hypermonoids
A Hopf hypermonoid (H, µ,∆) consists of:

◮ A functor H : arr× → Vec (a hyperspecies).
◮ For each arrangement A and each face F ∈ Σ(A), maps

H[AF ]
µF

H[A]
∆F

subject to the following axioms.

Associativity. For each A and F ⊆ G in Σ(A),

H[AF ]
µF

H[A]

H[(AF )GF
]

µGF

H[AG ]

µG (and dual for ∆)

Compatibility. For each A and any faces F and G in Σ(A),

H[AF ]
µF

∆(FG)F

H[A]
∆G

H[AG ]

H[(AF )(FG)F ] H[AFG ] H[AGF ] H[(AG )(GF )F ]

µ(GF )F



Perspective

finite set I finite hyperplane arrangement A

ordered partition of I face of A

Joyal species hyperspecies

Hopf monoid Hopf hypermonoid

Connection through the braid arrangement.



Examples: L and E
For each arrangement A, let

L[A] = k{C | C is a chamber of A}.

For each face F of A, define

µF : L[AF ] → L[A] ∆F : L[A] → L[AF ]

CF 7→ C C 7→ (FC )F .

Then L is a Hopf hypermonoid.

For each arrangement A, let

E[A] = k{∗A}.

For each face F of A, define

µF : E[AF ] → E[A] ∆F : E[A] → E[AF ]

∗AF
7→ ∗A ∗A 7→ ∗AF

.

Then E is a Hopf hypermonoid.



The braid arrangement

Let I be a finite set.

R
I := { functions x : I → R}; R

I
0 := {x ∈ R

I |
∑

i∈I

xi = 0};

Hij := {x ∈ R
I
0 | xi = xj}; B

I := {Hij | i , j ∈ I , i 6= j}.

Example. I = {a, b, c}.

Hab

HbcHac

•



Faces of the braid arrangement

Fact. Faces are in bijection with ordered partitions of I .

ba|c c |ba

a|bc

bc |ab|ca

ca|b

c |b|a

c |a|b

b|c |a

b|a|c

a|c |b

a|b|c

•

Fact. If the face F corresponds to the partition (S1, . . . ,Sk), then

(BI )F ∼= B
S1 × · · · × B

Sk .



Tits projections for the braid arrangement

If F = (S1, . . . ,Sh) and G = (T1, . . . ,Tk), then

FG = (S1 ∩ T1, . . . ,S1 ∩ Tk , . . . ,Sh ∩ T1, . . . ,Sh ∩ Tk) .̂

Example. Let F = (S ,T ) and G = (S ′,T ′). Then

FG = (A,B ,C ,D) and GF = (A,C ,B ,D),

where
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From Hopf hypermonoids to Hopf monoids

There is a functor

set× → arr×, I 7→ B
I

and hence a functor
HSp → Sp .

Proposition. Let P : arr× → Vec be a hyperspecies. Suppose that

P[A1 × A2] ∼= P[A1] ⊗ P[A2]

for any arrangements A1 and A2. If P is a Hopf hypermonoid, then
P : set× → Vec is a Hopf monoid in species.



The theory of Hopf hypermonoids

◮ Antipode and basic properties.

◮ Commutative monoids.

◮ Lie monoids.

◮ Primitive elements and coradical filtration.

◮ Poincaré-Birkhoff-Witt theorem.

◮ Cartier-Milnor-Moore theorem.



1. Species and Hyperspecies

2. Operads and Hyperoperads



Operads

Let Π(I ) denote the set of (unordered) partitions of a finite set I .

Given species P and Q, define a new species P ◦Q by

(P ◦Q)[I ] :=
⊕

X∈Π(I )

P[X ] ⊗
⊗

S∈X

Q[S ].

Then (Day, Joyal):

◮ (Sp, ◦) is a monoidal category.

◮ A monoid in (Sp, ◦) is a (symmetric) operad.



Flats

Let A be a hyperplane arrangement.
A flat of A is an intersection of any number of hyperplanes in A.

Fact. The flats of B
I are in bijection with partitions of I .

ba|c c |ba

a|bc

bc |ab|ca

ca|b

c |b|a

c |a|b

b|c |a

b|a|c

a|c |b

a|b|c

•



Hyperoperads

Let Π(A) denote the set of flats of a hyperplane arrangement A.
Given X ∈ Π(A), define

AX := {H | H ⊇ X} and A
X := {H ∩ X | H /∈ AX}.

Given hyperspecies P and Q, define a new hyperspecies P ◦Q by

(P ◦Q)[A] :=
⊕

X∈Π(A)

P[AX ] ⊗ Q[AX ].

Then (HSp, ◦) is a monoidal category.

Definition. A monoid in (HSp, ◦) is a hyperoperad.



The associative and commutative hyperoperads

The hyperspecies L is a hyperoperad:

L[AX ] ⊗ L[AX ] → L[A], F ⊗ C 7→ FC .

Proposition. An L-module in (HSp, ◦) is the same as a
hypermonoid.

The hyperspecies E is a hyperoperad:

E[AX ] ⊗ E[AX ] → E[A], ∗AX ⊗ ∗AX
7→ ∗A.

Proposition. An E-module in (HSp, ◦) is the same as a
commutative hypermonoid.



Lunes

Let F be a face and C be a chamber of A with F ⊆ C .
The corresponding lune is

Ψ(F ,C ) := {D | D is a chamber and FD = C}.

abcd

cabdacbd

cbda

bcda

cadbadcb

adbc

abdc

badc

bdac bdca

bacd bcad

cbad

acdb

cdba

cdab

adbc

abdc

badc

adcb

adc|b

b|adc



The Lie hyperoperad

Let Lie be the subhyperspecies of L defined by

Lie[A] :=
{ ∑

D

aDD ∈ L[A] |
∑

D∈Ψ(F ,C)

aD = 0 for all F ⊆ C , F 6= O
}
.

Proposition. Lie is a subhyperoperad of L.

Definition. A Lie hypermonoid is a Lie-module in (HSp, ◦).



Thank you.


