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Algebraic Quantum Field Theory (Haag-Kastler)

Algebraic quantum field theory (AQFT) is a mathematically rigorous
framework for modelling the interaction of quantum mechanics and
relativity.

It is also explicitly category-theoretic; essentially an AQFT is a
well-behaved functor.

We consider Minkowski space as an ordered set with the causal
ordering and then take the set of relatively compact opens. These
opens form a directed poset under inclusion.
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Algebraic Quantum Field Theory II

An AQFT is then a functorial assignment of a C ∗-algebra to each
interval. So we have a map:

U 7→ A(U)

The algebras A(U) are called local algebras. They are the algebras of
observables local to that region. Then, as in the C ∗-algebraic
interpretation of QM, a local state is then a positive linear functional.

Since this set of opens in Minkowski space is directed, one can form
the directed colimit of the local algebras. It will just be the closure of
the union. The result is denoted Â, and called the quasilocal algebra.
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Algebraic Quantum Field Theory III

Then the crucial condition says there can be no influence between
spacelike separated regions:

(Einstein Causality) If U and V are spacelike separated regions, i.e.
there can be no causal influence in either direction, then the local
algebras A(U) and A(V ) pairwise commute in the quasilocal algebra.

One typically adds further conditions, such as invariance with respect
to the action of the Poincaré group, but we’ll ignore this.
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to the action of the Poincaré group, but we’ll ignore this.

Richard Blute Von Neumann Categories



Abstract Quantum Mechanics (Abramsky, Coecke)

Quantum mechanics is reformulated away from the notion of
C ∗-algebras and expressed in abstract, categorical terms.

The categorical structure in question is that of a compact closed
dagger category. So we have a symmetric monoidal category, with
dual objects, i.e. an A∗ with arrows

I → A⊗ A∗ and A∗ ⊗ A→ I

inducing closed structure (Kelly).

We furthermore assume an involutive contravariant endofunctor
† : Cop → C which is the identity on objects, and interacts correctly
with the monoidal structure.

The primary examples are Rel, the category of sets and relations, and
Hilbfd , the category of finite-dimensional Hilbert spaces.
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Abstract Quantum Mechanics II

The authors show for example that compact closed dagger categories
provide sufficient structure to model protocols such as quantum
teleportation or entanglement swapping. The correctness of the
interpretation basically just amounts to the coherence equations of
the theory.

But, this encoding does not take into account that protocols take
place in space-time, and relativistic effects may be significant.

A straightforward modification of the definition of AQFT would be to
assign to each interval in spacetime a compact closed dagger
category. Much of the above structure is easily lifted to this level.

The problem is with expressing Einstein Causality.
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Premonoidal QFT

We propose modifying the usual notion of compact closed dagger
category by replacing the monoidal structure with premonoidal
structure (Power-Robinson).

The lack of bifunctoriality in the definition of premonoidal category
will allow us to express a categorical version of the above causality
condition.

Most C ∗-algebras that arise in AQFT are von Neumann algebras. The
notion of commutant in premonoidal categories allows us to define a
categorification of von Neumann algebra.
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Premonoidal Categories (Power, Robinson)

Definition

A binoidal category consists of a category C and functors HB : C −→ C
and KB : C −→ C for all objects B in C and satisfying HB(C ) = KC (B) for
all pairs of objects.

In a binoidal category the object HB(C ) = KC (B) is denoted B ⊗ C
and for any arrow f : X −→ Y we write B ⊗ f for HB(f ) and f ⊗ B
for KB(f ).

Thus in this new notation HB = B ⊗− and KB = −⊗ B. Notice
that −⊗− is only a functor when one of the arguments is fixed, i.e.
it is not a bifunctor.
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Premonoidal Categories II-Definition

Definition

A premonoidal category consists of a binoidal category C together with a
distinguished object I ∈ |C| and natural isomorphisms α, λ and ρ
α : (A⊗ B)⊗ C −→ A⊗ (B ⊗ C ), λ : I ⊗ A −→ A, and ρ : A⊗ I −→ A.
These structural isomorphisms must satisfy coherence conditions.
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Premonoidal Categories III-The Centre

Definition

If C is a binoidal category and f : A −→ C is an arrow, then f is
central if for all arrows g : B −→ D,

(f ⊗ idB); (idC ⊗ g) = (idA ⊗ g); (f ⊗ idD)

and symmetrically for the two composites B ⊗ A→ D ⊗ C . The
results will be denoted f ⊗ g and g ⊗ f .

More generally, for any f , g as above, we write f ⊥ g if the above
equations hold.

The centre of C is the category Z(C) with objects the same as those
of C and its arrows are the central maps in C.

Proposition

The centre Z(C) of a premonoidal category C is a monoidal category.

Richard Blute Von Neumann Categories



Premonoidal Categories III-The Centre

Definition

If C is a binoidal category and f : A −→ C is an arrow, then f is
central if for all arrows g : B −→ D,

(f ⊗ idB); (idC ⊗ g) = (idA ⊗ g); (f ⊗ idD)

and symmetrically for the two composites B ⊗ A→ D ⊗ C . The
results will be denoted f ⊗ g and g ⊗ f .

More generally, for any f , g as above, we write f ⊥ g if the above
equations hold.

The centre of C is the category Z(C) with objects the same as those
of C and its arrows are the central maps in C.

Proposition

The centre Z(C) of a premonoidal category C is a monoidal category.

Richard Blute Von Neumann Categories



Premonoidal Categories IV-Examples

Example

If M is a monoid, then M is a one object premonoidal category.

Example

Let C be a symmetric monoidal category and let S be a fixed object.
Define CS as follows: the objects are those of C and

CS(X ,Y ) = C(X ⊗ S ,Y ⊗ S)

There is a canonical functor IS : C → CS , which is the identity on objects
and sends f to f ⊗ S . All maps in the image of this functor are central.
Sometimes the converse holds as well.

Theorem

If H is a Hilbert space with dimH ≥ 1 then Z(HilbH) ' Hilb.
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Premonoidal Quantum Field Theory

Lemma

The directed colimit of a class of symmetric premonoidal dagger categories
is a symmetric premonoidal dagger category.

Definition

A premonoidal quantum field theory A is an assignment of a symmetric
premonoidal dagger category to each double cone in Minkoswki space. We
require the relativistic assumption that if U and V are spacelike separated
systems then

Ar(A(U)) ⊥ Ar(A(V ))

In applications, we will typically assume that the premonoidal categories
are all premonoidal dagger closed subcategories of some HilbH especially
von Neumann categories, to be defined next.
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Open Systems

Quote (Rudolf Haag, Local Quantum Physics)

From the previous chapters of this book it is evidently not obvious how to
achieve a division of the world into parts to which one can assign
individuality. . . Instead we used a division according to regions in
space-time. This leads in general to open systems. . .

In the monoidal approach to modeling quantum processes in spacetime, a
process would be modelled by a map f : A→ B.

An advantage of our premonoidal approach is that we should be able to
explicitly model the interaction of the environment on processes. In our
setting, a process will be modelled by an arrow f : A⊗ H→ B ⊗ H.

The Hilbert space H can be chosen so that it represents states of the
entire system, and then the map f will contain information about the
interaction of the process with the environment.
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Von Neumann Algebras

Definition

Let B(H) be the C ∗-algebra of bounded linear operators on a Hilbert space
H. A subset A ⊆ B(H) closed under the ∗-operation is a von Neumann
algebra if A = A′′, where B ′ is the commutant of B, i.e.

B ′ = {f ∈ B(H)|fb = bf for all f ∈ B}

There are several equivalent definitions, some of which do not depend on a
choice of H.

Example

B(H) itself is a von Neumann algebra.

Example

A finite-dimensional ∗-subalgebra of B(H) closed under 1 is a von
Neumann algebra.
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Von Neumann Categories

Our intuition is that to categorify the notion of von Neumann algebra, we
will replace the C ∗-algebra B(H) with the premonoidal category HilbH.

Note that HilbH has a compatible dagger operation, in addition to being
premonoidal.

Definition

Let A be a collection of arrows in the category HilbH. Then we define the
commutant of A, denoted A′, to be the collection of all arrows

{g ∈ Ar(C)|f ⊥ g , for all f ∈ A}

Lemma

For any dagger-closed class of arrows A, we have A′ is a premonoidal
dagger subcategory of HilbH.
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Von Neumann Categories II

Definition

A symmetric monoidal dagger-subcategory C of HilbH is a von Neumann
category if C = C′′.

The primary example of a von Neumann category we have at the
moment is HilbH. It remains to find a rich class of examples
analogous to the operator-theoretic setting.

It is ongoing work to examine the equivalent definitions of von
Neumann algebra, and determine if they lift to this categorical setting.
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Factors

Definition

A factor is a von Neumann algebra A with trivial center, i.e.
Z(A) = {c1A|c ∈ C}.

Extending our analogy between von Neumann algebras and von Neumann
categories, the analogue of the base field C is the category Hilb.

Definition

A factor is a von Neumann category C with trivial center, i.e.
Z(C) ∼= Hilb.

Ultimately, we have the goal of extending the notion of type of a factor to
the categorified setting.

One way to construct von Neumann algebras of various types is the
crossed product.
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Crossed Products

Let M ⊆ B(H) be a von Neumann algebra and suppose α : G → Aut(M)
be an action of a discrete group G . Define the crossed product G ×α M as
follows. First let

H̃ = {ζ : G → H| Σg∈G ||ζ(g)|| <∞}

Then define maps

π : M → B(H̃) π(a)(ζ)(g) = (g−1 · a)(ζ(g))

λ : G → B(H̃) λ(g)(ζ)(u) = ζ(g−1u)

Then G ×α M = [π(M) ∪ λ(G )]′′ ⊆ B(H̃). This satisfies some canonical
commutation relations.
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Crossed Products of Von Neumann Categories

Let G be a discrete group, viewed as a premonoidal category. Let
C ⊆ HilbH be a von Neumann category. We define a G -action on C to be a
premonoidal functor

α : G × C → C

So, given an arrow f : K → K ′ in C and g ∈ G , we have an action
g · f : K → K ′.
We have a premonoidal functor λ : G → HilbH̃ given by the same formula.

(G is a 1-object category, and HomHilbH̃
(I , I ) = B(H̃).)

The functor π : C → HilbH̃ should be defined similarly. Then, as above,

G ×α C = [π(C) ∪ λ(G )]′′
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Conclusion-Stuff To Do

Work out details of the cross product construction, and use it to
generate new examples.

Find a premonoidal version of the Doplicher-Roberts Theorem:

Theorem

Every compact closed C∗-category (essentially a dagger category with
compatible normed structure) is equivalent to the category of
finite-dimensional unitary representations of a unique compact group.

What is the appropriate analogue of compact group in the
DR-theorem to obtain premonoidal categories?
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