CT2011 - Vancouver

Commutative Algebras in Fibonacci Categories

Tom Booker, Alexei Davydov

Department of Mathematics, Faculty of Science Macquarie University

18 July 2011

Let C be a braided monoidal category with braiding denoted $c_{X, Y}: X \otimes Y \rightarrow Y \otimes X$.

If C comes equipped with a natural family of isomorphisms $\theta=\left\{\theta_{X}: X \rightarrow X \mid X \in O b C\right\}$ (satisfying suitable axioms) then C is said to be balanced and the members of the family θ are referred to as ribbon twists.

If every object X of C has a dual object X^{*} together with unit and counit morphisms then C is said to be rigid (or autonomous).

Recall that a tortile (rigid and balanced) monoidal category is said to be fusion when it is semi-simple k-linear together with a k-linear tensor product, finite dimensional hom-spaces and a finite number of simple objects (up to isomorphism).

A fusion category is called modular when it satisfies a certain non-degeneracy (modularity) condition.

An algebra A in a braided monoidal category C is said to be commutative when $\mu c_{A, A}=\mu$.

A commutative algebra A in a balanced category C is called ribbon if $\theta_{A}=1_{A}$.

A set R is called a fusion rule if its integer span $\mathbb{Z} R$ has the structure of an associative unital ring such that the unit element of $\mathbb{Z} R$ belongs to R and

$$
r \cdot s \in \mathbb{Z}_{\geq 0} R
$$

for any $r, s \in R$.
We also require R to have a rigidity condition which we formulate as follows:
Equip $\mathbb{Z} R$ with the symmetric bilinear form $(-,-)$ defined by $(r, s)=\delta_{r, s}$ for $r, s \in R$. The condition is then defined to be the existence of an involution (-)* $: R \rightarrow R$ such that

$$
(r \cdot s, t)=\left(s, r^{*} t\right) \quad r, s, t \in R
$$

Let C be a semi-simple ridged monoidal category. The set $\operatorname{lrr}(C)$ of isomorphism classes of simple objects has the structure of a fusion rule and $\mathbb{Z} \operatorname{Irr}(C)=K_{0}(C)$.

The aim is to describe modular categories with the fusion rule

$$
\operatorname{Fib}=\{1, x\}: x^{2}=1+x
$$

We let \mathcal{F} ib be a semi-simple k-linear category with simple objects I and X and tensor product defined as

$$
X \otimes X=I \oplus X
$$

for which there are two fundamental hom-spaces $\mathcal{F} i b\left(X^{2}, X\right)$ and $\mathcal{F} i b\left(X^{2}, I\right)$. We use a tree / string (of sorts) notation for the two corresponding basis vectors:

We exploit this notational convenience to investigate the categorical properties of \mathcal{F} ib.

The only non-trivial component of the associativity constraint for \mathcal{F} ib is

$$
\alpha_{X, X, X}:(X \otimes X) \otimes X \rightarrow X \otimes(X \otimes X)
$$

which on the level of hom-spaces corresponds the two isomorphisms $\mathcal{F} i b\left(\alpha_{X, X, X}, I\right)$ and $\mathcal{F} i b\left(\alpha_{X, X, X}, X\right)$.

Clearly $\operatorname{dim}\left(\mathcal{F} i b\left(X^{3}, I\right)\right)=1$ and $\operatorname{dim}\left(\mathcal{F} i b\left(X^{3}, X\right)\right)=2$. Thus the associativity k-linear transformation for $\mathcal{F} i b\left(X^{3}, X\right)$ is given by $A \in G L_{2}(k)$ and by $\alpha \in k^{*}$ for $\mathcal{F} i b\left(X^{3}, I\right)$.

Graphically,

where

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The pentagon coherence condition for associativity determines a set of equations relating the entries of the matrix A and α.

Clearly $\operatorname{dim}\left(\mathcal{F} i b\left(X^{4}, I\right)\right)=2$ and $\operatorname{dim}\left(\mathcal{F} i b\left(X^{4}, X\right)\right)=3$ such that there are five distinct graphical calculations to perform.

$$
\begin{aligned}
\alpha a^{2}+b c & =\alpha^{2} \\
\alpha a b+b d & =0 \\
\alpha c b+d^{2} & =1 \\
\alpha c a+d c & =0 \\
a^{3}+b c & =a^{2} \\
a^{2} b+b d & =b \\
c a^{2}+c d & =c \\
a b c+d^{2} & =0 \\
\alpha a b & =a b \\
\alpha c b & =d \\
\alpha c a & =c a \\
\alpha^{2} d & =c b
\end{aligned}
$$

To summarize these calculations, the associativity constraint for \mathcal{F} ib is given by,

$$
\alpha=1, \quad A=\left(\begin{array}{cc}
a & b \\
-a b^{-1} & -a
\end{array}\right)
$$

where a is a solution of $a^{2}=a+1$.
We note that $\operatorname{det}(A)=-1$ and $A^{-1}=A$.

Similar calculations are performed to obtain a classification of possible braidings and corresponding balanced structures. Braidings come from first considering the form these categorical operations take on the level of fundamental hom-spaces and then running through the axioms.

Fusion rules

where $w, u \in k^{*}$.

It turns out that braidings are completely determined by a number u (where $w=u^{2}$) satisfying the relation $u^{2}=u a-1$. Together with $a^{2}=1+a$ these two equations tell us that u is a primitive root of unity of order 10 .
Thus the domain of definition for a braided Fibonacci category is the cyclotomic field $\mathbb{Q}(\sqrt[10]{1})$.

Balanced structures require us to consider the endo-hom-spaces of the two simple objects I and X. Since these spaces are one dimensional (basis vectors are the respective identities) the ribbon twists are simply scalar multiples of the basis vectors.

We find that $\theta_{1}=i d_{1}$ and $\theta_{X}=\rho \cdot i d_{X}$ where naturality has forced the scalar multiple corresponding to θ_{1} to be unity. The ensuing calculations tells us that balanced structures are completely determined by the braiding as $\rho=u^{-2}$.

By studying possible monoidal equivalences one finds that, up to monoidal equivalence, associativity constraints for Fibonacci categories correspond to solutions of $a^{2}=1+a$, such that

$$
\alpha=1, \quad A=\left(\begin{array}{cc}
a & 1 \\
-a & -a
\end{array}\right)
$$

Further more, for each associativity constraint we have that braided balanced structures (up to braided equivalence) correspond to solutions of $u^{2}=a u-1$.

The above, taken together with studying rigid structures, yields the following.

Theorem

Every braided balanced structure on a Fibonacci category is modular. Thus there are four non-equivalent Fibonacci modular categories $\mathcal{F} i b_{u}$, parameterized by primitive roots of unity u of order 10.

A set M is a Non-negative Integer Matrix (NIM) representation of a fusion rule R if $\mathbb{Z} M$ is equipped with the structure of a $\mathbb{Z} R$-module such that

$$
r \cdot m \in \mathbb{Z}_{\geq 0} M
$$

where $r \in R$ and $m \in M$.
Just as for fusion rules the rigidity condition is imposed on $\mathbb{Z M}$.

Let \mathcal{M} be a semi-simple module category (actegory) over a semi-simple rigid monoidal category C. Then $\operatorname{Irr}(\mathcal{M})$ is a NIM-representation of the fusion rule $\operatorname{lrr}(C)$.

The endgame plan is to study ribbon commutative algebras in $\mathcal{F} i b^{\boxtimes \ell}$ (the tensor powers of $\mathcal{F} i b$). We do this by classifying the NIM-representations of the Fibonacci fusion rule Fib and its tensor powers Fib ${ }^{\times \ell}$.

It is in this way that we avoid having to directly classify all possible module categories of $\mathcal{F} i b^{\boxtimes \ell}$.

We choose to encode NIM-representations of $\mathrm{Fib}^{\times \ell}$ as a certain type of oriented graph.

Nodes correspond to elements of a NIM-set M. Edges are colored in ℓ colours. Two nodes m and n are the source and the target of an i-th coloured edge respectively iff the multiplicity $\left(x_{i} * m, n\right)$ of n in $x_{i} * m$ is non-zero. Here $x_{i}=1 \otimes \ldots \otimes 1 \otimes X \otimes 1 \otimes \ldots \otimes 1$, where X is in the i-th component.

It turns out that showing there is only one NIM-graph (and so only one irreducible NIM-representation) for Fib is quite straight forward. The graph is

The general case of NIM-representations of $\mathrm{Fib}^{\times \ell}$ is not as easy and requires some fancier footwork.

Theorem

Any indecomposable NIM-representation of $F i b^{\times \ell}$ is of the form Fib ${ }^{\lambda}$ for some set theoretic partition λ of $[\ell]=\{1 \ldots \ell\}$.

Take for example Fib ${ }^{\times 2}$. There are two partitions of [2] namely $\{1\} \cup\{2\}$ and $\{1,2\}$ corresponding to the square
and the double interval

The partition $\{1\} \cup\{2\} \cup\{3\}$ of [3] for Fib $^{\times 3}$ corresponds to the cube

Let A be an indecomposable algebra in $C=\mathcal{F} i b_{u}^{\boxtimes \ell}$. The category C_{A} of right A modules in C is then an indecomposable (left) C-module category. Recall that the forgetful functor $F: C_{A} \rightarrow C$ (forgetting the module structure) is a morphism of C-module categories and has a left adjoint
$G: C \rightarrow C_{A}$ which is also a C-module category morphism. The left adjoint G sends the monoidal unit I to A as module over itself.

It then follows that for the NIM-representation M of C_{A} we have two maps of NIM-representations (a $\mathbb{Z} R$-module homomorphism): $f: M \rightarrow \mathrm{Fib}^{\times \ell}$ and $g: \mathrm{Fib}^{\times \ell} \rightarrow M$ which are adjoint in the sense of the rigidity condition

$$
(g(y), m)_{M}=(y, f(m))_{\mathrm{Fib}^{\times \ell}}
$$

Since C_{A} is indecomposable as a C-module category, so is its NIM-representation M.
The afore theorem says we should have $M \simeq \mathrm{Fib}^{\lambda}$ for some set-theoretic partition λ of $[\ell]$.
In the first instance suppose λ has only one part $\lambda=(\ell)$.
In particular $M=\operatorname{Fib}^{(\ell)}$ has just two simple objects: m and n. Assume that $m=g(1)$.

Since g is a map of NIM-representations we must have $g\left(x_{i}\right)=n$ for all $i=1, \ldots, \ell$ such that

$$
g\left(x_{i} * 1\right)=x_{i} g(1)=x_{i} * m=n
$$

Hence for an arbitrary element $x_{i_{1}} \ldots x_{i_{s}}$ of Fib ${ }^{\times \ell}$

$$
g\left(x_{i_{1}} \ldots x_{i_{s}} * 1\right)=f_{s} * n+f_{s-1} * m
$$

where f_{s} is the s-th Fibonacci number.

Thus the adjoint map f has the form

$$
\begin{gathered}
f(m)=1+\sum_{s=1}^{\ell} f_{s-1} * \sum_{i_{1}<\ldots<i_{s}} x_{i_{1}} \ldots x_{i_{s}} \\
f(n)=\sum_{s=1}^{\ell} f_{s} * \sum_{i_{1}<\ldots<i_{s}} x_{i_{1}} \ldots x_{i_{s}}
\end{gathered}
$$

We identify $f(m)$ with the class of the algebra A in $K_{0}\left(\mathcal{F} i b_{u}^{\boxtimes \ell}\right)=\mathbb{Z}\left[\mathrm{Fib}^{\times \ell}\right]$. It turns out that since the twist $\theta_{x_{i_{1}} \ldots x_{i_{s}}}=\theta_{x_{i_{1}} \ldots} \ldots \theta_{x_{i_{s}}}$ of the each of the arbitrary elements depends on s in a non-trivial way, A cannot be ribbon.

Now suppose λ is a set-theoretic partition of $[\ell]$ into ordered parts

$$
\lambda=\left[1 \ldots \ell_{1}\right]\left[\ell_{1} \ldots \ell_{2}\right] \ldots\left[\ell_{n-1} \ldots \ell_{n}\right]
$$

Our theorem says that M, as a NIM-representation of $\mathcal{F} i b_{u}^{\boxtimes \ell}=\mathcal{F} i b_{u}^{\boxtimes \ell_{1}} \boxtimes \ldots \boxtimes \mathcal{F} i b_{u}^{\boxtimes \ell_{s}}$, has the form

$$
M=\operatorname{Fib}^{\left(\ell_{1}\right)} \boxtimes \ldots \boxtimes \operatorname{Fib}^{\left(\ell_{s}\right)}
$$

By the baby case above each $\mathbb{Z}\left[\operatorname{Fib}^{\left(\ell_{i}\right)}\right]=K_{0}\left(\left(\mathcal{F} i b_{u}^{\boxtimes \ell_{i}}\right)_{A_{i}}\right)$ for some non-ribbon algebra $A_{i} \in \mathcal{F} i b_{u}^{\boxtimes \ell_{i}}$.

Then $\mathbb{Z} M=K_{0}\left(\boxtimes_{j=1}^{s}\left(\mathcal{F} i b_{u}^{\boxtimes \ell}\right)_{\mathcal{j}_{j}}\right)=K_{0}\left(\left(\mathcal{F} i b_{u}^{\boxtimes \ell}\right)_{A}\right)$ where $A=\boxtimes_{j=1}^{s} A_{i}$.

Since A_{i} are non-ribbon then so is A.

The case for general λ can be reduced to the above by a permutation of $[n]$ which proves the following.

There are no (non-trivial) ribbon commutative algebras in \mathcal{F} ib ${ }_{u}^{\boxtimes \ell}$.

The argument of the proof of the above theorem works well for $\mathcal{F} i b_{u}^{\boxtimes \ell} \boxtimes \mathcal{F} i b_{v}^{\boxtimes m}$ as long as $u v \neq 1$.

Thank you!

